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Hilbert Space

Hilbert space (H, 〈·, ·〉) is an inner product space whose norm
||u|| :=

√
〈u, u〉 induces a complete metric space.

lim
n→∞
m→∞

||un − um|| = 0 =⇒ lim
n→∞

||un − u|| = 0 for some u ∈ V

(Nontrivial) It can be verified that

I Rd is a Hilbert space under 〈u, v〉 := u · v.

I l2 is a Hilbert space under 〈u, v〉 :=
∑∞
i=1 uivi.

I L2
w([a, b]) is a Hilbert space under 〈f, g〉 :=

∫ b
a
f(x)g(x)w(x)dx

(Lebesgue, not Riemann)

We will always assume infinite dimension in the context of a Hilbert
space.
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New Definition of an Orthonormal Basis for Hilbert Space

An orthonormal basis of a Hilbert space (H, 〈·, ·〉) is a countably infinite
set of orthonormal vectors u1, u2, . . . ∈ H such that every u ∈ H can be
uniquely written as

u =

∞∑
i=1

αiui := lim
n→∞

n∑
i=1

αiui
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Convergence Result

If u1, u2, . . . ∈ H are orthonormal, then
∑∞
i=1 αiui converges iff

α = (α1, α2, . . .) ∈ l2.

Proof. If α ∈ l2, letting sn =
∑n
i=1 αiui,

||sn − sm||2 =

∣∣∣∣∣
∣∣∣∣∣

n∑
i=m+1

αiui

∣∣∣∣∣
∣∣∣∣∣
2

=

n∑
i=m+1

|αi|2
n,m→∞−−−−−→ 0

thus sn converges since H is complete.

∞ > ||u||2 =

∣∣∣∣∣
∣∣∣∣∣ lim
n→∞

n∑
i=1

αiui

∣∣∣∣∣
∣∣∣∣∣
2

= lim
n→∞

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

αiui

∣∣∣∣∣
∣∣∣∣∣
2

= lim
n→∞

n∑
i=1

|αi|2

by the continuity of the norm ||·||, thus α ∈ l2.
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New Definition of Linear Combination for Hilbert Space

An l2 linear combination of orthonormal vectors u1, u2, . . . ∈ H is

u =

∞∑
i=1

αiui (α1, α2, . . .) ∈ l2

which converges by the previous slide.

Checkable facts:

I (Coefficient formula) αi = 〈ui, u〉.
I (Inner product formula) If u =

∑∞
i=1 αiui and v =

∑∞
i=1 βiui, then

〈u, v〉 =
∑∞
i=1 αiβi.

I (Bessel’s inequality) For any x ∈ H,

∞∑
i=1

|〈x, ui〉|2 ≤ ||x||2
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Orthogonal Projection in Hilbert Space

I An l2 span of orthonormal vectors u1, u2, . . . ∈ H is the set of all l2

linear combinations:

S = span ({u1, u2, . . .}) =

{ ∞∑
i=1

αiui : (α1, α2, . . .) ∈ l2
}

I Claim. For any u ∈ H, the (unique) projection uS ∈ S of u onto S
(i.e., 〈u− uS , v〉 = 0 for all v ∈ S) is given by

uS =

∞∑
i=1

〈u, ui〉ui

(Proof: show existence by Bessel’s inequality, and use
〈u, ui〉 = 〈uS , ui〉 for all i.)

I Hilbert projection theorem.

uS = arg min
v∈S

||u− v||
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Characterization of Orthonormal Basis in Hilbert Space

Theorem. Orthonormal vectors u1, u2, . . . ∈ H are an orthonormal basis

1. Iff the set of their finite linear combinations is dense in H

2. Iff 0 = 〈x, u1〉 = 〈x, u2〉 = · · · implies x = 0

Examples:

I {e1, e2, . . . . . .} is an orthonormal basis for l2 (use 2).

I The normalized Fourier basis

fn(x) =
1√
2π

exp (inx) ∀n ∈ Z

is an orthonormal basis for L2([−π, π]) (use 1).
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More Orthonormal Bases for L2

I The normalized Legendre polynomials form an orthonormal basis for
L2([−1, 1]) (use 1 and Weierstrass approximation theorem).

I The normalized Hermite polynomials

Hn(x) :=
√
n!

bn/2c∑
k=0

(−1)k

k!

xn−2k

(n− 2k)!2k
∀n = 0, 1, . . .

is an orthonormal basis for

L2
N (0,1)(R) =

{
f : R→ R : Ex∼N (0,1)

[
|f(x)|2

]
<∞

}
Impication: give me any function f : R→ R square-integrable
under Gaussian measure, and I can write it as

f(x) =

∞∑
n=0

〈f,Hn(x)〉Hn(x)
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Positive Definite Kernel

I For any nonempty set X , a positive definite (p.d.) kernel on X
is a symmetric function k : X × X → R such that for any finite
subset x1 . . . xn ∈ X ,

n∑
i,j=1

cicjk(xi, xj) ≥ 0 ∀c1 . . . cn ∈ R

I Any function φ : X → H induces a p.d. kernel on H defined by
k(x, y) = 〈φ(x), φ(y)〉 since

n∑
i,j=1

cicj 〈φ(xi), φ(yj)〉 =

〈
n∑
i=1

ciφ(xi),

n∑
j=1

cjφ(xj)

〉
≥ 0
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Reproducing Kernel Hilbert Space (RKHS)

I RKHS is a Hilbert space of functions f : X → R equipped with a
(symmetric) reproducing kernel k : X × X → R such that

I For each x ∈ X , the function k(·, x) : X → R is itself a
member of H (canonical feature map), and

I For each f ∈ H, we have the reproducing property
〈f, k(·, x)〉 = f(x).

I In particular, it induces a “Hilbert space embedding” of x ∈ X by
φ(x) := k(·, x) ∈ H which satisfies

k(x, y) = 〈φ(x), φ(y)〉

I Moore-Aronszajn. Every p.d. kernel k is associated with a unique
RKHS H.
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Matrix

I A linear transformation f : V →W from vector space V to W is
any function such that

f

(∑
i

αiui

)
=
∑
i

αif (ui)

I A matrix A ∈ Rm×n is a linear transformation u 7→ Au.

I (Exercise) Any linear transformation from Rn to Rm can be
represented by u 7→ Au with a matrix A ∈ Rm×n. Thus

Rn×m = {all linear transformations from Rn to Rm}
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Vector Space of Matrices

I (Rn×m, 〈·, ·〉F ) is an inner product space where

〈A,B〉F :=

√√√√ n∑
i=1

m∑
j=1

Ai,jBi,j

I Induces the Frobenius norm

||A||F =

√√√√ n∑
i=1

m∑
j=1

A2
i,j =

√√√√ n∑
i=1

[A>A]i,i =
√

tr (A>A)
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Matrix Subspaces

Any A ∈ Rm×n is associated with the subspaces

range (A) := {Au : u ∈ Rn} ⊆ Rm

null (A) := {u ∈ Rn : Au = 0} ⊆ Rn

with dimensions

rank (A) := dim (range (A))

nullity (A) := dim (null (A))

Rank-nullity theorem.

rank (A) + nullity (A) = n

To see why, monitor these quantities as you add columns to A.
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A Spectacular Fact

dim
(
range

(
A>
))

= dim (range (A))

“Proof”. Gaussian elimination (ET . . . E1)A preserves range
(
A>
)

and

thus dim
(
range

(
A>
))

. It also preserves null (A) and thus
dim (range (A)) by the rank-nullity theorem. But it outputs
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Orthogonal Projection

If the columns of U = [u1 . . . um] ∈ Rn×m are orthonormal (i.e.,
U>U = Im), the projection of v ∈ Rm onto range (U) is given by

UU>v =

n∑
i=1

(v>ui)ui

where UU> ∈ Rn×n is a projection operator.

When n = m, UU> is the projection onto Rn and thus In. In this case,

U>U = UU> = In

Such a matrix U ∈ Rn×n is called an orthogonal matrix.
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Definition

An eigenvalue λ of A ∈ Rn×n is a scalar such that

Av = λv

for some nonzero vector v ∈ Rm. Any such v 6= 0 is an eigenvector
associated with λ.
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Existence of (Complex-Valued) Eigenvalues

λ is an eigenvalue of A ∈ Rn×n iff there is some v 6= 0 such that

(A− λIn)v = 0 ⇐⇒ nullity (A− λIn) > 0

⇐⇒ rank (A− λIn) < n

⇐⇒ A− λIn is not invertible

⇐⇒ det(A− λIn) = 0

⇐⇒ pn(λ) = 0

By the fundamental theorem of algebra, any polynomial of degree n has
n (possibly complex-valued) roots, counted with duplicates.
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Relationship Between Eigenvalues, Trace, and Determinant

For A ∈ R2×2, the eigenvalues λ1, λ2 are the roots of

det(A− λIn) = det

([
a− λ b
c− λ d

])
= λ2 − (a+ d)︸ ︷︷ ︸

tr(A)

λ+ (ad+ bc)︸ ︷︷ ︸
det(A)

= 0

On the other hand,

(λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2 = 0

In general,

tr (A) =

n∑
i=1

λi

det(A) =
n∏
i=1

λi
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Spectral Theorem

Statement. If A ∈ Rn×n is symmetric, we can find n real-valued sorted
eigenvalues λ1 ≥ · · · ≥ λn and corresponding orthonormal eigenvectors
v1 . . . vn ∈ Rn.

Implication. Organizing V = [v1 . . . vn] ∈ Rn×n and
Λ = diag((λ1 . . . λn)), we can write

A = V ΛV >

v1 is called the top eigenvector; v1 . . . vk are called the top k eigenvectors.
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Variational Characterization

Claim 1.

v1 ∈ arg max
v∈Rn: ||v||=1

v>Av

Claim 2. For i = 1 . . . k,

vi ∈ arg max
v∈Rn: ||v||=1
〈v,vj〉=0 ∀j<i

v>Av
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Definition

Given any A ∈ Rn×m, let

I u1 . . . un ∈ Rn: orthonormal eigenvectors of AA> ∈ Rn×n
corresponding to top eigenvalues λ1 ≥ . . . ≥ λn

I v1 . . . vm ∈ Rm: orthonormal eigenvectors of A>A ∈ Rm×m
corresponding to top eigenvalues λ′1 ≥ . . . ≥ λ′m

Fact. For i = 1 . . .min(m,n),

λi = λ′i ≥ 0 A>ui =
√
λivi Avi =

√
λiui

We call ui and vi the left and right singular vector of A corresponding
to i-th largest singular value σi :=

√
λi ≥ 0.
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SVD

Any A ∈ Rn×m (assume n ≥ m) can be written as

A = UΣV > =

m∑
i=1

σiuiv
>
i

where

U ∈ Rn×n U = [u1 . . . un]

V ∈ Rm×m V = [v1 . . . vm]

Σ ∈ Rn×m Σi,i = σi

Furthermore, if rank (A) = r ≤ m, then σi = 0 for i > r and

A = UrΣrV
>
r =

r∑
i=1

σiuiv
>
i

Generally UkΣkV
>
k is called a rank-k SVD.

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 3, 2018 27/35



Variational Characterization

Claim 1. For i = 1 . . . k,

(ui, vi) ∈ arg max
(u,v)∈Rn×Rm:
||u||=||v||=1

u>uj=v
>vj=0 ∀j<i

u>Av

Claim 2. Letting Vk := [v1 . . . vk] ∈ Rm×k,

Vk ∈ arg max
W∈Rm×k: W>W=Ik

tr
(
W>A>AW

)︸ ︷︷ ︸
||AW ||2F
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Application: Spectral Norm

||A||2 := max
w∈Rn: ||w||=1

||Aw||

Frobenius/spectral norm of A ∈ Rn×m (n ≥ m) in singular values:

||A||F =
√

tr (A>A) =

√√√√ m∑
i=1

λi(A>A) =

√√√√ m∑
i=1

σi(A)2

||A||2 =
√

max
w∈Rm: ||w||=1

w>A>Aw =
√
λ1(A>A) = σ1(A)
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Application: Orthonormal Bases for Matrix Subspaces

For any A ∈ Rn×m with rank r ≤ min(n,m), if Ur ∈ Rn×r and
Un−r ∈ Rn×(n−r) are singular vectors corresponding to nonzero and zero
singular values (likewise for Vr and Vm−r),

range (A) = range (Ur)

null (A) = range (Un−r)

range
(
A>
)

= range (Vr)

null
(
A>
)

= range (Vm−r)
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Application: Best Low-Rank Approximation

For any A ∈ Rn×m with rank-k SVD UkΣkVk,

UkΣkVk ∈ arg min
Z∈Rn×m: rank(Z)≤k

||A− Z||

where ||·|| is Frobenius or Spectral (or any orthogonally invariant norm).
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Application: Pseudoinverse

Pseudoinverse of a matrix A ∈ Rn×m is the unique matrix A+ ∈ Rm×n
such that

1. AA+ ∈ Rn×n is the orthogonal projection onto range (A), and

2. A+A ∈ Rm×m is the orthogonal projection onto range
(
A>
)
.

Proposition
Let A ∈ Rm×n with r := rank (A) ≤ min{m,n}. Let A = UΣV >

denote a rank-r SVD of A. Then

A+ = V Σ−1U>

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 3, 2018 32/35



Application: Best-Fit Subspace

Problem. Given N data points in Rd, identify a k-dimensional subspace
such that their projection onto the subspace is closest to the original
points.

Solution.

Uk ∈ arg min
W∈Rd×k:W>W=Ik

∣∣∣∣X −WW>X
∣∣∣∣
F

The projected N points are given by Y = WW>X.
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Relationship with Eigendecomposition I

I If A ∈ Rn×n is symmetric with eigendecomposition

A = V diag(λ1 . . . λn)V
>

and SVD A = Udiag(σ1 . . . σn)V >, then
for some permutation over columns π

Σ
π
= |Λ| U = V

π
= V

I Corollary: SVD and eigendecomposition coincide on symmetric
positive semi-definite (i.e., only has nonnegative eigenvalues)
matrices.
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Relationship with Eigendecomposition II
Let A ∈ Rn×m (assume n ≥ m) with an SVD
A = [U1U2][Σm; 0(n−m)×m]V > where Σm = diag(σ1 . . . σm). Define an
(n+m)× (n+m) symmetric matrix with eigendecomposition with
W,Λ ∈ R(n+m)×(n+m)

Ã :=

[
0n×n A
A> 0m×m

]
= WΛW>

Then up to different signs on U1, U2, V (column-wise),

W =

[
U1/
√

2 U2 −U1/
√

2

V/
√

2 0m×(n−m) V /
√

2

]
Λ = diag

(
Σm, 0(n−m)×(n−m),−Σm,

)
where M indicates matrix M with reverse column ordering. In particular,
the ordered eigenvalues λ1 ≥ · · · ≥ λn+m of Ã are

σ1 ≥ . . . ≥ σm ≥ 0 ≥ · · · ≥ 0︸ ︷︷ ︸
n−m

≥ −σm ≥ . . . ≥ −σ1
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