CS 533: Natural Language Processing

From Log-Linear to Neural
Language Models

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/32

Agenda

1. Loose ends (STOP symbol, Zipf's law)

2. Log-linear language models
» Gradient descent

3. Neural language models

» Feedforward
» Recurrent

Karl Stratos CS 533: Natural Language Processing 2/32

Zipf's Law

wy ... w)y| € V sorted in decreasing probability

First four words: 93% of the unigram probability mass?

Karl Stratos

p(w;) = 2p(wit1)

the

to

in

of
and—dhz

CS 533: Natural Language Processing

3/32

: Empirical

Zipf's Law

— Frequency
— Zipf

60000

50000

40000

30000

20000

10000

weay

4/32

CS 533: Natural Language Processing

Karl Stratos

Log-Linear Language Model

v

Random variables: context z (e.g., previous n words), next
word y

Assumes a feature function ¢(z,y) € {0,1}%

v

v

Model parameter: weight vector w € R?

v

Model: for any (z,y)
ewT¢>(x,y)
Ey’EV ewTd)(.’E,y’)

Model estimation: minimize cross entropy (= MLE)

q*" (y|z) =

v

w*=argmin E —In q‘b’w(y\x)]
weRA (z,y)~pxy

Karl Stratos CS 533: Natural Language Processing 5/32

Example: Feature Extraction

Corpus:
» the dog chased the cat
» the cat chased the mouse

» the mouse chased the dog

Feature template

> (z[-1],9)
> (2[-2],9)
> (2[=2], 2[-1],y)
> (21 =2}, y)

How many features do we extract from the corpus (what is d)?

Karl Stratos CS 533: Natural Language Processing 6/32

Example: Score of (x,y)

For any (z,y), its “score” given by parameter w € R? is

d
wT¢(x7y) = Z Wi

Example: x = mouse chased

T
w d)(mouse Chased7 the) = w(-l)chased,the + w(-2)mouse,the
+ w(-2)mouse(—1)chased,the + w(-l:-Q)ed,the
T
w ¢(m0use Chased; Chased) = w(-l)chased,chased + w(»z)mouse,chased

+ w(-2)mouse(—1)chased,chased + w(-l:—2)ed,chased

Karl Stratos CS 533: Natural Language Processing 7/32

Empirical Objective

E [-me* ()]

(zy)~pxy
N

=1 yev
J(w)
When is J(w) minimized?
Karl Stratos CS 533: Natural Language Processing

8/32

Regularization

Ways to make sure w doesn’t overfit training data

1. Early stopping: stop training when validation performance
stops improving

2. Explicit regularization term

min J(w +)\Zw or min J(w —I—)\Z|wl|

weR4
H,_/ H,_/

llwll3 llwlly

3. Other techniques (e.g., dropout)

Karl Stratos CS 533: Natural Language Processing 9/32

Gradient Descent

Minimize f(z) = 2® 4+ 222 — 2 — 1 over x

(Courtesy to FooPlot)

Karl Stratos CS 533: Natural Language Processing

10/32

Local Search

Input: training objective J(0) € R, number of iterations T'
Output: parameter § € R? such that J(6) is small
1. Initialize ° (e.g., randomly).
2. Fort=0...T -1,
2.1 Obtain A" € R™ such that J(#' + A") < J(6%).

2.2 Choose some “step size” n' € R.
2.3 Set 91 =@t + 1t AL

3. Return 67"

What is a good A'?

Karl Stratos CS 533: Natural Language Processing 11/32

Gradient of the Objective at the Current Parameter
At 0! € R", the rate of increase (of the value of .J) along a
direction u € R” (i.e., ||u||, = 1) is given by the directional
derivative

V(6" = lim J(0' + eu) — J(6)

e—0 €

The gradient of J at 6 is defined to be a vector V.J(#) such that
VuJ(0Y) =VJ(0) - u Vu € R"

Therefore, the direction of the greatest rate of decrease is given by
—VJ(6")/ ||V I0)]],.

Je©)

ot

Karl Stratos CS 533: Natural Language Processing 12/32

Gradient Descent

Input: training objective J(0) € R, number of iterations T'
Output parameter § € R” such that J(6) is small

. Initialize 6° (e.g., randomly).
2. Fort=0...T —1,

0t = 6" — 'V I(0")

3. Return 67"

When J(6) is additionally convex (as in linear regression), gradient
descent converges to an optimal solution (for appropriate step

sizes).

Karl Stratos CS 533: Natural Language Processing 13/32

Stochastic Gradient Descent for Log-Linear Model

Input: training objective

N

1
- 0
J(w) =+ ;J (w)
JO(w) =In (Z ewT¢<z<’>,y)) —w T gz®,y®)
yeVv

number of iterations T' (“epochs”)

1. Initialize w® (e.g., randomly).
2. Fort=0...T —1,
2.1 Forl € shuffle({1...N}),

wt+1 _ wt _ T]tiJ(l)(,wt)

3. Return w?.

Karl Stratos CS 533: Natural Language Processing 14/32

Gradient Derivation

Board

Karl Stratos CS 533: Natural Language Processing 15/32

Summary of Gradient Descent

» Gradient descent is a local search algorithm that can be
used to optimize any differentiable objective function.

» Stochastic gradient descent is the cornerstone of modern
large-scale machine learning.

Karl Stratos CS 533: Natural Language Processing 16/32

Word Vectors

> Instead of manually designing features ¢, can we learn
features themselves?

» Model parameter: now includes E e RIVI*d
» E, € R% continuous dense representation of word w € V

» If we define ¢(y|x) as a differentiable function of E, we learn
E itself.

Karl Stratos CS 533: Natural Language Processing 17/32

Simple Model?

» Parameters: E € RIVIXd W ¢ RIVIx2d

» Model:

qE’W(y\ﬂs) = softmax, (W [Ez[—ﬂ}>
x[—2]

&

» Model estimation: minimize cross entropy (= MLE)

E*,W* = argmin E [— lan’W(y|gj)]
EcRIVIxd (x,y)~pxy
WGR\V\XQd

Karl Stratos CS 533: Natural Language Processing 18/32

Neural Network

Just a composition of linear/nonlinear functions.

flz) = W tanh (W(L_l) .- -tanh (W(l)x) .)

More like a paradigm, not a specific model.

1. Transform your input x — f(z).
2. Define loss between f(z) and the target label y.

3. Train parameters by minimizing the loss.

Karl Stratos CS 533: Natural Language Processing 19/32

You've Already Seen Some Neural Networks. . .

Log-linear model is a neural network with O hidden layer and a
softmax output layer:

exp([Waly)
Y exp([Wly)

Get W by minimizing L(W) = — 3" log p(yi|xi).

= softmax, (W z)

pyle) = 5

Linear regression is a neural network with 0 hidden layer and the
identity output layer:

Get W by minimizing L(W) = Y. (v — fi(x))?.

Karl Stratos CS 533: Natural Language Processing 20/32

Feedforward Network
Think: log-linear with extra transformation

With 1 hidden layer:
A = tanh(W D z)
plylz) = softmax, (hM)
With 2 hidden layers:
A = tanh(W W z)
A% = tanh(W@pM)
p(y|x) = softmax, (h?)

Again, get parameters W) by minimizing — ", log p(yi|z:).

» Q. What's the catch?

Karl Stratos CS 533: Natural Language Processing

21/32

Training = Loss Minimization
We can decrease any continuous loss by following the gradient.

1. Differentiate the loss wrt. model parameters (backprop)
2. Take a gradient step

Karl Stratos CS 533: Natural Language Processing 22/32

Backpropagation

» J(#) any loss function differentiable with respect to 6 € R?

» The gradient of J with respect to # at some point § € R?
Vo J(0') € RY

can be calculated automatically by backpropagation.

» Note/code:
http://karlstratos.com/notes/backprop.pdf

Karl Stratos CS 533: Natural Language Processing 23/32

http://karlstratos.com/notes/backprop.pdf

Bengio et al. (2003)

» Parameters: E € RIVIXd W ¢ Rd'>nd /¢ RIVIxd

» Model:

JOME
¢ (ylw) = softmax, | Vtanh | W)
Byl

» Model estimation: minimize cross entropy (= MLE)
E*, W*, V* = argmin E [— lan’W’V(y\:ﬂﬂ
EcRIVIxd (zy)~pxy

WERd/ Xnd
VeRIVIxd

Karl Stratos CS 533: Natural Language Processing 24/32

Bengio et al. (2003): Continued

n c h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes yes 275 | 257
MLP3 5 060 | yes no 201 327 | 310
MLP4 5 0|60 | yes yes 286 | 272
MLP5 5 50 [30 | yes no 209 296 | 279
MLP6 5 50 [30 | yes yes 273 | 259
MLP7 3 50 [30 [yes no 210 309 | 293
MLP8 3 50 | 30| yes | yes 284 | 270
MLP9 5 100 | 30 | no no 175 280 | 276
MLP10 5 100 [30 | no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 | 200 354 | 340
class-based back-off | 3 | 500 326 | 312
class-based back-off | 3 | 1000 335 | 319
class-based back-off | 3 | 2000 343 | 326
class-based back-off | 4 | 500 327 | 312
class-based back-off [5 | 500 327 | 312

Karl Stratos

CS 533: Natural Language Processing

25/32

Collobert and Weston (2008)

Nearest neighbors of trained word embeddings E € RIVIxd

FRANCE JESUS XBOX REDDISH SCRATCHED
454 1973 6909 11724 29869
SPAIN CHRIST PLAYSTATION YELLOWISH SMASHED
ITALY GOD DREAMCAST GREENISH RIPPED
RUSSIA RESURRECTION pPsNUMBER BROWNISH BRUSHED
POLAND PRAYER SNES BLUISH HURLED
ENGLAND YAHWEH WII CREAMY GRABBED
DENMARK JOSEPHUS NES WHITISH TOSSED
GERMANY MOSES NINTENDO BLACKISH SQUEEZED
PORTUGAL SIN GAMECUBE SILVERY BLASTED
SWEDEN HEAVEN PSP GREYISH TANGLED
AUSTRIA SALVATION AMIGA PALER SLASHED
https:

//ronan.collobert.com/pub/matos/2008_nlp_icml.pdf

Karl Stratos

CS 533: Natural Language Processing

https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf

Neural Networks are (Finite-Sample) Universal Learners!
Theorem. (Zhang et al., 2016) Give me any
1. Set of n samples S = {zM ... 2™} c R4
2. Function f: S — R that assigns some arbitrary value f(a:(i))
toeachi=1...n

Then | can specify a 1-hidden-layer feedforward network
C : S — R with 2n + d parameters such that C(z(®) = f(x(®) for
alli=1...n.

Proof.
Define C(z) = w'relu((a'z...a"x) + b) where w,b € R” and
a € R? are network parameters. Choose a, b so that the matrix

A; j = [max {0, a’z(® — b;}] is triangular. Solve for w in
(M)
: = Aw
(™)

Karl Stratos CS 533: Natural Language Processing 27@

So Why Not Use a Simple Feedforward for Everything?

Computational reasons

» For example, using a giant feedforward to cover instances of
different sizes is clearly inefficient.

Empirical reasons
» In principle, we can learn any function.

» This tells us nothing about how to get there. How many
samples do we need? How can we find the right parameters?

» Specializing an architecture to a particular type of
computation allows us to incorporate inductive bias.

» “Right” architecture is absolutely critical in practice.

Karl Stratos CS 533: Natural Language Processing 28/32

Recurrent Neural Network (RNN)

Think: HMM (or Kalman filter) with extra transformation

Input: sequence z1...zx € R4

» Fori=1...N,

h; = tanh (Wx; + Vh;_1)

Output: sequence hy ... hy € RY

Karl Stratos CS 533: Natural Language Processing 29/32

RNN = Deep Feedforward

Unroll the expression for the last output vector hy:
hy = tanh <W$N + V(+ V tanh <Wm1 + Vh()) >>

It's just a deep “feedforward network” with one important
difference: parameters are reused
» (V,W) are applied N times

Training: do backprop on this unrolled network, update parameters

Karl Stratos CS 533: Natural Language Processing 30/32

LSTM

» RNN produces a sequence of output vectors
Ti1...TN — hi...hy
» LSTM produces “memory cell vectors” along with output
ri...ty —> C1...CN, hi...hy

» These ¢ ...cyn enable the network to keep or drop
information from previous states.

Karl Stratos CS 533: Natural Language Processing 31/32

LSTM: Details

At each time step 1,

» Compute a masking vector for the memory cell:

q; =0 (Uqa: 4+ V9, 1 + Wici_l) S [0, l]dl

» Use ¢; to keep/forget dimensions in previous memory cell:

¢i=(1—-¢q)®c_1+q ©tanh (Uz + V°h;_1)
» Compute another masking vector for the output:
0i = o (U%z 4+ V°h; 1 + W°¢) € [0,1]¢
» Use o; to keep/forget dimensions in current memory cell:

h; = 0; ® tanh(c¢;)

Karl Stratos CS 533: Natural Language Processing

32/32

