CS 533: Natural Language Processing

# From Log-Linear to Neural Language Models

Karl Stratos



Rutgers University

## Agenda

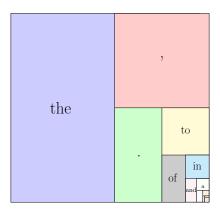
- 1. Loose ends (STOP symbol, Zipf's law)
- 2. Log-linear language models
  - ► Gradient descent
- 3. Neural language models
  - Feedforward
  - Recurrent

## Zipf's Law

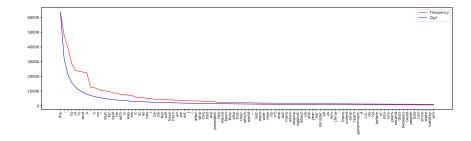
 $w_1 \dots w_{|V|} \in V$  sorted in decreasing probability

$$p(w_i) = 2p(w_{i+1})$$

First four words: 93% of the unigram probability mass?



# Zipf's Law: Empirical



# Log-Linear Language Model

- $\blacktriangleright$  Random variables: context x (e.g., previous n words), next word y
- Assumes a feature function  $\phi(x,y) \in \{0,1\}^d$
- ▶ Model parameter: weight vector  $w \in \mathbb{R}^d$
- ▶ Model: for any (x, y)

$$q^{\phi,w}(y|x) = \frac{e^{w^{\top}\phi(x,y)}}{\sum_{y'\in V} e^{w^{\top}\phi(x,y')}}$$

▶ Model estimation: minimize cross entropy (≡ MLE)

$$w^* = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \mathop{\mathbf{E}}_{(x,y) \sim p_{XY}} \left[ -\ln q^{\phi,w}(y|x) \right]$$

## **Example: Feature Extraction**

#### Corpus:

- ▶ the dog chased the cat
- ▶ the cat chased the mouse
- ▶ the mouse chased the dog

#### Feature template

- ▶ (x[-1], y)
- (x[-2],y)
- (x[-2], x[-1], y)
- (x[-1][:-2],y)

How many features do we extract from the corpus (what is d)?

## Example: Score of (x, y)

For any (x,y), its "score" given by parameter  $w \in \mathbb{R}^d$  is

$$w^{\top} \phi(x, y) = \sum_{i=1: \phi_i(x, y)=1}^d w_i$$

Example: x = mouse chased

$$w^\top \phi(\texttt{mouse chased}, \texttt{the}) = w_{(\text{-1})\mathsf{chased}, \texttt{the}} + w_{(\text{-2})\mathsf{mouse}, \texttt{the}} \\ + w_{(\text{-2})\mathsf{mouse}(\text{-1})\mathsf{chased}, \texttt{the}} + w_{(\text{-1}:\text{-2})\mathsf{ed}, \texttt{the}} \\ w^\top \phi(\texttt{mouse chased}, \texttt{chased}) = w_{(\text{-1})\mathsf{chased}, \texttt{chased}} + w_{(\text{-2})\mathsf{mouse}, \texttt{chased}} \\ + w_{(\text{-2})\mathsf{mouse}(\text{-1})\mathsf{chased}, \texttt{chased}} + w_{(\text{-1}:\text{-2})\mathsf{ed}, \texttt{chased}} \\ \end{pmatrix}$$

# **Empirical Objective**

$$\begin{split} & \underset{(x,y) \sim p_{XY}}{\mathbf{E}} \left[ -\ln q^{\phi,w}(y|x) \right] \\ & \approx \frac{1}{N} \sum_{l=1}^{N} -\ln q^{\phi,w}(y^{(l)}|x^{(l)}) \\ & = \underbrace{\frac{1}{N} \sum_{l=1}^{N} \ln \left( \sum_{y \in V} e^{w^{\top} \phi(x^{(l)},y)} \right) - w^{\top} \phi(x^{(l)},y^{(l)})}_{J(w)} \end{split}$$

When is J(w) minimized?

## Regularization

Ways to make sure w doesn't overfit training data

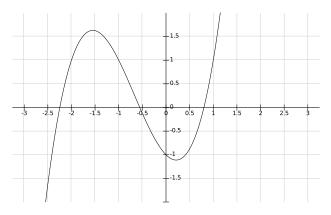
- 1. **Early stopping**: stop training when validation performance stops improving
- 2. Explicit regularization term

$$\min_{w \in \mathbb{R}^d} J(w) + \lambda \underbrace{\sum_{i=1}^d w_i^2}_{||w||_2^2} \quad \text{ or } \quad \min_{w \in \mathbb{R}^d} J(w) + \lambda \underbrace{\sum_{i=1}^d |w_i|}_{||w||_1}$$

3. Other techniques (e.g., dropout)

#### **Gradient Descent**

Minimize 
$$f(x) = x^3 + 2x^2 - x - 1$$
 over  $x$ 



(Courtesy to FooPlot)

#### Local Search

**Input**: training objective  $J(\theta) \in \mathbb{R}$ , number of iterations T **Output**: parameter  $\hat{\theta} \in \mathbb{R}^d$  such that  $J(\hat{\theta})$  is small

- 1. Initialize  $\theta^0$  (e.g., randomly).
- 2. For  $t = 0 \dots T 1$ ,
  - 2.1 Obtain  $\Delta^t \in \mathbb{R}^n$  such that  $J(\theta^t + \Delta^t) \leq J(\theta^t)$ .
  - 2.2 Choose some "step size"  $\eta^t \in \mathbb{R}$ .
  - 2.3 Set  $\theta^{t+1} = \theta^t + \eta^t \Delta^t$ .
- 3. Return  $\theta^T$ .

# What is a good $\Delta^t$ ?

## Gradient of the Objective at the Current Parameter

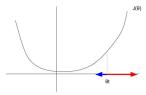
At  $\theta^t \in \mathbb{R}^n$ , the rate of increase (of the value of J) along a direction  $u \in \mathbb{R}^n$  (i.e.,  $||u||_2 = 1$ ) is given by the **directional derivative** 

$$\nabla_u J(\theta^t) := \lim_{\epsilon \to 0} \frac{J(\theta^t + \epsilon u) - J(\theta^t)}{\epsilon}$$

The gradient of J at  $\theta^t$  is defined to be a vector  $\nabla J(\theta^t)$  such that

$$\nabla_u J(\theta^t) = \nabla J(\theta^t) \cdot u \qquad \forall u \in \mathbb{R}^n$$

Therefore, the direction of the greatest rate of *decrease* is given by  $-\nabla J(\theta^t)/||\nabla J(\theta^t)||_2$ .



#### Gradient Descent

**Input**: training objective  $J(\theta) \in \mathbb{R}$ , number of iterations T

**Output**: parameter  $\hat{\theta} \in \mathbb{R}^n$  such that  $J(\hat{\theta})$  is small

- 1. Initialize  $\theta^0$  (e.g., randomly).
- 2. For  $t = 0 \dots T 1$ .

$$\theta^{t+1} = \theta^t - \eta^t \nabla J(\theta^t)$$

3 Return  $\theta^T$ 

When  $J(\theta)$  is additionally *convex* (as in linear regression), gradient descent converges to an optimal solution (for appropriate step sizes).



# Stochastic Gradient Descent for Log-Linear Model

#### Input: training objective

$$J(w) = \frac{1}{N} \sum_{l=1}^{N} J^{(l)}(w)$$
$$J^{(l)}(w) = \ln \left( \sum_{y \in V} e^{w^{\top} \phi(x^{(l)}, y)} \right) - w^{\top} \phi(x^{(l)}, y^{(l)})$$

number of iterations T ("epochs")

- 1. Initialize  $w^0$  (e.g., randomly).
- 2. For  $t = 0 \dots T 1$ ,
  - 2.1 For  $l \in \mathsf{shuffle}(\{1 \dots N\})$ ,

$$w^{t+1} = w^t - \eta^t \nabla_w J^{(l)}(w^t)$$

3. Return  $w^T$ .

### **Gradient Derivation**

Board

## Summary of Gradient Descent

- ▶ **Gradient descent** is a local search algorithm that can be used to optimize *any* differentiable objective function.
- Stochastic gradient descent is the cornerstone of modern large-scale machine learning.

#### Word Vectors

- ▶ Instead of manually designing features  $\phi$ , can we learn features themselves?
- ▶ Model parameter: now includes  $E \in \mathbb{R}^{|V| \times d}$ 
  - $E_w \in \mathbb{R}^d$ : continuous dense representation of word  $w \in V$
- ▶ If we define q(y|x) as a differentiable function of E, we learn E itself.

## Simple Model?

- Parameters:  $E \in \mathbb{R}^{|V| \times d}$ ,  $W \in \mathbb{R}^{|V| \times 2d}$
- ► Model:

$$q^{E,W}(y|x) = \operatorname{softmax}_y \left( W \begin{bmatrix} E_{x[-1]} \\ E_{x[-2]} \end{bmatrix} \right)$$

▶ Model estimation: minimize cross entropy (≡ MLE)

$$E^*, W^* = \underset{\substack{E \in \mathbb{R}^{|V| \times d} \\ W \in \mathbb{R}^{|V| \times 2d}}}{\arg \min} \mathbf{E} \left[ -\ln q^{E,W}(y|x) \right]$$

#### Neural Network

Just a composition of linear/nonlinear functions.

$$f(x) = W^{(L)} \tanh \left( W^{(L-1)} \cdots \tanh \left( W^{(1)} x \right) \cdots \right)$$

More like a paradigm, not a specific model.

- 1. Transform your input  $x \longrightarrow f(x)$ .
- 2. Define **loss** between f(x) and the target label y.
- 3. Train parameters by minimizing the loss.

## You've Already Seen Some Neural Networks...

**Log-linear model** is a neural network with 0 hidden layer and a softmax output layer:

$$p(y|x) := \frac{\exp([Wx]_y)}{\sum_{y'} \exp([Wx]_{y'})} = \operatorname{softmax}_y(Wx)$$

Get W by minimizing  $L(W) = -\sum_{i} \log p(y_i|x_i)$ .

**Linear regression** is a neural network with 0 hidden layer and the identity output layer:

$$f(x) := Wx$$

Get W by minimizing  $L(W) = \sum_i (y_i - f_i(x))^2$ .

#### Feedforward Network

Think: log-linear with extra transformation

With 1 hidden layer:

$$h^{(1)} = \tanh(W^{(1)}x)$$
 
$$p(y|x) = \operatorname{softmax}_y(h^{(1)})$$

With 2 hidden layers:

$$h^{(1)} = \tanh(W^{(1)}x)$$

$$h^{(2)} = \tanh(W^{(2)}h^{(1)})$$

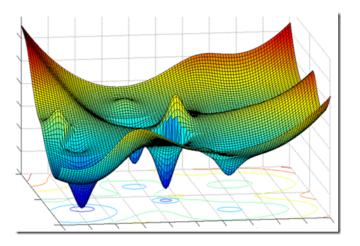
$$p(y|x) = \text{softmax}_y(h^{(2)})$$

Again, get parameters  $W^{(l)}$  by minimizing  $-\sum_{i} \log p(y_i|x_i)$ .

▶ Q. What's the catch?

## Training = Loss Minimization

We can decrease any continuous loss by following the gradient.



- 1. Differentiate the loss wrt. model parameters (backprop)
- 2. Take a gradient step

## Backpropagation

- lacksquare J( heta) any loss function differentiable with respect to  $heta \in \mathbb{R}^d$
- lacktriangle The gradient of J with respect to heta at some point  $heta' \in \mathbb{R}^d$

$$\nabla_{\theta} J(\theta') \in \mathbb{R}^d$$

can be calculated automatically by backpropagation.

► Note/code:

http://karlstratos.com/notes/backprop.pdf

# Bengio et al. (2003)

- ▶ Parameters:  $E \in \mathbb{R}^{|V| \times d}$ ,  $W \in \mathbb{R}^{d' \times nd}$ ,  $V \in \mathbb{R}^{|V| \times d'}$
- Model:

$$q^{E,W,V}(y|x) = \operatorname{softmax}_y \left( V \tanh \left( W \begin{bmatrix} E_{x[-1]} \\ \vdots \\ E_{x[-n]} \end{bmatrix} \right) \right)$$

► Model estimation: minimize cross entropy (≡ MLE)

$$E^*, W^*, V^* = \underset{E \in \mathbb{R}^{|V| \times d}}{\operatorname{arg\,min}} \underset{(x,y) \sim p_{XY}}{\mathbf{E}} \left[ -\ln q^{E,W,V}(y|x) \right]$$

$$\underset{V \in \mathbb{R}^{|V| \times d'}}{\operatorname{ER}^{|V| \times d'}}$$

# Bengio et al. (2003): Continued

|                      | n | С    | h   | m  | direct | mix | train. | valid. | test. |
|----------------------|---|------|-----|----|--------|-----|--------|--------|-------|
| MLP1                 | 5 |      | 50  | 60 | yes    | no  | 182    | 284    | 268   |
| MLP2                 | 5 |      | 50  | 60 | yes    | yes |        | 275    | 257   |
| MLP3                 | 5 |      | 0   | 60 | yes    | no  | 201    | 327    | 310   |
| MLP4                 | 5 |      | 0   | 60 | yes    | yes |        | 286    | 272   |
| MLP5                 | 5 |      | 50  | 30 | yes    | no  | 209    | 296    | 279   |
| MLP6                 | 5 |      | 50  | 30 | yes    | yes |        | 273    | 259   |
| MLP7                 | 3 |      | 50  | 30 | yes    | no  | 210    | 309    | 293   |
| MLP8                 | 3 |      | 50  | 30 | yes    | yes |        | 284    | 270   |
| MLP9                 | 5 |      | 100 | 30 | no     | no  | 175    | 280    | 276   |
| MLP10                | 5 |      | 100 | 30 | no     | yes |        | 265    | 252   |
| Del. Int.            | 3 |      |     |    |        |     | 31     | 352    | 336   |
| Kneser-Ney back-off  | 3 |      |     |    |        |     |        | 334    | 323   |
| Kneser-Ney back-off  | 4 |      |     |    |        |     |        | 332    | 321   |
| Kneser-Ney back-off  | 5 |      |     |    |        |     |        | 332    | 321   |
| class-based back-off | 3 | 150  |     |    |        |     |        | 348    | 334   |
| class-based back-off | 3 | 200  |     |    |        |     |        | 354    | 340   |
| class-based back-off | 3 | 500  |     |    |        |     |        | 326    | 312   |
| class-based back-off | 3 | 1000 |     |    |        |     |        | 335    | 319   |
| class-based back-off | 3 | 2000 |     |    |        |     |        | 343    | 326   |
| class-based back-off | 4 | 500  |     |    |        |     |        | 327    | 312   |
| class-based back-off | 5 | 500  |     |    |        |     |        | 327    | 312   |

# Collobert and Weston (2008)

## Nearest neighbors of trained word embeddings $E \in \mathbb{R}^{|V| \times d}$

| $\begin{array}{c} \text{FRANCE} \\ 454 \end{array}$ | JESUS<br>1973 | хвох<br>6909 | REDDISH $11724$ | SCRATCHED 29869 |
|-----------------------------------------------------|---------------|--------------|-----------------|-----------------|
| SPAIN                                               | CHRIST        | PLAYSTATION  | YELLOWISH       | SMASHED         |
| ITALY                                               | GOD           | DREAMCAST    | GREENISH        | RIPPED          |
| RUSSIA                                              | RESURRECTION  | PSNUMBER     | BROWNISH        | BRUSHED         |
| POLAND                                              | PRAYER        | SNES         | BLUISH          | HURLED          |
| ENGLAND                                             | YAHWEH        | WII          | CREAMY          | GRABBED         |
| DENMARK                                             | JOSEPHUS      | NES          | WHITISH         | TOSSED          |
| GERMANY                                             | MOSES         | NINTENDO     | BLACKISH        | SQUEEZED        |
| PORTUGAL                                            | SIN           | GAMECUBE     | SILVERY         | BLASTED         |
| SWEDEN                                              | HEAVEN        | PSP          | GREYISH         | TANGLED         |
| AUSTRIA                                             | SALVATION     | AMIGA        | PALER           | SLASHED         |

#### https:

//ronan.collobert.com/pub/matos/2008\_nlp\_icml.pdf

# Neural Networks are (Finite-Sample) Universal Learners!

Theorem. (Zhang et al., 2016) Give me any

- 1. Set of n samples  $S = \left\{ oldsymbol{x}^{(1)} \dots oldsymbol{x}^{(n)} \right\} \subset \mathbb{R}^d$
- 2. Function  $f:S\to\mathbb{R}$  that assigns some arbitrary value  $f(x^{(i)})$  to each  $i=1\dots n$

Then I can specify a 1-hidden-layer feedforward network  $C:S\to\mathbb{R}$  with 2n+d parameters such that  $C(\boldsymbol{x}^{(i)})=f(\boldsymbol{x}^{(i)})$  for all  $i=1\dots n$ .

#### Proof.

Define  $C(\boldsymbol{x}) = \boldsymbol{w}^{\top} \text{relu}((\boldsymbol{a}^{\top}\boldsymbol{x}\dots\boldsymbol{a}^{\top}\boldsymbol{x}) + \boldsymbol{b})$  where  $\boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^n$  and  $\boldsymbol{a} \in \mathbb{R}^d$  are network parameters. Choose  $\boldsymbol{a}, \boldsymbol{b}$  so that the matrix  $A_{i,j} := [\max\left\{0, \boldsymbol{a}^{\top}\boldsymbol{x}^{(i)} - b_j\right\}]$  is triangular. Solve for  $\boldsymbol{w}$  in

$$\begin{bmatrix} f(\boldsymbol{x}^{(1)}) \\ \vdots \\ f(\boldsymbol{x}^{(n)}) \end{bmatrix} = A\boldsymbol{w}$$

# So Why Not Use a Simple Feedforward for Everything?

#### Computational reasons

For example, using a giant feedforward to cover instances of different sizes is clearly inefficient.

#### **Empirical reasons**

- ▶ In principle, we can learn any function.
- ► This tells us nothing about how to get there. How many samples do we need? How can we find the right parameters?
- Specializing an architecture to a particular type of computation allows us to incorporate inductive bias.
- "Right" architecture is absolutely critical in practice.

# Recurrent Neural Network (RNN)

Think: HMM (or Kalman filter) with extra transformation

**Input**: sequence  $x_1 \dots x_N \in \mathbb{R}^d$ 

For  $i = 1 \dots N$ ,

$$h_i = \tanh\left(Wx_i + Vh_{i-1}\right)$$

**Output**: sequence  $h_1 \dots h_N \in \mathbb{R}^{d'}$ 

## RNN ≈ Deep Feedforward

Unroll the expression for the last output vector  $h_N$ :

$$h_N = \tanh\left(Wx_N + V\left(\cdots + V\tanh\left(Wx_1 + Vh_0\right)\cdots\right)\right)$$

It's just a deep "feedforward network" with one important difference: parameters are reused

ightharpoonup (V,W) are applied N times

Training: do backprop on this unrolled network, update parameters

#### **LSTM**

RNN produces a sequence of output vectors

$$x_1 \dots x_N \longrightarrow h_1 \dots h_N$$

▶ LSTM produces "memory cell vectors" along with output

$$x_1 \dots x_N \longrightarrow c_1 \dots c_N, h_1 \dots h_N$$

▶ These  $c_1 \dots c_N$  enable the network to keep or drop information from previous states.

#### LSTM: Details

At each time step i,

Compute a masking vector for the memory cell:

$$q_i = \sigma \left( U^q x + V^q \frac{h_{i-1}}{h_{i-1}} + W^i c_{i-1} \right) \in [0, 1]^{d'}$$

• Use  $q_i$  to keep/forget dimensions in previous memory cell:

$$c_i = (1 - q_i) \odot c_{i-1} + q_i \odot \tanh (U^c x + V^c h_{i-1})$$

Compute another masking vector for the output:

$$o_i = \sigma (U^o x + V^o \frac{h_{i-1}}{1} + W^o c_i) \in [0, 1]^{d'}$$

▶ Use  $o_i$  to keep/forget dimensions in current memory cell:

$$h_i = o_i \odot \tanh(c_i)$$