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Dropout
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Unidirectional vs Bidirectional RNN
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Agenda

1. Backpropagation

2. Self-attention in NLP

3. Representation learning through language modeling
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Backpropagation: Input and Output

I A technique to automatically calculate ∇J(θ) for any
definition of scalar-valued loss function J(θ) ∈ R.

Input: loss function J(θ) ∈ R, parameter value θ̂

Output: ∇J(θ̂), the gradient of J(θ) at θ = θ̂

I Calculates the gradient of an arbitrary differentiable function
of parameter θ

Including neural networks
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Notation

I For the most part, we will consider (differentiable) function
f : R→ R with a single 1-dimensional parameter x ∈ R.

I The gradient of f with respect to x is a function of x

∂f(x)

∂x
: R→ R

I The gradient of f with respect to x evaluated at x = a is
written as

∂f(x)

∂x

∣∣∣∣
x=a

∈ R
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Chain Rule

I Given any differentiable functions f, g from R to R,

∂g(f(x))

∂x

=
∂g(f(x))

∂f(x)
× ∂f(x)

∂x︸ ︷︷ ︸
easy to calculate

I “Proof”: Linearization of linearization of g(z) around f(x)
around a

g(f(x)) ≈ g(f(a)) + g′(f(a))f ′(a)

∂g(f(x))
∂x

∣∣
x=a

(x− a)
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Exercises

At x = 42,

I What is the value of the gradient of f(x) := 7?

I What is the value of the gradient of f(x) := 2x?

I What is the value of the gradient of f(x) := 2x+ 99999?

I What is the value of the gradient of f(x) := x3?

I What is the value of the gradient of f(x) := exp(x)?

I What is the value of the gradient of f(x) := exp(2x3 + 10)?

I What is the value of the gradient of

f(x) := log(exp(2x3 + 10))
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Chain Rule for a Function of Multiple Input Variables

I Let f1 . . . fm denote any differentiable functions from R to R.

I If g : Rm → R is a differentiable function from Rm to R,

∂g(f1(x), . . . , fm(x))

∂x

=

m∑
i=1

∂g(f1(x), . . . , fm(x))

∂fi(x)
× ∂fi(x)

∂x︸ ︷︷ ︸
easy to calculate

I Calculate the gradient of x+ x2 + yx with respect to x using
the chain rule.
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DAG

A directed acylic graph (DAG) is a directed graph G = (V,A)
with a topological ordering: a sequence π of V such that for
every arc (i, j) ∈ A, i comes before j in π.

1 2 3 4 5 6

For backpropagation: usually assume have many roots and 1 leaf
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Notation

1 2 3 4 5 6

V = {1, 2, 3, 4, 5, 6}
VI = {1, 2}
VN = {3, 4, 5, 6}
A = {(1, 3), (1, 5), (2, 4), (3, 4), (4, 6), (5, 6)}

pa(4) = {2, 3}
ch(1) = {3, 5}

ΠG = {(1, 2, 3, 4, 5, 6), (2, 1, 3, 4, 5, 6)}
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Computation Graph

I DAG G = (V,E) with a single output node ω ∈ V .

I Every node i ∈ V is equipped with a value xi ∈ R:

1. For input node i ∈ VI , we assume xi = ai is given.
2. For non-input node i ∈ VN , we assume a differentiable

function f i : R|pa(i)| → R and compute

xi = f i((xj)j∈pa(i))

I Thus G represents a function: it receives multiple values
xi = ai for i ∈ VI and calculates a scalar xω ∈ R.

I We can calculate xω by a forward pass.
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Forward Pass

Input: computation graph G = (V,A) with output node ω ∈ V
Result: populates xi = ai for every i ∈ V

1. Pick some topological ordering π of V .

2. For i in order of π, if i ∈ VN is a non-input node, set

xi ← ai := f i((aj)j∈pa(i))

Why do we need a topological ordering?
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Exercise

Construct the computation graph associated with the function

f(x, y) := (x+ y)xy2

Compute its output value at x = 1 and y = 2 by performing a
forward pass.
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For Notational Convenience. . .

I Collectively refer to all input slots by xI = (xi)i∈VI
.

I Collectively refer to all input values by aI = (ai)i∈VI
.

I At i ∈ V :

Refer to its parental slots by xiI = (xj)j∈pa(i).
Refer to its parental values by aiI = (aj)j∈pa(i).

Two equally valid ways of viewing any ai ∈ R as a function:

I A “global” function of xI evaluated at aI .

I A “local” function of xiI evaluated at aiI .
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Computation Graph: Gradients

I Now for every node i ∈ V , we introduce an additional slot
zi ∈ R defined as

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

I The goal of backpropagation is to calculate zi for every
i ∈ V .

I Why are we done if we achieve this goal?
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Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xj
I=ajI

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xj
I=ajI︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

Karl Stratos CS 533: Natural Language Processing 17/52



Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xj
I=ajI

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xj
I=ajI︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

Karl Stratos CS 533: Natural Language Processing 17/52



Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xj
I=ajI

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xj
I=ajI︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

Karl Stratos CS 533: Natural Language Processing 17/52



Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xj
I=ajI

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xj
I=ajI︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

Karl Stratos CS 533: Natural Language Processing 17/52



Key Ideas of Backpropagation

I Chain rule on the DAG structure

zi :=
∂xω

∂xi

∣∣∣∣
xI=aI

=
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

× ∂xj

∂xi

∣∣∣∣
xj
I=ajI

=
∑

j∈ch(i)

zj × ∂f j(xjI)

∂xi

∣∣∣∣
xj
I=ajI︸ ︷︷ ︸

easy to calculate

I If we compute zi in a reverse topological ordering, then we
will have already computed zj for all j ∈ ch(i).

I What’s the base case zω?

Karl Stratos CS 533: Natural Language Processing 17/52



Backpropagation

Input: computation graph G = (V,A) with output node ω ∈ V
whose value slots xi = ai are already populated for every i ∈ V
Result: populates zi for every i ∈ V

1. Set zω ← 1.

2. Pick some topological ordering π of V .

3. For i in reverse order of π, set

zi ←
∑

j∈ch(i)

zj ×
∂f j(xjI)

∂xi

∣∣∣∣
xj
I=ajI
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Exercise

Calculate the gradient of

f(x, y) := (x+ y)xy2

with respect to x at x = 1 and y = 2 by performing
backpropagation. That is, calculate the scalar

∂f (x, y)

∂x

∣∣∣∣
(x,y)=(1,2)
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Answer

x y

+ *
*

*

1 2

3

3

4

12 1

3

16 16

4

4
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Implementation

I Each type of function f creates a child node from parent
nodes and initializes its gradient to zero.

I “Add” function creates a child node c with two parents (a, b)
and sets c.z ← 0.

I Each node has an associated forward function.
I Calling forward at c populates c.x = a.x+ b.x (assumes

parents have their values).

I Each node also has an associated backward function.
I Calling backward at c “broadcasts” its gradient c.z (assumes

it’s already calculated) to its parents

a.z ← a.z + c.z

b.z ← b.z + c.z
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Implementation (Cont.)

I Express your loss JB(θ) on minibatch B at θ = θ̂ as a
computation graph.

I Forward pass. For each node a in a topological ordering,

a.forward()

I Backward pass. For each node a in a reverse topological
ordering,

a.backward()

I The gradient of JB(θ) at θ = θ̂ is stored in the input nodes of
the computation graph.
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General Backpropagation

I Computation graph in which input values that are vectors

xi ∈ Rdi ∀i ∈ V

But the output value xω ∈ R is always a scalar!

I The corresponding gradients are also vectors of the same size

zi ∈ Rdi ∀i ∈ V

I Backpropagation has exactly the same structure using the
generalized chain rule

zi =
∑

j∈ch(i)

∂xω

∂xj

∣∣∣∣
xI=aI

1×dj

× ∂x
j

∂xi

∣∣∣∣
xj
I=ajI

dj×di

where second term is Jacobian of f j wrt xi evaluated at aI
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Agenda

1. Backpropagation

2. Self-attention in NLP

3. Representation learning through language modeling
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Recurrent vs Self-Attention

h

x

h

x

∂h

∂x
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Attention: General Form

Input

I Q ∈ Rd×T : T query vectors of the “asker”

I K ∈ Rd×T ′
: T ′ key vectors of the “answerer”

I V ∈ Rd×T ′
: T ′ value vectors of the “answerer”

Output

I A ∈ Rd×T : T answer vectors of the “asker” after asking

A = V softmax
(
K>Q

)
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Example: Attention-Based Seq2Seq

Input

I Q = Y : target LSTM encodings

I K = X: source LSTM encodings

I V = X: source LSTM encodings

Output

I A = Attention(Y,X,X): new target encodings

A = Xsoftmax
(
X>Y

)
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Scaled Attention

Useful when d is large

A = V softmax

(
K>Q√

d

)
Exercise: k, q ∈ Rd elementwise independent, mean 0, variance 1

I var
(
k>q

)
?

I var
(
k>q/

√
d
)

?
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Multi-Head Attention

Same input
Parameters

I WQ
i ∈ R(d/H)×d for i = 1 . . . H: query projectors

I WK
i ∈ R(d/H)×d for i = 1 . . . H: key projectors

I W V
i ∈ R(d/H)×d for i = 1 . . . H: value projectors

I W ∈ Rd×d

A = W


Attention

(
WQ

1 Q,WK
1 K,W V

1 V
)

...

Attention
(
WQ

HQ,WK
H K,W V

HV
)
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Multi-Head Attention with Residual (or Skip) Connection

Plus regularization: dropout, layer normalization (Ba et al., 2016)

A = MultiHeadAttention(Q,K, V )

A′ = LayerNorm (Drop (A) +Q)

Henceforth ResMHA(Q,K, V )
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Transformer Encoder (Vaswani et al., 2017)

Using H = 8 heads, l = 0 . . . 5

X̃(l) = ResMHA
(
X(l), X(l), X(l)

)
X(l+1) = ResFF

(
X̃(l)

)
X(0) = Drop0.1(E + Π)
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Transformer Decoder (Vaswani et al., 2017)

Using H = 8 heads, l = 0 . . . 5

Ỹ (l) = ResMHA
(
Y (l), Y (l), Y (l)

)
Y (l) = ResMHA

(
Ỹ (l), X(6), X(6)

)
Y (l+1) = ResFF

(
Y (l)
)

Prediction: softmax
(
EY (6)

)
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Translation Performance (Vaswani et al., 2017)
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Self-Attention Visualization (Vaswani et al., 2017)

Layer 5 and 6, one of the “heads”

Different heads learn different weights
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Agenda

1. Backpropagation

2. Self-attention in NLP

3. Representation learning through language modeling
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Text Representations Through Neural Language Modeling

1. Language models can be trained on a lot of text (e.g., the web)

2. They yield text representations generally useful for downstream tasks
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Example Downstream Tasks

Sentence classification

I Binary sentiment classification

This film doesn’t care about intelligent humor→
[
0.05
0.95

]
or multi-class (e.g., 5 stars)

I Example datasets: SST-2, IMBb, Yelp Review, SemEval,
CoLA

I Sentiment analysis results: http:

//nlpprogress.com/english/sentiment_analysis.html

I Other types of classification: grammatical vs ungrammatical
(CoLA)
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Example Downstream Tasks

Sentence pair classification, or natural language inference (NLI)

(I am a lacto-vegetarian, I enjoy eating cheese)→

0.05
0.03
0.92


Example dataset: MNLI (Williams et al., 2018)
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Example Downstream Tasks

SQuAD-style question answering (Rajpurkar et al., 2016)

Example dataset: SQuAD (Rajpurkar et al., 2016)

Can be framed as predicting start/end index of the passage
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Setting

I Each such downstream task provides only a limited amount of
labeled data

I Can we transfer a large-scale pretrained language model to
improve performance in all these tasks simultaneously?

I Popular benchmarks (Wang et al, 2018):
I GLUE: https://gluebenchmark.com/leaderboard
I SuperGLUE:

https://super.gluebenchmark.com/leaderboard
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ELMo (Peters et al., 2018)

Trained 10 epochs on 1B Word Benchmark
https://arxiv.org/pdf/1802.05365.pdf
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ELMo (Peters et al., 2018)
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ELMo in Practice

1. ELMo layer: new representation of i-th token in a sequence

ELMoi(γ, s1 . . . sL) = γ

L∑
l=0

sl


eELMo
i if l = 0[−→

h ELMo,l
i←−

h ELMo,l
i

]
otherwise

2. In your downstream task, concatenate ELMoi(γ, s1 . . . sL) to
your i-th input embedding.

3. Train your original model AND γ, s1 . . . sL while keeping
ELMo parameters fixed
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Using ELMo
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Recurrent vs Self-Attention Encoding

h

x x

h

not bidirectional until later deeply bidirectional
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Masked Language Modeling

I For the purposes of representation learning, we don’t care
about defining a proper language model which only conditions
on previous history.

I We want a prediction problem which conditions on entire
context all the time, so that we can use deeply bidirectional
encoders

I Solution: mask out words at random

the man went to the [MASK] to buy a [MASK] of milk
I Need to be careful

I Too little masking: too expensive to train
I Too much masking: not enough context
I Test time: no [MASK] input, so training should also handle no

[MASK] input sometimes
I Details: https://arxiv.org/pdf/1810.04805.pdf
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BERT (Devlin et al., 2019)

[CLS] the dog [MASK] [SEP] the cat [MASK] away [SEP]

IsNext barked ran

Transformer
(Vaswani et al., 2017)

Karl Stratos CS 533: Natural Language Processing 47/52



BERT (Devlin et al., 2019)

Number of parameters

I ELMo: 94 million

I BERT Base: 110 million

I BERT Large: 340 million
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RoBERTa (Liu et al., 2019)

RoBERTa = BERT + more careful training + more data

https://github.com/pytorch/fairseq/tree/master/

examples/roberta
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BERT Manual

Critical difference from ELMo: all BERT weights are fine-tuned
for the target task (expensive but worth it)
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BERT Applications
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Currently in NLP

Explosion of pretrained contextualized word embedding models

I TagLM (Peters et, 2017)

I CoVe (McCann et al. 2017)

I ULMfit (Howard and Ruder, 2018)

I ELMo (Peters et al, 2018)

I OpenAI GPT (Radford et al, 2018)

I BERT (Devlin et al, 2018)

I OpenAI GPT-2 (Radford et al, 2019)

I XLNet (Yang et al, 2019)

I SpanBERT (Joshi et al, 2019)

I RoBERTa (Liu et al, 2019)

I AlBERT (Anonymous)

I T5 (Raffel et al., 2019)

I . . .
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