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Welcome!

This course is not
I A rigorous introduction to linear algebra, statistics, optimization,

machine learning and its applications

I A full 100-unit class with letter grades, lots of homeworks & exams

It is
I A special topics course focusing on machine learning methods that

use linear algebraic machinery (“spectral techniques”)

I A pass/fail 50-unit class, no homeworks or exams (probably)

More like a tutorial + reading group
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How to Not Fail the Course

I Clearly designed for self-motivated grad/undergrad researchers

I Implicit assumption: You already know machine learning and
just want to learn about the topic.

I Pass/fail judged on participation and paper presentation

I Must have enough substance to give a full lecture to the class
and “demonstrate deep understanding”

I There might be a mini quiz towards the end for an extra
measurement. . . So don’t be too comfortable :)

I Logistics

I Course number: TTIC 41000 (TTIC Room 526)
I Time: M 3-4:20pm (office hours M 4:30-5pm)
I Course materials found on the course website
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http://karlstratos.com/teaching/spectral_topics/spectral_topics.html
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Relevance of Spectral Techniques in Machine Learning

I Functional analysis

I Subspace identification (e.g., for parameter estimation)

I Optimization

I Neural networks
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Functional Analysis

What can we say about the training loss?

I Example: semiparametric regression (Dudeja and Hsu, 2018)

y = g(u? · x) + ε x ∼ N (0, Ip), ε ∼ N (0, σ2)

g : R→ R unknown smooth function

I Learning: minimize over unit-length u ∈ Rp

RL(u) = min
h∈PL

Ex,y
[
(y − h(u · x))2

]
I By characterizing g(z) =

∑∞
l=0 a

?
lHl(z) in the

Hermite polynomial basis, one can show that

RL(u) = σ2 +

L∑
l=1

(a?l )
2(1− (u · u?)2l)
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Subspace Identification

Can we recover low-dimensional structure from high-dimensional
observations?

I Example: weighted finite automaton (Balle et al., 2014)

f(x1 . . . xN ) = α>︸︷︷︸
1×k

Ax1︸︷︷︸
k×k

· · ·AxN︸︷︷︸
k×k

β︸︷︷︸
k×1

Unknown function f : X ∗ → R maps a sequence of symbols
x = (x1 . . . xN ) to a number f(x).

I It is assumed that k � |X |.
I Problem: efficiently learn f from samples of (x, f(x)).

I Model parameters recovered up to rotation by performing
rank-k singular value decomposition (SVD) on

Ω = U︸︷︷︸
|X |×k

Σ︸︷︷︸
k×k

V >︸︷︷︸
k×|X|

[Ω]x,y = f(xy)
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Optimization

Can we use decomposition techniques to solve optimization prob-
lems?

I Example: canonical correlation analysis (CCA) (Hotelling, 1936)

(a, b) = arg max
u∈Rd,v∈Rd′

corr
(
u>X, v>Y

)
Find projection vectors to maximize the correlation between random
variables X,Y .

I Solution given by rank-1 SVD on

E
[
XX>

]−1/2
E
[
XY >

]
E
[
Y Y >

]−1/2 ∈ Rd×d
′
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Neural Networks

Most of deep learning is matrix manipulation.

I Thus matrix skills are useful even if you only do neural networks.

I Word2vec and language modeling can both be seen as matrix
factorization problems (Levy and Goldberg, 2014; Yang et al., 2017)

I Solid background in spectral techniques is just generally useful for
various problems in machine learning.

I For instance, is there a solution to9 3
6 5
0 10

[x1
x2

]
=

 1
2
−2

?
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Vector Space

Vector space V over field F is a set containing 0, equipped with

I Vector addition V × V → V denoted (u, v) 7→ u+ v such that

u+ v = v + u

(u+ v) + w = u+ (v + w)

u+ 0 = u

and every u ∈ V has additive inverse −u ∈ V , u+ (−u) = 0.

I Scalar multiplication F× V → V denoted (α, u) 7→ αu such that

α(u+ v) = αu+ αv 1u = u

(α+ β)u = αu+ βu 0u = 0

α(βu) = (αβ)u (−1)u = −u
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Vector Space Examples

1. Euclidean space. Rd

(α1, . . . , αd) + (β1, . . . , βd) := (α1 + β1, . . . , αd + βd)

γ(α1, . . . , αd) := (γα1, . . . , γαd) ∀γ ∈ R

2. Sequence space. R∞

(α1, α2, . . .) + (β1, β2, . . .) := (α1 + β1, α2 + β2, . . .)

γ(α1, α2, . . .) := (γα1, γα2, . . .) ∀γ ∈ R

3. Function space. {f : X → R}

(f + g)(x) := f(x) + g(x)

(γf)(x) := γf(x) ∀γ ∈ R

4. Polynomial space. Pd :=
{∑d

i=0 αix
i : αi ∈ R

}
(P∞ denotes all

polynomials)
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Linear Combination, Span, Independence

I Linear combination of u1 . . . un ∈ V with coefficients
α1 . . . αn ∈ F is the vector

n∑
i=1

αiui := α1u1 + · · ·+ αnun ∈ V

I Span of A ⊆ V is the set of all (finite) linear combinations

span (A) =

{
n∑
i=1

αiui : u1 . . . un ∈ A, α1 . . . αn ∈ F, n ∈ N

}

I u1 . . . un ∈ V are linearly independent if

n∑
i=1

αiui = 0 =⇒ α1 = · · · = αn = 0
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Subspace

Subspace of V is a subset S ⊆ V closed under linear combinations.

Subspaces of R2 Not subspaces of R2

I A subspace is a vector space itself.

I V and {0} are trivial subspaces of V .

I Intersection of subspaces is a subspace (what about union?).

I Any nonempty A ⊆ V generates the subspace span (A).
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“Square-Integrable” Subspaces

I Subspace of R∞

l2 :=

{
(α1, α2, . . .) ∈ R∞ :

∑
i∈N
|αi|2 <∞

}

I Subspace of {f : R→ R}, with weight function w : R→ [0,∞)

L2
w([a, b]) :=

f : R→ R :

∫ b

a

|f(x)|2 w(x)dx︸ ︷︷ ︸
Lebesgue integral

<∞


Denote the unweighted version by L2([a, b]).
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Vector Space of Random Variables

I A random variable X (real-valued) is just a measurable function
from sample space Ω to real values.

I Thus the set of all real valued random variables is a vector space
(i.e., a subspace of function space).

I We can similarly define the subspace of square-integrable random
variables

RV2 :=
{
X : X is a random variable such that E

[
X2
]
<∞

}
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Basis

A basis of V is B ⊂ V such that

I The elements of any finite subset of B are linearly independent, and

I V = span (B)

Equivalently, B ⊂ V is a basis iff every u ∈ V can be written as a finite
and unique linear combination of elements in B.

Examples:

I {e1, e2} is a basis of R2. So is {(1, 1), (1, 2)}.
I
{

1, x, x2, . . .
}

is a basis of P∞.

I Is {e1, e2, . . .} a basis of R∞?
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Two Facts Regarding Basis

Existence. Every vector space has a basis.

I Try to find a basis for R∞ by starting with B = {e1, e2, . . .}.
I (1, 1, 1, . . .) ∈ R∞ is not in span (B), so add it.

I (1, 2, 3, . . .) ∈ R∞ is not in span (B), so add it.

I . . .

I We will ultimately find a basis given the axiom of choice.

Dimension. Every basis of a vector space has the same cardinality.

I dim (V ), the “dimension of vector space V ”, refers to the (unique)
cardinality of a basis of V .

dim
(
Rd
)

= d dim (P∞) = ℵ0 dim (R∞) > ℵ0
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Inner Product Space

Inner product space is vector space V over R (for now) equipped with
〈·, ·〉 : V × V → R satisfying

〈u, u〉 ≥ 0 〈u, u〉 = 0⇔ u = 0

〈αu, v〉 = α 〈u, v〉 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉
〈u, v〉 = 〈v, u〉

I Notion of magnitude ||·|| : V → [0,∞) given by

||u|| :=
√
〈u, u〉

Check that ||αu|| = |α| ||u|| and ||u|| = 0 iff u = 0.

I Notion of distance given by ||u− v|| = ||v − u||
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Cauchy-Schwarz Inequality

|〈u, v〉| ≤ ||u|| ||v||

Proof. True for v = 0. For any v 6= 0,

||u− λv||2 = 〈u− λv, u− λv〉

= ||u||2 − 2λ 〈u, v〉+ λ2 ||v||2

= ||u||2 − 〈u, v〉
||v||2

≥ 0

by choosing λ = 〈u, v〉 / ||v||2.
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Triangle Inequality

||u + v|| ≤ ||u|| + ||v||

Proof.

||u+ v||2 = ||u||2 + 2 〈u, v〉+ ||v||2

≤ ||u||2 + 2 |〈u, v〉|+ ||v||2

≤ ||u||2 + 2 ||u|| ||v||+ ||v||2

= (||u||+ ||v||)2

I Thus ||u|| is a norm and (V, ||u||) a normed space.

I Thus ||u− v|| is a metric and (V, ||u− v||) a metric space.
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Continuity of Inner Product

I Fact. A linear function between normed spaces is continuous iff
bounded.

I 〈u, ·〉 : V → R is a linear function, and for any v ∈ V ,

〈u, v〉 ≤ ||u|| ||v|| <∞

Thus 〈u, ·〉 (or 〈·, u〉) is continuous.

I In particular,〈
lim
n→∞

un, u
〉

= lim
n→∞

〈un, u〉∣∣∣∣∣∣ lim
n→∞

un

∣∣∣∣∣∣2 =
〈

lim
n→∞

un, lim
m→∞

um

〉
= lim
n→∞

〈un, un〉 = lim
n→∞

||un||2
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Inner Product Examples

I Inner product on Euclidean space Rd (dot product)

〈u, v〉 = u · v :=

d∑
i=1

uivi

I Inner product on square-summable sequences l2

〈u, v〉 :=

∞∑
i=1

uivi

I Inner product on square-integrable functions L2
w([a, b])

〈f, g〉 :=

∫ b

a

f(x)g(x)w(x)dx

I Inner product on square-integrable random variables RV2

〈X,Y 〉 := E [XY ]
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Angle Between Vectors

For nonzero u, v ∈ V , we define

cos(θ) :=
〈u, v〉
||u|| ||v||

∈ [−1, 1]

I If u = αv for some α > 0,

cos(θ) = 1 =⇒ θ = 0

I If 〈u, v〉 = 0 (i.e., orthogonal, also written u ⊥ v),

cos(θ) = 0 =⇒ θ =
π

2

I If u = αv for some α < 0,

cos(θ) = −1 =⇒ θ = π
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Orthogonal Projection

I The orthogonal complement of a subspace S ⊆ V is the subspace

S⊥ := {u ∈ V : 〈u, v〉 = 0 ∀v ∈ S}

The (orthogonal) projection of nonzero u ∈ V onto S is uS ∈ S
such that uS⊥ := u− uS ∈ S⊥.

I Claim 1. uS is unique, hence the unique decomposition (wrt S)

u = uS + uS⊥

I Claim 2. If S has an orthonormal (countable) basis B,

uS =
∑
v∈B
〈v, u〉 v

I Claim 3. uS ∈ S is the best approximation of u under ||·||.

uS = arg min
v∈S

||u− v||
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Aside: An Example Usage in ML

Estimating parameter θ ∈ Rd on data points x1 . . . xN ∈ Rd by

θ∗ = arg min
θ∈Rd

||θ||2 + Loss (〈θ, x1〉 , . . . , 〈θ, xN 〉)

(e.g., binary support vector machines)

The Representer Theorem. The optimal parameter must be a linear
combination of the data points,

θ∗ =

N∑
i=1

αixi
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Gram-Schmidt Process

Input: linearly independent u1 . . . un ∈ V
Output: ū1 . . . ūn ∈ V such that

〈ūi, ūj〉 =

{
1 if i = j
0 otherwise

∀i, j

span ({ū1 . . . ūi}) = span ({u1 . . . ui}) ∀i

Algorithm: For i = 1 . . . n,

ũi ← ui −
i−1∑
j=1

〈ui, ūj〉 ūj ūi ←
ũi
||ũi||

Implication: Any linearly independent set of vectors A ⊆ V can be made
into an orthonormal basis of span (A).

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 1, 2018 28/33



Gram-Schmidt Process: (Countably) Infinite Dimension

Input: linearly independent u1, u2, . . . ∈ V in (V, 〈·, ·〉)
Output: ū1, ū2, . . . ∈ V such that

〈ūi, ūj〉 =

{
1 if i = j
0 otherwise

∀i, j

span ({ū1 . . . ūi}) = span ({u1 . . . ui}) ∀i

Algorithm: For i = 1, 2, . . .

ũi ← ui −
i−1∑
j=1

〈ui, ūj〉 ūj ūi ←
ũi
||ũi||

Implication: Any inner product space with countable dimension has an
orthonormal basis.
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Example: Legendre Polynomials

Orthonormalize the following basis of P∞

p0(x) = 1

p1(x) = x

p2(x) = x2

...

with inner product

〈p, q〉 =

∫ 1

−1
p(x)q(x)dx

to obtain an orthonormal basis of P∞ called the (normalized) Legendre
polynomials.
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Example: Legendre Polynomials (Cont.)

=⇒

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 1, 2018 31/33



Versions of Pythagorean Theorem

I For orthogonal u1 . . . un ∈ V ,∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ui

∣∣∣∣∣
∣∣∣∣∣
2

=

n∑
i=1

||ui||2

I If B is an orthonormal basis of subspace S, then for any u ∈ S

||u||2 =
∑
v∈B
|〈u, v〉|2

I If uS ∈ S is the orthogonal projection of u ∈ V onto subspace S,

||u− uS ||2 = ||u||2 − ||uS ||2
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Parting Remarks on Orthonormal Basis

I Because of algebraic convenience and Gram-Schmidt, we always
assume that a basis is orthonormal when the dimension is finite
(e.g., Rd) or countably infinite (e.g., P∞).

I When the dimension is uncountably infinite, that is we cannot
express a vector as a finite linear combination (e.g., l2), there may
not be an orthonormal basis.

I Solution: we will change the definition of an orthonormal basis.
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