CS 533: Natural Language Processing Information Extraction

Karl Stratos

Rutgers University

Information Extraction (IE)

Goal. Extract structured, complete knowledge from unstructured, incomplete text

Example input. The 44th president of the US takes the oath of office administered by Chief Justice at the Capitol, January 20, 2009.

What is this text about?

Desired information.

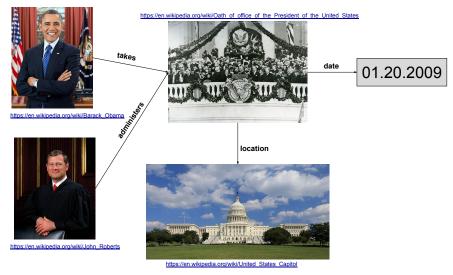
- What entities are involved?
- What are their relations to each other (if any)?
- What larger events are taking place?
- Other domain-specific things (time, price, sentiment, etc.)

Karl Stratos

CS 533: Natural Language Processing

Example Output

The 44th president of the US takes the oath of office administered by Chief Justice at the Capitol, January 20, 2009.



CS 533: Natural Language Processing

Table Form

The 44th president of the US takes the oath of office administered by Chief Justice at the Capitol, January 20, 2009.

Entities

1	(1, 5)	Entity:Barack_Obama			
2	(8, 10)	Entity:Oath_of_office_of_the_President_of_the_United_States			
3	(13, 14)	Entity: John_Roberts			
4	(17, 17)	Entity:United_States_Capitol			
	(2, 5)	Entity:President_of_the_United_States?			
	(13, 14)	Entity:Chief_Justice_of_the_United_States?			

Relations			Location		Time		
			Address	First St SE	1	Year	2009
					-	Month	January
L	takes	2	City	Washington		Dav	20
3	administers	2	State	District of Columbia]	Hour	20
			Zip Code	20004	1		_
			2.6 0000	2000.	J	Minute	_

Information Retrieval (IR)

Goal. Search specific information from a set of data

Basically document ranking (TFIDF, BM25, PageRank, ...)



IR is naturally complementary to IE

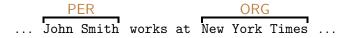
- 1. Retrieve relevant documents
- 2. Extract desired structured information from the documents

Standard IE Problems

- Named-Entity Recognition
- Entity Linking
- Coreference Resolution
- Relation Extraction

Named-Entity Recognition (NER)

- Given text, do both
 - 1. Identify spans of text that correspond to named entities
 - 2. **Classify** the spans into task-specific entity types (e.g., person, organization, location, etc.)



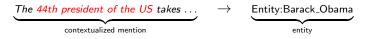
Recall: it can be solved as a tagging problem!

John/B-PER Smith/I-PER works/O at/O New/B-ORG York/I-ORG Times/I-ORG

 Limitation: only considers simple entity labels without considering a knowledge base (KB)

Entity Linking (EL)

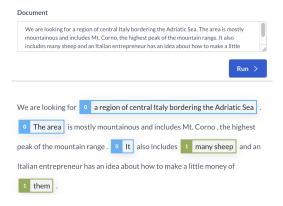
Link a span of text to an entity in KB



- ► In simplest form: **giant** classification problem
 - Wikipedia: tens of millions of entities!
 - Typically approached as a pipeline: IR followed by classification
- General definition nontrivial: https://www.aclweb.org/anthology/Q15-1023.pdf
 - Assume spans are given, or predict them as well?
 - ► Allow nested spans (*president of the US*, *president*, *US*, ...)?
 - Link only named entities, or also allow pronouns/verbs/others?
 - Allow nil (i.e., no entity) prediction?

Coreference Resolution (Coref)

Find all expressions that refer to the same entity in a text.



Coref vs EL

Coref is a special case of EL if we allow linking all referring expressions (since we can cluster them based on underlying their entities)

Not strictly true under a linguistic concept called anaphora

- Anaphor: term that's referring ("he")
- Antecedent: term that's being referred to ("Barack Obama")

Other fine-grained linguistic concepts relevant to coref

 Cataphora. Anaphora in which anaphor comes before antecedent ("In his dream, Peter saw ...")

CS 533: Natural Language Processing

Coref Requires World Knowledge/Common Sense

Try the Winograd Schema problems: https://demo.allennlp. org/coreference-resolution/MTYwMzcOMw==

- The city councilmen refused the demonstrators a permit because they <u>feared</u> violence.
- The city councilmen refused the demonstrators a permit because they <u>advocated</u> violence.
- The trophy didn't fit into the suitcase because it was too large.
- The trophy didn't fit into the suitcase because it was too small.

Relation Extraction (RE)

Extract "all relations".

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

Relation	Object		
subsidiary	AMR		
employee	American Airlines		
subsidiary	UAL		
	subsidiary employee		

example from Jim Martin

Options: regex ("X such as Y"), supervised learning (NER + pairwise classifier), and others: http://nlpprogress.com/english/relationship_extraction.html

We Need Mention Detection (MD) in All Cases!

Input

Let us talk about Obama . He has a diverse extended family and supports White Sox .

EL

Let us [talk]_{Entity:Conversation} about [Obama]_{Entity:Barack_Obama}. He has a diverse [extended family]_{Entity:Family_of_Barack_Obama} and supports [White Sox]_{Entity:Chicago_White_Sox}.

Coref

Let $[us]_1$ talk about $[Obama]_2$. $[He]_2$ has a diverse extended family and supports White Sox .

Coref + RE

Let $[us]_1$ talk about $[Obama]_2$. $[He]_2$ has a diverse extended family and supports $[White \ Sox]_3$.

$$(2, \mathsf{is_fan_of}, 3)$$

Option 1: Use an Off-the-Shelf Detector

NER tagger: named-entities

Let us talk about [Obama]_{PER} . He has a diverse extended family and supports [White Sox]_{ORG} .

POS tagger: pronouns, verbs

Let us $[talk]_V$ about Obama . $[He]_{\rm P}$ has a diverse extended family and supports White Sox .

Syntactic chunker/parser: noun phrases
 Let us talk about Obama . He has a diverse [extended family]_{NP} and supports White Sox .

Follow by training a model on top of detected (filtered) mentions

- Just assume mention spans are always given!
- Rationale: mention boundaries are task-specific anyway
 - ▶ We'll only focus on the hard part (e.g., disambiguation in EL)
- Can be a realistic scenario
 - User interactively highlighting a text span in an e-book reader

Option 3: Joint Model

► Learn an EL/Coref/RE/etc. model that also performs MD

- Rationale:
 - Yes, MD is task-specific
 - But actually because of that we can do better MD if we model it jointly with the task!
 - No pipeline means no unrecoverable error propagation
- Aside: NER tagger naturally models mentions and labels jointly, but limited applicability

Examples of MD Benefiting From EL

1) MD may split a larger span into two mentions of less informative entities: B. Obama's wife gave a speech [...] Federer's coach [...] 2) MD may split a larger span into two mentions of incorrect entities: Obama Castle was built in 1601 in Japan. The Kennel Club is UK's official kennel club. A bird dog is a type of gun dog or hunting dog. Romeo and Juliet by Shakespeare [...] Natural killer cells are a type of lymphocyte Mary and Max, the 2009 movie [...] 3) MD may choose a shorter span, referring to an incorrect entity: The Apple is played again in cinemas. The New York Times is a popular newspaper. 4) MD may choose a longer span, referring to an incorrect entity: Babies Romeo and Juliet were born hours apart. Table 1: Examples where MD may benefit from ED

and viceversa. Each wrong MD decision (underlined) can be avoided by proper context understanding. The correct spans are shown in blue.

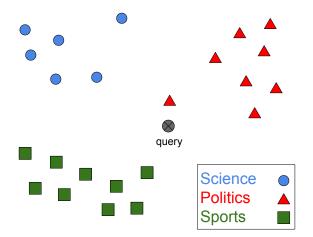
From Kolitsas et al. (2018)

TFIDF & BM25

- Entity Linking
- Coreference Resolution
- Retrieval-Based Question Answering

Document Representations

Task. Represent a document so that "similar" documents are "closer" to each other than "unsimilar" ones



Naive Bag-of-Words Representation

Document d represented as a sparse binary vector $v \in \{0,1\}^{|V|}$

$$v_t = [[t \in d]] = \begin{cases} 1 & \text{if } t \text{ appears in the document} \\ 0 & \text{otherwise} \end{cases}$$

Hamming distance. Documents $v, v' \in \{0, 1\}^{|V|}$

HammingDistance
$$(v, v') = \sum_{t \in V: v_t \neq v'_t} 1$$

Every term type $t \in V$ is weighted equally

Karl Stratos

CS 533: Natural Language Processing

TFIDF Representation

Given a set of N documents D, each document $d\in D$ is represented as a sparse vector $v\in \mathbb{R}^{|V|}$ where

$$v_t = \underbrace{[[t \in d]]}_{\operatorname{tf}(t, d)} \times \underbrace{\log \frac{N}{|\{d' \in D : t \in d'\}|}}_{\operatorname{idf}_D(t)} = \operatorname{tf}(t, d) \times \operatorname{idf}_D(t)$$

- 1. Term frequency tf(t, d): 1 if $t \in d$, 0 otherwise Alternatively tf(t, d) = count(t, d)
- 2. Inverse document frequency $idf_D(t)$: large if t appears in few documents

Intution. A term t in a document d is significant if t appears frequently in d but doesn't appear all the time in other documents.

Similarity and Distance Under TFIDF Representations

If v, v' are TFIDF representations of documents d, d',

$$v^{\top}v' = \sum_{t \in V} \operatorname{tf}(t, d) \times \operatorname{tf}(t, d') \times \operatorname{idf}_D(t)^2$$

Cosine distance. Documents $v, v' \in \mathbb{R}^{|V|}$

CosineDistance
$$(v, v') = 1 - \cos(v, v') = 1 - \frac{v^{\top}v'}{||v|| ||v'||}$$

Every term type $t \in V$ in every document $d \in D$ weighted differently

Connection to Mutual Information

Claim. Define term-document distribution p(t,d) = p(d)p(t|d) by p(d) = 1/N and $p(t|d) = [[t \in d]]$. The mutual information between random term $\tau \in V$ and document $\delta \in D$ is

$$I(\tau, \delta) = \frac{1}{N} \sum_{d \in D, t \in V} \operatorname{tf}(t, d) \times \operatorname{idf}_D(t)$$

So the TFIDF weight for term t in document d can be viewed as how much it contributes to the general amount of information gained about a document given a term.

Proof

By the Bayes rule we have for all $t \in V$

$$p(d|t) = \frac{p(t|d)}{\sum_{d' \in D} p(t|d')} = \begin{cases} \frac{1}{|\{d' \in D: t \in d'\}|} & \text{if } t \in d \\ 0 & \text{otherwise} \end{cases} \quad \forall d \in D$$

Then for any document $d\in D$ and $t\in V$

$$\log \frac{p(d|t)}{p(d)} = \begin{cases} \operatorname{idf}_D(t) & \text{if } t \in d \\ 0 & \text{otherwise} \end{cases}$$

Hence using p(t|d) = tf(t, d) (under binary term frequency)

$$I(\tau, \delta) = \sum_{d \in D, \ t \in V} p(t, d) \log \frac{p(d|t)}{p(d)} = \frac{1}{N} \sum_{d \in D, \ t \in V} \operatorname{tf}(t, d) \operatorname{idf}_D(t)$$

BM25 Score

- TFIDF score with smoothing + document length modeling
- Query q: list of n terms
- BM25 score of a document d for q

$$BM25(d,q) = \sum_{t \in q} tf^{BM25}(t,d) \times idf_D^{BM25}(t)$$

where for some $\boldsymbol{k},\boldsymbol{b}$ and average document length L in D

$$tf^{BM25}(t,d) = \frac{count(t,d)(k+1)}{count(t,d) + k(1-b+b(|d|/L))}$$
$$idf_D^{BM25}(t) = \log \frac{N - |\{d' \in D : t \in d'\}| + 0.5}{|\{d' \in D : t \in d'\}| + 0.5}$$

Currently the go-to choice for IR

TFIDF & BM25

Entity Linking

- Coreference Resolution
- Retrieval-Based Question Answering

Setting

- ▶ Knowledge base KB: set of entities/events of interest
- ► Assume candidate generator C(m) ⊂ KB that maps any contextual mention m to a set of candidate entities
 - Assume mention boundaries are provided for simplicity
- Goal: map m to correct entity in C(m)

$$c_1 = \text{India}(\text{Country})$$

$$c_2 = \text{Índia}(\text{Album})$$

$$m = [\text{India}] \text{ plays a match in England today } \rightarrow c_4 = \text{La_India}(\text{Singer})$$

$$c_3 = \text{India_cricket_team}$$

Candidate Generation

Conditional distribution over entities given mention span can be estimated from hyperlinks (e.g., in Wikipedia, web crawl)

 $p(\mathsf{India_cricket_team}|\mathsf{India}) \propto \mathsf{COUNt}(\mathsf{India} \mapsto \mathsf{India_cricket_team})$

Strong baseline for linking named entities (in-KB accuracy >70% on AIDA-B test set)

Limitations

- Mostly available only for named entities
- Cannot leverage additional information like mention context or entity information in KB

Ranking Model

Want to avoid doing softmax over entire KB (too large)

$$p(\cdot|m) = \operatorname{softmax}(\operatorname{enc}(m)) \in [0,1]^{|\operatorname{KB}|}$$

▶ Instead do softmax over candidates $c_1 \dots c_M \in C(m)$

$$p(\cdot|m) = \operatorname{softmax}(\operatorname{score}(m, c_1) \dots \operatorname{score}(m, c_M)) \in [0, 1]^M \quad \checkmark$$

Mention-entity score can be parameterized freely, e.g.,

$$score(m, e) = cos(enc(m), emb(e)) \in [-1, 1]$$

where

$$\begin{split} \mathbf{emb}(e) \in \mathbb{R}^d & \qquad \text{entity embedding for each } e \in \mathrm{KB} \\ \mathbf{enc}(m) \in \mathbb{R}^d & \qquad \text{contextual mention encoder} \end{split}$$

 Given annotated links, the model can be trained by maximizing log likelihood

Going Beyond Static Entity Embeddings

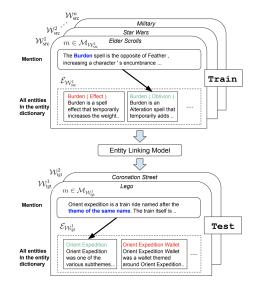
• Each $e \in KB$ is associated with a description desc(e)

 ${
m desc}({
m india})={
m india}$ is the fourth studio album by Brazilian singer Gal Costa, released on 1973 by Philips Records

- Making score(m, e) a function of desc(e) will make model read and reason with entity descriptions
 - In particular handle unseen entities at test time (as long as descriptions are provided)
- Example score function (Logeswaran et al., 2019)

score(m, e) = BERT(m, desc(e))

Zero-Shot EL by Reading Entity Descriptions (Logeswaran et al., 2019)



CS 533: Natural Language Processing

TFIDF & BM25

- Entity Linking
- Coreference Resolution
- Retrieval-Based Question Answering

Coref

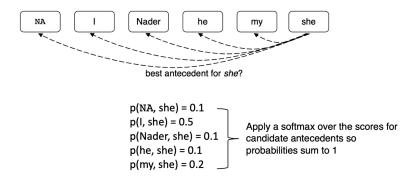
Goal: cluster all mentions of entities

"I voted for Nader because he was most aligned with my values," she said.

- Many different approaches (rule-based, mention pair, mention ranking, clustering-based)
- ► We'll focus on a particular mention-ranking model (Lee et al., 2017) that jointly performs MD
- Slides in this section are made by Danchi Chen

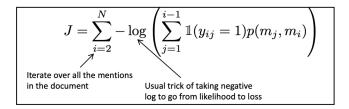
Mention-Ranking Models

- Assign each mention its highest scoring candidate antecedent according to the model
- Add a dummy NA mention to decline linking the current mention to anything ("singleton" or "first" mention)



Mention-Ranking Models

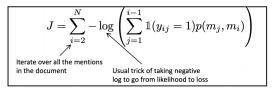
• Training time: only clustering information is observed (no annotation of "antecedent"), so we optimize the marginal log-likelihood of all the correct antecedents.



• Testing time: same as mention-pair but we only pick one antecedent for each mention

End-to-End Coreference Resolution (Lee et al., 2017)

- A mention-ranking model
- Joint mention detection and clustering so you don't need an additional mention detector (parser/part-of-speech tagger)



We consider all the possible spans + {NA}

$$\begin{array}{c}
N = \frac{T(T+1)}{2} + 1 \\
p(m_j, m_i) = \frac{\exp(s(m_j, m_i))}{\sum_{j' < i} \exp(m_{j'}, m_i)} \\
\end{array}$$
T: number of words

(Lee et al, 2017): End-to-end Neural Coreference Resolution

Karl Stratos

CS 533: Natural Language Processing

36/50

End-to-End Coreference Resolution (Lee et al., 2017)

$$s(i,j) = s_{\rm m}(i) + s_{\rm m}(j) + s_{\rm a}(i,j)$$
Are spans *i* and *j* Is *i* a mention? Is *j* a mention? Do they look coreferent?

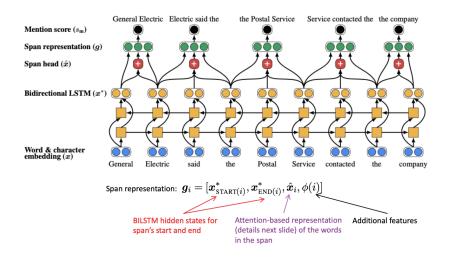
$$egin{aligned} s_{\mathrm{m}}(i) &= oldsymbol{w}_{\mathrm{m}} \cdot ext{FFNN}_{\mathrm{m}}(oldsymbol{g}_{i}) \ s_{\mathrm{a}}(i,j) &= oldsymbol{w}_{\mathrm{a}} \cdot ext{FFNN}_{\mathrm{a}}([oldsymbol{g}_{i},oldsymbol{g}_{j},oldsymbol{g}_{i}\circoldsymbol{g}_{j},\phi(i,j)]) \end{aligned}$$

Let's compute a vector representation $\mathbf{g}_i \in \mathbb{R}^d$ for each span *i*

 $\phi(i,j)$: manual features such speaker/gender information

Karl Stratos

End-to-End Coreference Resolution (Lee et al., 2017)



End-to-End Coreference Resolution (Lee et al., 2017)

Attention scores

 $lpha_t = oldsymbol{w}_lpha \cdot ext{FFNN}_lpha(oldsymbol{x}_t^*)$

dot product of weight vector and transformed hidden state

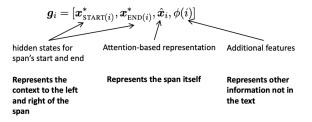
$$\begin{array}{l} \text{Attention distribution} \\ a_{i,t} = \frac{\exp(\alpha_t)}{\sum\limits_{k=\text{START}(i)} \exp(\alpha_k)} \end{array}$$

just a softmax over attention scores for the span

Final representation

$$\hat{oldsymbol{x}}_i = \sum_{t= ext{start}(i)}^{ ext{end}(i)} a_{i,t} \cdot oldsymbol{x}_t$$

Attention-weighted sum of word embeddings



Computational Complexity of Exhaustive MD

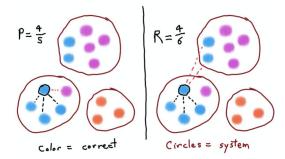
- $O(T^2)$ spans in a document of length T
- ▶ $O(T^4)$ span pairs in a document of length T
 - Too expensive
 - Aggressive pruning based on model's own score ranking
- Aside: same exhaustive MD approach has been applied to EL End-to-End Neural Entity Linking (Kolitsas et al., 2018)
 - Less computational costs (no pairs, mentions filtered by entity dictionary)

Evaluation

- You need to get both "mentions" and "clusters" correctly.
- Standard practice: we use 3 types of metrics
 - B3: mention-based
 - MUC: link-based (pair of mentions)
 - CEAF: entity-based
 - .. and finally take the average of these 3 F1 scores

B³ Evaluation Metric

- For each mention in the reference chain, compute a precision and a recall (e.g., # of mentions in the same reference chain with the current mention)
- The final precision/recall is an average of all the mentions



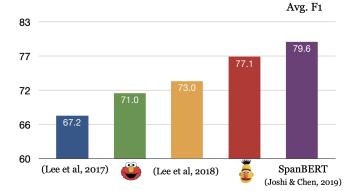
Performance

- Evaluation on English Ontonotes (CoNLL-2012 Shared Task)
- #Train: 2,802 / #Dev: 343 / #Test: 348 documents

	MUC			B^3			$CEAF_{\phi_A}$			
	Р	R	F1	Р	R	F1	Р	R	F1	Avg. F1
Lee et al. (2017) (single model)	78.4	73.4	75.8	68.6	61.8	65.0	62.7	59.0	60.8	67.2
Clark and Manning (2016a)	79.2	70.4	74.6	69.9	58.0	63.4	63.5	55.5	59.2	65.7
Clark and Manning (2016b)	79.9	69.3	74.2	71.0	56.5	63.0	63.8	54.3	58.7	65.3
Wiseman et al. (2016)	77.5	69.8	73.4	66.8	57.0	61.5	62.1	53.9	57.7	64.2
Wiseman et al. (2015)	76.2	69.3	72.6	66.2	55.8	60.5	59.4	54.9	57.1	63.4
Fernandes et al. (2014)	75.9	65.8	70.5	77.7	65.8	71.2	43.2	55.0	48.4	63.4
Clark and Manning (2015)	76.1	69.4	72.6	65.6	56.0	60.4	59.4	53.0	56.0	63.0
Martschat and Strube (2015)	76.7	68.1	72.2	66.1	54.2	59.6	59.5	52.3	55.7	62.5
Durrett and Klein (2014)	72.6	69.9	71.2	61.2	56.4	58.7	56.2	54.2	55.2	61.7
Björkelund and Kuhn (2014)	74.3	67.5	70.7	62.7	55.0	58.6	59.4	52.3	55.6	61.6
Durrett and Klein (2013)	72.9	65.9	69.2	63.6	52.5	57.5	54.3	54.4	54.3	60.3

"Eash Victories and Uphill Battles in Coreference Resolution"

Performance



TFIDF & BM25

- Entity Linking
- Coreference Resolution
- Retrieval-Based Question Answering

Retrieval-Based Question Answering (QA)

► Goal: answer a question by consulting a KB (e.g., Wikipedia)

 $q=\operatorname{What}$ does the ZIP in ZIP code stand for?

 $a = {\tt Zone \ Improvement \ Plan}$

where the answer string is a span in some text block b in KB $b = \dots$ The term 'ZIP' is an acronym for Zone Improvement Plan ...

- ► Approach: IR + IE
 - 1. Retrieve K candidate blocks for the question $C(q) \subset \text{KB}$ (e.g., BM25)
 - 2. Model computes the probability of span (i, j) being the answer string. Objective function at (q, a)

$$J(q, a) = \sum_{b \in C(q)} \sum_{1 \le i \le j \le |b|: \ b_{i:j} = a} \log p(b_{i:j}|q, b)$$

Karl Stratos

CS 533: Natural Language Processing

Example Model (Lee et al., 2019)

For any span s in block b,

$$p(s|q,b) = \frac{\exp(\mathsf{score}(q,b,s))}{\sum_{s'} \exp(\mathsf{score}(q,b,s'))}$$

where the joint score of question q, block b, and span $s\subset b$ is computed by running BERT on (q,b) and taking the start/end embeddings corresponding to s

$$\mathbf{score}(q, b, s) = \mathrm{FF}\left(\begin{bmatrix} \mathsf{BERT}(q, b)(\mathrm{start}(s)) \\ \mathsf{BERT}(q, b)(\mathrm{end}(s)) \end{bmatrix}\right)$$

Karl Stratos

Joint Retrieval + QA (Lee et al., 2019)

- Instead of pipeline, we can learn the model to do IR+QA jointly
- In addition to p(s|q, b), the model additionally defines

$$p(b|q) = \frac{\exp(\mathsf{score}(q, b))}{\sum_{b'} \exp(\mathsf{score}(q, b'))}$$

where the joint score of question q and block b is computed by running BERTs on q and b and taking the dot product between their CLS embeddings

$$score(q, b) = BERT(q)([CLS])^{\top}BERT(b)([CLS])$$

- Can be (+ need to be) pretrained
- Additional objective term at (q, a)

$$\sum_{e \in C'(q): a \in b} \log p(b|q)$$

where candidates $C'(q)\subset {\rm KB}$ retrieved under model's own scores

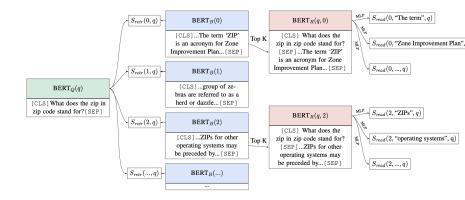
ь

Karl Stratos

CS 533: Natural Language Processing

48/50

Computation Graph



Performance

Dataset	Train	Dev	Test	Example Question	Example Answer
Natural Questions	79168	8757	3610	What does the zip in zip code stand for?	Zone Improvement Plan
WebQuestions	3417	361	2032	What airport is closer to downtown Houston?	William P. Hobby Airpor
CuratedTrec	1353	133	694	What metal has the highest melting point?	Tungsten
TriviaQA	78785	8837	11313	What did L. Fran Baum, author of The Wonder- ful Wizard of Oz, call his home in Hollywood?	Ozcot
SQuAD	78713	8886	10570	Other than the Automobile Club of Southern California, what other AAA Auto Club chose to simplify the divide?	California State Automo bile Association

	Model	BM25 +BERT	NNLM +BERT	ELMo +BERT	ORQA
	Natural Questions	24.8	3.2	3.6	31.3
Dev	WebQuestions	20.8	9.1	17.7	38.5
	CuratedTrec	27.1	6.0	8.3	36.8
	TriviaQA	47.2	7.3	6.0	45.1
	SQuAD	28.1	2.8	1.9	26.5
Test	Natural Questions	26.5	4.0	4.7	33.3
	WebQuestions	17.7	7.3	15.6	36.4
	CuratedTrec	21.3	4.5	6.8	30.1
	TriviaQA	47.1	7.1	5.7	45.0
	SQuAD	33.2	3.2	2.3	20.2