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Hilbert Space

Hilbert space (H, (-,-)) is an inner product space whose norm
[|ul| :== v/ {u,u) induces a complete metric space.

Aim [|up —up|[=0 = nli_>ngO||un—u||:0 for some u € V
m—r oo

(Nontrivial) It can be verified that
» R%is a Hilbert space under (u,v) :=u - v.
> 1% is a Hilbert space under (u,v) := > .2, uv;.

» L2 ([a,b]) is a Hilbert space under (f, g) f flx (z)dx
(Lebesgue, not Riemann)

We will always assume infinite dimension in the context of a Hilbert
space.
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New Definition of an Orthonormal Basis for Hilbert Space

An orthonormal basis of a Hilbert space (H, (-, -)) is a countably infinite
set of orthonormal vectors uy,us,... € H such that every u € H can be
uniquely written as

oo n
u= E ;U = lim E U
n— oo
i=1 i=1
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Convergence Result
If w1, uo,... € H are orthonormal, then Zfil a;u; converges iff
a=(a,aq,...) €12

Proof. If o € [2, letting s,, = >, v,

2

n n
||sn—sm||2: Z | = Z |o<i|2 SNy
i=m+1 i=m+1
thus s,, converges since H is complete.
00 > ||uH2 = || lim Zaiui = lim Zaiui = lim Z |ozi|2
by the continuity of the norm |||, thus a € I%.
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New Definition of Linear Combination for Hilbert Space

An [? linear combination of orthonormal vectors w1, us,... € H is
o0
2
U= g U (a1,009,...) €1
i=1

which converges by the previous slide.

Checkable facts:
> (Coefficient formula) o; = (u;, u).

EInne)r prcguct formula) If u =377, ayu; and v = >, Biu,, then
i=1 azﬁz-
> (

Bessel's inequality) For any = € H,
(o]
Dl w)[* < ||
=1
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Orthogonal Projection in Hilbert Space

» An [2 span of orthonormal vectors u;,us, ... € H is the set of all [?
linear combinations:

S = span ({uy,ug,...}) = {Zaiui :(ag,00,...) € l2}
i=1

> Claim. For any u € H, the (unique) projection ug € S of u onto S
(i.e., (u —ug,v) =0 for all v € S) is given by

oo

ug = Z (u, u;) u;

i=1

(Proof: show existence by Bessel's inequality, and use
(u,u;) = (ug,u;) for all 4.)

> Hilbert projection theorem.
ug = argmin||ju — v|
veS
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Characterization of Orthonormal Basis in Hilbert Space

Theorem. Orthonormal vectors w1, us,... € H are an orthonormal basis

1. Iff the set of their finite linear combinations is dense in H

2. Iff 0= (z,u1) = (z,u2) = --- impliesz =0
Examples:
> {er,e0,...... } is an orthonormal basis for I2 (use 2).

» The normalized Fourier basis

fnlz) = i exp (inx) Vn €7

Vor

is an orthonormal basis for L?([—n,7]) (use 1).

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 3, 2018

8/35



More Orthonormal Bases for L2

> The normalized Legendre polynomials form an orthonormal basis for
L?([—1,1]) (use 1 and Weierstrass approximation theorem).

» The normalized Hermite polynomials

(/2]

" - \/>' (_1)k aj"_2k Vi — 0.1
n(x) :=Vn! kz R (n = k)2 n=0,1,...
=0

is an orthonormal basis for
2
L0 (®) = {f R > R: Eponon [F@)] < 00}

Impication: give me any function f : R — R square-integrable
under Gaussian measure, and | can write it as

o

f(x) =Y (f Hu(x)) Ho(z)

n=0
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Positive Definite Kernel

> For any nonempty set X, a positive definite (p.d.) kernel on X
is a symmetric function k : X x X — R such that for any finite
subset 1 ...2, € X,

Z cicjk(zi,x;) >0 Ver...cp, €R
ij=1

> Any function ¢ : X — H induces a p.d. kernel on H defined by
k(z,y) = (¢(x), ¢(y)) since

Z cicj (¢(xi), (y;)) = <Z Ci¢(:vi),zcj¢>(fﬂj)> >0

ij=1 i=1 j=1
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Reproducing Kernel Hilbert Space (RKHS)

» RKHS is a Hilbert space of functions f : X — R equipped with a
(symmetric) reproducing kernel k : X x X — R such that

» For each z € X, the function k(-,z) : X — R is itself a
member of H (canonical feature map), and
» For each f € H, we have the reproducing property

(fik(2)) = f(x).

» In particular, it induces a "Hilbert space embedding” of x € X by
¢(x) := k(-,z) € H which satisfies

k(z,y) = (¢(z), 9(y))

» Moore-Aronszajn. Every p.d. kernel k is associated with a unique
RKHS H.
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Matrix

> A linear transformation f : V' — W from vector space V to W is

any function such that
! Zaiui = Zaz‘f (u;)

> A matrix A € R™*" is a linear transformation u — Au.

> (Exercise) Any linear transformation from R™ to R™ can be
represented by u — Au with a matrix A € R™*™. Thus

R™™ = {all linear transformations from R" to R™}
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Vector Space of Matrices

> (R"*™ (-,-)) is an inner product space where

» Induces the Frobenius norm

NAllp =D D A2, = |D [ATA],, = \/tr (ATA)

i=1 j=1 i=1
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Matrix Subspaces

Any A € R™*" is associated with the subspaces

range (A) := {Au: v e R"} CR™
null(A) =={ueR": Au=0} CR"

with dimensions

rank (A) := dim (range (A))
nullity (A4) := dim (null (A4))

Rank-nullity theorem.
rank (A) + nullity (A) =n

To see why, monitor these quantities as you add columns to A.
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A Spectacular Fact

dim (range (AT)) = dim (range (A))

“Proof”. Gaussian elimination (Er ... E1)A preserves range (A") and
thus dim (range (A")). It also preserves null (4) and thus
dim (range (A)) by the rank-nullity theorem. But it outputs

a * * * * * * * *
0 0 b x % *x * x *
0 0 0 ¢ * * * * x*
000000 d * x
00 0O0OTU 0O OO0 e
00O0O0OOOOTU OO
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Orthogonal Projection

If the columns of U = [uy ... uy,] € R"™™ are orthonormal (i.e.,
U'U = I,,), the projection of v € R™ onto range (U) is given by

n
UU v = Z(vTui)ui
i=1
where UU T € R™*" is a projection operator.
When n =m, UU T is the projection onto R™ and thus I,,. In this case,

vlvo=uvv' =1,

Such a matrix U € R™"*" is called an orthogonal matrix.

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 3, 2018 18/35



Overview

» Hilbert Space
Reproducing Kernel Hilbert Space (RKHS)

» Matrix

Eigendecomposition
Singular Value Decomposition (SVD)

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning

October 3, 2018

19/35



Definition

An eigenvalue )\ of A € R"*" is a scalar such that
Av =X

for some nonzero vector v € R™. Any such v # 0 is an eigenvector
associated with .
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Existence of (Complex-Valued) Eigenvalues

A is an eigenvalue of A € R™*™ iff there is some v # 0 such that

(A= X,)v=0 = nullity (A — A\I,) >0
— rank (A — \I,) <n
— A — M, is not invertible
= det(A — \I,) =0
= pn(A) =0

By the fundamental theorem of algebra, any polynomial of degree n has
n (possibly complex-valued) roots, counted with duplicates.
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Relationship Between Eigenvalues, Trace, and Determinant

For A € R?*2 the eigenvalues A1, Ay are the roots of

det(A — AI,,) = det <[a -2 b}) =X~ (a+d)X+ (ad +bc) =0
c—XA d ~—
tr(A) det(A)

On the other hand,

A=AD)A=A2) =27 = (AL +F A A+ M A =0

In general,
tr (A) = Z Ai
i=1
det(4) = [T\

@
Il
-
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Spectral Theorem

Statement. If A € R"*" is symmetric, we can find n real-valued sorted
eigenvalues A\ > --- > A, and corresponding orthonormal eigenvectors
v1...0, €R",

Implication. Organizing V = [v1...v,] € R™*™ and
A =diag((A\1 ... \n)), we can write

A=VAVT

v1 is called the top eigenvector; vy ... vy are called the top k eigenvectors.
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Variational Characterization

Claim 1.

vy € argmax v Av
veR™: [|v]|=1

Claim 2. Fori=1...k,

v; € argmax v Av
vER™: ||v]|=1
(v,v5)=0 Vj<i
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Definition

Given any A € R™*™ et

> up...u, € R™ orthonormal eigenvectors of AAT € R"*"
corresponding to top eigenvalues A\ > ... >\,

> v1...0, € R™: orthonormal eigenvectors of AT A € R™*™
corresponding to top eigenvalues A\ > ... > A/,

Fact. For i =1...min(m,n),

We call u; and v; the left and right singular vector of A corresponding
to i-th largest singular value o; := v/ \; > 0.
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SvD

Any A € R™™™ (assume n > m) can be written as

A=UXVT = Z JiuiviT
i=1

where
UeR™"™ U=1lui...up
V e R™*™ V=1[v1...0m)
¥ e RP™ Ziﬂ' = 0;

Furthermore, if rank (4) = r < m, then o; =0 for ¢ > r and
i
A= U,.Z,.VT.T = Zoiuw;r
i=1

Generally UV, is called a rank-k SVD.
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Variational Characterization

Claim 1. For:=1...k,

(us,v;) € arg max u' Av
(u,v) ER™ XR™:
[lull=]lv]|=1
uTuj:vT'UjZO Vi<i

Claim 2. Letting Vj := [v1 ... 0] € R™XK,

Vi € arg max tr (WTATAW)
WeRmXk: WTW=I} “—~ ———r
AW (%,
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Application: Spectral Norm

Ally = max - [[Aw]]

wER™: [Jw||=1

Frobenius/spectral norm of A € R™"*™ (n > m) in singular values:

1Al p = \/tr (ATA) = Z/\i(ATA)Z ZUi(A)Q

14]], = \/ max — wlATAw = /A (ATA) = 01(A)

eR™: ||lwl||=1
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Application: Orthonormal Bases for Matrix Subspaces

For any A € R"*™ with rank r < min(n,m), if U, € R"*" and
U, _, € R"*(™=7) are singular vectors corresponding to nonzero and zero
singular values (likewise for V,. and V,,,_,.),
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Application: Best Low-Rank Approximation

For any A € R™*™ with rank-k SVD U3 Vi,

Ul Vi € arg min |A — Z||
ZeRm<m: rank(Z)<k

where ||-|| is Frobenius or Spectral (or any orthogonally invariant norm).
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Application: Pseudoinverse

Pseudoinverse of a matrix A € R"*™ is the unique matrix AT € Rmx"
such that

1. AAT € R™¥™ s the orthogonal projection onto range (A4), and

2. AT A € R™ ™ is the orthogonal projection onto range (AT).

Proposition

Let A € R™*™ with r := rank (A) < min{m,n}. Let A=UXVT
denote a rank-r SVD of A. Then

At =vy-lUuT
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Application: Best-Fit Subspace

Problem. Given N data points in R?, identify a k-dimensional subspace
such that their projection onto the subspace is closest to the original
points.

Solution.

Ui € arg min HX — WWTXHF
WeRIXk:WT W=,

The projected N points are given by Y = WIW T X
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Relationship with Eigendecomposition |

> If A € R™ "™ is symmetric with eigendecomposition
A =Vdiag(\1... )V and SVD A = Udiag(o; ...0,)V T, then
for some permutation over columns 7w

Y LA U=VZV

» Corollary: SVD and eigendecomposition coincide on symmetric
positive semi-definite (i.e., only has nonnegative eigenvalues)
matrices.
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Relationship with Eigendecomposition Il

Let A € R™*™ (assume n > m) with an SVD

A = [U1U3][Z0; 0(n—m)xm]V | where ¥, = diag(cy ... 0m). Define an
(n+m) x (n 4 m) symmetric matrix with eigendecomposition with
VV,A c R(n+m)><(n+m)

1. Onxn A _ T
B[ oA ] —waw

Then up to different signs on Uy, Us, V' (column-wise),

Uy /V?2 Us ~U1/V2

A= diag (Ema O(n—m)x(n—m)a 72m’)

|

where M indicates matrix M with reverse column ordering. In particular,
the ordered eigenvalues Ay > --- > A\, 4, of A are

o> ...20,>20>2---20> -0, >...2 —01
—_——

n—m
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