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Welcome!

This course is NOT

» A rigorous introduction to linear algebra, statistics, optimization,
machine learning and its applications

» A full 100-unit class with letter grades, lots of homeworks & exams

It IS

> A special topics course focusing on machine learning methods that
use linear algebraic machinery (“spectral techniques”)

> A pass/fail 50-unit class, no homeworks or exams (probably)

More like a tutorial + reading group
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How to Not Fail the Course

> Clearly designed for self-motivated grad/undergrad researchers

» Implicit assumption: You already know machine learning and
just want to learn about the topic.

> Pass/fail judged on participation and paper presentation

» Must have enough substance to give a full lecture to the class

and “demonstrate deep understanding”
» There might be a mini quiz towards the end for an extra
measurement. .. So don't be too comfortable :)

> Logistics
» Course number: TTIC 41000 (TTIC Room 526)
» Time: M 3-4:20pm (office hours M 4:30-5pm)
» Course materials found on the course website
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http://karlstratos.com/teaching/spectral_topics/spectral_topics.html
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Relevance of Spectral Techniques in Machine Learning

v

Functional analysis

v

Subspace identification (e.g., for parameter estimation)
> Optimization

Neural networks

v
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Functional Analysis

‘ What can we say about the training loss?

> Example: semiparametric regression (Dudeja and Hsu, 2018)
y=g( a)+e o N0,L), e~ N(0,0%)
g : R — R unknown smooth function
» Learning: minimize over unit-length v € RP

Rp(u) = ,?el},nL E.y [(y — h(u-2))?]

» By characterizing g(z) = > o, aj Hi(z) in the
Hermite polynomial basis, one can show that

L
Rp(u) =0+ (ai)*(1 = (u-u")*)

=1
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Subspace Identification

Can we recover low-dimensional structure from high-dimensional
observations?

> Example: weighted finite automaton (Balle et al., 2014)

- T T T
21...2N) = A" ... AN
f<1 N) ~ N~ v\ﬁ,_/

1xk kxk kxk fx1

Unknown function f : X* — R maps a sequence of symbols
x=(x1...xN) to a number f(x).
» It is assumed that k < |X].

> Problem: efficiently learn f from samples of (x, f(z)).

> Model parameters recovered up to rotation by performing
rank-k singular value decomposition (SVD) on

— T _
Q= U X V Qzy = fzy)
|X|xk Exk kx|X|
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Optimization

Can we use decomposition techniques to solve optimization prob-
lems?

> Example: canonical correlation analysis (CCA) (Hotelling, 1936)

(a,b) = argmax corr (uTX, vTY)
u€Rd veRY

Find projection vectors to maximize the correlation between random
variables X,Y.

> Solution given by rank-1 SVD on

/

E[xxT] PEXYT)E[YYT] /e RO

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 1, 2018 8/33



Neural Networks

‘ Most of deep learning is matrix manipulation.

» Thus matrix skills are useful even if you only do neural networks.

» Word2vec and language modeling can both be seen as matrix
factorization problems (Levy and Goldberg, 2014; Yang et al., 2017)

> Solid background in spectral techniques is just generally useful for
various problems in machine learning.

» For instance, is there a solution to
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Vector Space

Vector space V over field I is a set containing 0, equipped with

> Vector addition V' x V' — V denoted (u,v) — u + v such that

u+v=v+u
(u+v)+w=u+ (v+w)
u+0=u

and every u € V has additive inverse —u € V, u + (—u) = 0.

> Scalar multiplication F x V' — V denoted (o, u) — au such that

alu+v) = au+ av lu=u
(a4 B)u = au+ pu Ou=0
a(fu) = (af)u (—Du = —u
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Vector Space Examples

1. Euclidean space. R?

(ah'"aad)—i_(ﬁla"'aﬁd) = (Oé] +ﬁ17"'7ad+ﬁd)
’Y(ala"'aad) = (’70417-~,’Yad) V’YER

2. Sequence space. R*

(a1, 0,...) + (B1,B2,...) := (a1 + B1,a2 + Ba2,...)
v(a1, as,...) = (yag,yas, .. .) vy eR

3. Function space. {f : X — R}

(f+9)(x) = f(z) +g(x)
(vf)(@) :=~f(z) vy eR

4. Polynomial space. Py := {Z?:o axt ;€ ]R} (Ps denotes all
polynomials)
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Linear Combination, Span, Independence

» Linear combination of u; ... u, € V with coefficients
o1 ...qap € Fis the vector

n
Zaiui =aiul + -+ apu, €V
i=1
> Span of A C V is the set of all (finite) linear combinations
n
span (A) = {Zaiui UL Up EA ar...an EF, nE N}
i=1
> uj...up €V are linearly independent if

n
E a;u; =0 = a;=---=a,=0
=1
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Subspace

Subspace of V is a subset S C V closed under linear combinations.

Subspaces of R? Not subspaces of R?

\
\

» A subspace is a vector space itself.
> V and {0} are trivial subspaces of V.
> Intersection of subspaces is a subspace (what about union?).

> Any nonempty A C V generates the subspace span (A).

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 1, 2018 14/33



“Square-Integrable” Subspaces

» Subspace of R*>

ZQ = {(al,ag,...) e R : Z‘O&i|2 < OO}

i€EN

> Subspace of {f : R — R}, with weight function w : R — [0, c0)

b <
L?([a,b]) ;== f:R—=R: / |f ()] w(z)de < oo

Lebesgue integral

Denote the unweighted version by L?([a, b]).
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Vector Space of Random Variables

> A random variable X (real-valued) is just a measurable function
from sample space 2 to real values.

» Thus the set of all real valued random variables is a vector space
(i.e., a subspace of function space).

» We can similarly define the subspace of square-integrable random
variables

RV? = {X : X is a random variable such that E [X2] < oo}
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Basis

A basis of V is B C V such that
> The elements of any finite subset of B are linearly independent, and

> V =span(DB)

Equivalently, B C V' is a basis iff every u € V' can be written as a finite
and UNIQUE linear combination of elements in B.

Examples:
» {e1, e} is a basis of R%. Sois {(1,1),(1,2)}.
>{1x:17 }lsabaS|sofP

> Is {e1,eq,...} a basis of R>®?
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Two Facts Regarding Basis

Existence. Every vector space has a basis.

v

Try to find a basis for R by starting with B = {ej,e3,...}.
(1,1,1,...) € R® is not in span (B), so add it.
(1,2,3,...) € R*® is not in span (B), so add it.

v

v

v

We will ultimately find a basis given the axiom of choice.

Dimension. Every basis of a vector space has the same cardinality.

> dim (V'), the “dimension of vector space V", refers to the (unique)
cardinality of a basis of V.

dim (RY) =d dim (P4) = N dim (R*) > Ry
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Inner Product Space

Inner product space is vector space V over R (for now) equipped with
(-, : V xV = R satisfying

(u,u) >0 (u,uy=0u=0
(au,v) = a(u,v) (u+v,w) = (u,w) + (v, w)

(u,v) = (v, u)

> Notion of magnitude ||-|| : V' — [0, 00) given by
[lul| := v/ {u, u)

Check that ||au|| = |af|u|| and [|u]| = 0 iff u = 0.

> Notion of distance given by ||u — v|| = ||v — u]|
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Cauchy-Schwarz Inequality

[{u, v)| < lul o]

Proof. True for v = 0. For any v # 0,
|l — Av|)* = (u— Av,u — o)
= [Jul|* = 2 (w,v) + X* ||v]|*

229 5
ol

by choosing A = (u,v) /||v||>.
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Triangle Inequality
[l + o[ < JJul| +[]v]

Proof.

a0l = [l + 2 {u, v) + o]
< Jlull® +2 |, 0)] + ol
<l + 2 |l [[o]] + [0l
= (Ilull +[lv])?

> Thus ||u]| is a norm and (V,||u||) a normed space.

» Thus ||u — v]|| is a metric and (V] ||u — v||) a metric space.
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Continuity of Inner Product

» Fact. A linear function between normed spaces is continuous iff
bounded.

> (u,-): V — Ris a linear function, and for any v € V,
(u,v) <|ul[|Jv]] < o0

Thus (u,-) (or (-,u)) is continuous.

» In particular,

< lim un7u> = lim (up,u)
n—oo n— oo

2
lim u, < lim wu,, lim um> = lim (up,u,) = lim HunH
n—00 n—00 m—+ n—00 n—o00
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Inner Product Examples

» Inner product on Euclidean space R¢ (dot product)
d
(u,v) =u-v:= Zuﬂh‘
i=1
> Inner product on square-summable sequences [°
o0
(u,v) = Zuivi
i=1
» Inner product on square-integrable functions L2 ([a, b])
b
(19) = [ f@g(@y(z)ds
a

» Inner product on square-integrable random variables RV

(X,Y) = E[XY]
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Angle Between Vectors

For nonzero u,v € V, we define

 {w,v) B
OS0) = gy € 1Y

» If u = av for some o« > 0,
cos(f) =1 = =0

> If (u,v) =0 (i.e., orthogonal, also written u L v),

™
cos(f) =0 = 0=—-
2
> If u = av for some a < 0,
cos(f) = —1 — 0=
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Orthogonal Projection
» The orthogonal complement of a subspace S C V is the subspace
St={ueV: (u,v)=0Yv € S}

The (orthogonal) projection of nonzero u € V onto S is ug € S
such that ug: :=u —ug € S*.

> Claim 1. ug is unique, hence the unique decomposition (wrt .S)
u=1us +ugL

> Claim 2. If S has an orthonormal (countable) basis B,

ug = Z (v,uyv

vEB
> Claim 3. ug € S is the best approximation of u under |-||.
ug = argmin ||u — v||
vES
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Aside: An Example Usage in ML

Estimating parameter § € R? on data points z; ... 2y € R? by

0* = argmin ||0||* + Loss ((,21) ,...,(0,zxn))
fERC

(e.g., binary support vector machines)

The Representer Theorem. The optimal parameter must be a linear
combination of the data points,

N

*

0" = E ;5
i=1
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Gram-Schmidt Process

Input: linearly independent u; ... u, € V
Output: 4 ...1u, € V such that

|1 ifi=g .
(i, ) = { 0 otherwise Vi, J
span ({@y ... u;}) = span ({uy ... u;}) Vi
Algorithm: Fori=1...n,
i—1 i
ﬁﬁ—ui—Z(ui,ﬂj)ﬂj U; — 7”111”
=1 '

Implication: Any linearly independent set of vectors A C V' can be made
into an orthonormal basis of span (A).
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Gram-Schmidt Process: (Countably) Infinite Dimension

Input: linearly independent uy,ug,... € Vin (V, ("))
Output: 4y, Us,... € V such that

1 ifi=g -
(@i, 1) = { 0 otherwise Vi g
span ({4 ...4;}) = span ({u; ... u;}) Vi
Algorithm: For:=1,2,...
i—1 .
ﬂi%ui72<ui,ﬂj>ﬂj U; — Hﬂl”
j=1 !

Implication: Any inner product space with countable dimension has an
orthonormal basis.
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Example: Legendre Polynomials

Orthonormalize the following basis of P,

with inner product

.0 = [ @)z

—1

to obtain an orthonormal basis of P, called the (normalized) Legendre
polynomials.

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 1, 2018 30/33



Example: Legendre Polynomials (Cont.)

N

\ \ \ // / /

}\\, \ /\ / /|

3 //// — 13 \\/ / / f
/
// // . /

A
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Versions of Pythagorean Theorem

» For orthogonal uy...u, €V,

2 n
2
= lfuill
i=1

> If B is an orthonormal basis of subspace S, then for any u € S

lul* = [{u, v)|*

vEB
> If ug € S is the orthogonal projection of u € V' onto subspace 5,

2 2 2
[lu = us||” = ||ul]” = [Jus]
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Parting Remarks on Orthonormal Basis

> Because of algebraic convenience and Gram-Schmidt, we always
assume that a basis is orthonormal when the dimension is finite
(e.g., R?) or countably infinite (e.g., Pso).

» When the dimension is uncountably infinite, that is we cannot
express a vector as a finite linear combination (e.g., [2), there may
not be an orthonormal basis.

» Solution: we will change the definition of an orthonormal basis.
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