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Correlation Coefficient

I Correlation coefficient between random variables X,Y ∈ R:

cor (X,Y ) :=
E [(X − E [X]) (Y − E [Y ])]√

E
[
(X − E [X])

2
]√

E
[
(Y − E [Y ])

2
]

Degree of linear relationship [−1, 1]

X

Y

cor (X, Y ) ≈ 1
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Facts About Correlation Coefficient

I Cosine of the angle b/t centered X,Y (under 〈X,Y 〉 := E [XY ])

cor (X,Y ) =
〈X − E [X] , Y − E [Y ]〉
||X − E [X]|| ||Y − E [Y ]||

= cos θ

I Invariant to scale/location: X − E [X] = (X + c)− E [X + c]

cor (X,Y ) = cor (αX + c, βY + c′) ∀α, β, c, c′ ∈ R

I 0 when independent, ±1 when parellel

cor (X,Y ) = 0 ⇐⇒ E [XY ] = E [X] E [Y ]

cor (X,Y ) = 1 ⇐⇒ X = αY α > 0

cor (X,Y ) = −1 ⇐⇒ X = αY α < 0
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Overview

I Views of CCA

I Correlation Maximization
I Subspace Optimization

I Deep CCA
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Optimization Problem Underlying CCA
Input:

1. (X,Y ) ∈ Rd × Rd′ // two “views” of an object

2. m ≤ min(d, d′) // number of projection vectors

Output: (a1, b1) . . . (am, bm) ∈ Rd × Rd′ such that

I (a1, b1) is a solution of

argmax
a,b

cor
(
a>X, b>Y

)
I For i = 2 . . .m : (ai, bi) is a solution of the above subject to:

cor
(
a>X, a>j X

)
= 0 ∀j < i

cor
(
b>Y, b>j Y

)
= 0 ∀j < i
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Definitions

Cross-covariance matrix given by

CXY := E
[
(X − E [X]) (Y − E [Y ])

>
]
∈ Rd×d

′

Covariance matrices are assumed to be invertible

CXX := E
[
(X − E [X]) (X − E [X])

>
]
∈ Rd×d

CY Y := E
[
(Y − E [Y ]) (Y − E [Y ])

>
]
∈ Rd

′×d′

Define correlation matrix

Ω := C
−1/2
XX CXYC

−1/2
Y Y ∈ Rd×d′
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Exact Solution via SVD (Hotelling, 1936)

(ai, bi) ∈ arg max
a∈Rd, b∈Rd′ :

cor(a>X,a>j X)=0 ∀j<i
cor(b>Y,b>j Y )=0 ∀j<i

cor
(
a>X, b>Y

)

Claim. If UΣV > is an SVD of Ω, then

σi = max
a∈Rd, b∈Rd′ :

cor(a>X,a>j X)=0 ∀j<i
cor(b>Y,b>j Y )=0 ∀j<i

cor
(
a>X, b>Y

)

with a solution

ai = C
−1/2
XX ui bi = C

−1/2
Y Y vi
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Matrix Form

I Organize A = [a1 . . . am] ∈ Rd×m and B = [a1 . . . am] ∈ Rd×m

I Solution given by A = C
−1/2
XX U∗ and B = C

−1/2
Y Y V ∗

(U∗, V ∗) ∈ arg max
U∈Rd×m, V ∈Rd′×m:

U>U=V >V=Im

∣∣∣∣U>ΩV
∣∣∣∣
1

where ||M ||1 := tr
((
M>M

)1/2)
=
∑
i σi(M) is the nuclear norm

I Optimal value
∑m
i=1 σi(Ω) at top m left/right singular vectors of Ω
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Empirical Version

Input: N samples of (X,Y ) organized as X ∈ Rd×N and Y ∈ Rd′×N

1. Center the data (okay to skip if sparse and binary)

X = X − µ̂X Y = Y − µ̂Y

2. Calculate Û Σ̂V̂ >, an SVD of

Ω̂ =
(
X X

>
+
κ

N
Id

)−1/2
X Y

> (
Y Y

>
+
κ

N
Id′
)−1/2

3. Given sample (x, y) ∈ Rd × Rd′ , calculate their new m-dimensional
representations (x, y) ∈ Rm × Rm by

x = U>m

(
X X

>
+
κ

N
Id

)−1/2
(x− µ̂X)

y = V >m

(
Y Y

>
+
κ

N
Id′
)−1/2

(y − µ̂Y )
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Overview

I Views of CCA

I Correlation Maximization
I Best-Match Subspaces

I Deep CCA
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Best-Match Subspaces

Let X ,Y ⊆ RN be subspaces with dimensions d ≤ d′ ≤ N .

For i = 1 . . . d, cosine of the canonical angle between X and Y is

cos∠i(X ,Y) := x∗i · y∗i (x∗i , y
∗
i ) = arg max

x∈X : ||x||=1
y∈Y: ||y||=1

x·x∗j=y·y
∗
j=0 ∀j<i

x · y

Define “best-match” subspaces with dimension m ≤ d by

(S∗, T ∗) = arg max
S⊆X : dim(S)=m
T ⊆Y: dim(T )=m

m∑
i=1

cosi ∠i(S, T )

Claim. {x∗i }
m
i=1 is an orthonormal basis of S∗. {y∗i }

m
i=1 is an

orthonormal basis of T ∗.

Karl Stratos TTIC 41000: Spectral Techniques for Machine Learning October 15, 2018 11/18



Best-Match Subspaces (Cont.)

Claim. Let X ∈ RN×d and Y ∈ RN×d′ be orthonormal bases of X ,Y.
Consider an SVD of X>Y ∈ Rd×d′

X>Y = UΣV >

Then XUm, Y Vm ∈ RN×m are orthonormal bases of S∗, T ∗.
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Back to CCA

I View (centered) data matrices X ∈ Rd×N and Y ∈ Rd′×N as
subspaces of RN : namely row

(
X
)

and row
(
Y
)
.

I Orthonormal bases given by (X X
>

)−1/2X and (Y Y
>

)−1/2Y .

I Hence considering an SVD of

(X X
>

)−1/2X Y
>

(Y Y
>

)−1/2 = UΣV >

orthonormal bases of the best-match subspaces of dimension m
between row

(
X
)

and row
(
Y
)

given by

U>m(X X
>

)−1/2X V >m (Y Y
>

)−1/2Y
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A Bunch of Other Views

I See Golub and Zha (1992) for a compilation of different
formulations.

I See Bach and Jordan (2006) for a latent-variable formulation.
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Overview

I Views of CCA

I Correlation Maximization
I Subspace Optimization

I Deep CCA
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Deep CCA

I Let fφ : Rd×N → Rm×N be some neural net parameterized by φ.

I Let gψ : Rd′×N → Rm×N be some neural net parameterized by ψ.

I Example: φ =
{
W 1,W 2, b1, b2

}
with

fφ(X) = W 2 tanh
(
W 1X + b1

)
+ b2

I Let X̃, Ỹ denote fφ(X), gψ(Y ) after centering and division by N .

I Sum of the m canonical correlations between datasets under this
transformation is∣∣∣∣∣∣∣∣(X̃X̃

>)−1/2
X̃Ỹ

> (
Ỹ Ỹ

>)−1/2∣∣∣∣∣∣∣∣
1

∈ [0,m]

This is differentiable wrt. X̃, Ỹ and hence φ, ψ.
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Questions

I When does dimensionality reduction happen?

I What if Z = fφ(X) = gψ(Y ) for some full-rank Z ∈ Rm×N?

I What if 0 = fφ(X) = gψ(Y )?
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