
CS 533: Natural Language Processing

Language Modeling

Karl Stratos

Rutgers University

Karl Stratos CS 533: Natural Language Processing 1/40

Motivation

How likely are the following sentences?

I the dog barked

I the cat barked

I dog the barked

I oqc shgwqw#w 1g0

Karl Stratos CS 533: Natural Language Processing 2/40

Motivation
How likely are the following sentences?

I the dog barked

“probability 0.1”

I the cat barked

“probability 0.03”

I dog the barked

“probability 0.00005”

I oqc shgwqw#w 1g0

“probability 10−13”
Karl Stratos CS 533: Natural Language Processing 2/40

Language Model: Definition

A language model is a function that defines a probability
distribution p(x1 . . . xm) over all sentences x1 . . . xm.

Goal: Design a good language model, in particular

p(the dog barked) > p(the cat barked)

> p(dog the barked)

> p(oqc shgwqw#w 1g0)

Karl Stratos CS 533: Natural Language Processing 3/40

Language Models Are Everywhere

Karl Stratos CS 533: Natural Language Processing 4/40

Text Generation with Modern Language Models

Try it yourself: https://talktotransformer.com/

Karl Stratos CS 533: Natural Language Processing 5/40

https://talktotransformer.com/

Overview

Probability of a Sentence

n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation
Smoothing

Log-Linear Language Models

Karl Stratos CS 533: Natural Language Processing 6/40

Problem Statement

I We’ll assume a finite vocabulary V (i.e., the set of all
possible word types).

I Sample space: Ω = {x1 . . . xm ∈ V m : m ≥ 1}

I Task: Design a function p over Ω such that

p(x1 . . . xm) ≥ 0 ∀x1 . . . xm ∈ Ω∑
x1...xm∈Ω

p(x1 . . . xm) = 1

I What are some challenges?

Karl Stratos CS 533: Natural Language Processing 7/40

Challenge 1: Infinitely Many Sentences

I Can we “break up” the probability of a sentence into
probabilities of individual words?

I Yes: Assume a generative process.

I We may assume that each sentence x1 . . . xm is generated as

(1) x1 is drawn from p(·),
(2) x2 is drawn from p(·|x1),
(3) x3 is drawn from p(·|x1, x2),

. . .
(m) xm is drawn from p(·|x1, . . . , xm−1),

(m+ 1) xm+1 is drawn from p(·|x1, . . . , xm).

where xm+1 = STOP is a special token at the end of every
sentence.

Karl Stratos CS 533: Natural Language Processing 8/40

Justification of the Generative Assumption

By the chain rule,

p(x1 . . . xm STOP) = p(x1)× p(x2|x1)× p(x3|x1, x2)× · · ·
· · · × p(xm|x1, . . . , xm−1)× p(STOP|x1, . . . , xm)

Thus we have solved the first challenge.

I Sample space = finite V

I The model still defines a proper distribution over all sentences.

(Does the generative process need to be left-to-right?)

Karl Stratos CS 533: Natural Language Processing 9/40

STOP Symbol
Ensures that there is probabilty mass left for longer sentences

Probabilty mass of sentences with length ≥ 1

1−
∑
x∈V

p(STOP)︸ ︷︷ ︸
P (X1=STOP)=0

= 1

Probabilty mass of sentences with length ≥ 2

1−
∑
x∈V

p(x STOP)︸ ︷︷ ︸
P (X2=STOP)

> 0

Probabilty mass of sentences with length ≥ 3

1−
∑
x∈V

p(x STOP)︸ ︷︷ ︸
P (X2=STOP)

−
∑

x,x′∈V
p(x x′ STOP)

︸ ︷︷ ︸
P (X3=STOP)

> 0

Karl Stratos CS 533: Natural Language Processing 10/40

Challenge 2: Infinitely Many Distributions

Under the generative process, we need infinitely many conditional
word distributions:

p(x1) ∀x1 ∈ V
p(x2|x1) ∀x1, x2 ∈ V

p(x3|x1, x2) ∀x1, x2, x3 ∈ V
p(x4|x1, x2, x3) ∀x1, x2, x3, x4 ∈ V

...
...

Now our goal is to redesign the model to have only a finite,
compact set of associated values.

Karl Stratos CS 533: Natural Language Processing 11/40

Overview

Probability of a Sentence

n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation
Smoothing

Log-Linear Language Models

Karl Stratos CS 533: Natural Language Processing 12/40

Independence Assumptions

X is independent of Y if

P (X = x|Y = y) = P (X = x)

X is conditionally independent of Y given Z if

P (X = x|Y = y, Z = z) = P (X = x|Z = z)

Can you think of such X,Y, Z?

Karl Stratos CS 533: Natural Language Processing 13/40

Unigram Language Model

Assumption. A word is independent of all previous words:

p(xi|x1 . . . xi−1) = p(xi)

That is,

p(x1 . . . xm) =

m∏
i=1

p(xi)

Number of parameters: O(|V |)

Not a very good language model:

p(the dog barked) = p(dog the barked)
Karl Stratos CS 533: Natural Language Processing 14/40

Bigram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the preceding word:

p(xi|x1 . . . xi−1) = p(xi|xi−1)

That is,

p(x1 . . . xm) =
m∏
i=1

p(xi|xi−1)

where x0 = * is a special token at the start of every sentence.

Number of parameters: O(|V |2)

Karl Stratos CS 533: Natural Language Processing 15/40

Trigram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the two preceding words:

p(xi|x1 . . . xi−1) = p(xi|xi−2, xi−1)

That is,

p(x1 . . . xm) =
m∏
i=1

p(xi|xi−2, xi−1)

where x−1, x0 = * are special tokens at the start of every
sentence.

Number of parameters: O(|V |3)
Karl Stratos CS 533: Natural Language Processing 16/40

n-Gram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the n− 1 preceding words:

p(xi|x1 . . . xi−1) = p(xi|xi−n+1, . . . , xi−1)

Number of parameters: O(|V |n)

This kind of conditional independence assumption (“depends only
on the last n− 1 states. . . ”) is called a Markov assumption.

I Is this a reasonable assumption for language modeling?

Karl Stratos CS 533: Natural Language Processing 17/40

Overview

Probability of a Sentence

n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation
Smoothing

Log-Linear Language Models

Karl Stratos CS 533: Natural Language Processing 18/40

A Practical Question

I Summary so far: We have designed probabilistic language
models parametrized by finitely many values.

I Bigram model: Stores a table of O(|V |2) values

q(x′|x) ∀x, x′ ∈ V

(plus q(x|*) and q(STOP|x)) representing transition
probabilities and computes

p(the cat barked) =q(the|*)×
q(cat|the)×
q(barked|cat)

q(STOP|barked)

I Q. But where do we get these values?
Karl Stratos CS 533: Natural Language Processing 19/40

Estimation from Data

I Our data is a corpus of N sentences x(1) . . . x(N).

I Define count(x, x′) to be the number of times x, x′ appear
together (called “bigram counts”):

count(x, x′) =

N∑
i=1

li+1∑
j=1:
xj=x′
xj−1=x

1

(li = length of x(i) and xli+1 = STOP)

I Define count(x) :=
∑

x′ count(x, x′) (called “unigram
counts”).

Karl Stratos CS 533: Natural Language Processing 20/40

Example Counts

Corpus:

I the dog chased the cat

I the cat chased the mouse

I the mouse chased the dog

Example bigram/unigram counts:

count(x0, the) = 3 count(the) = 6

count(chased, the) = 3 count(chased) = 3

count(the, dog) = 2 count(x0) = 3

count(cat, STOP) = 1 count(cat) = 2

Karl Stratos CS 533: Natural Language Processing 21/40

Parameter Estimates

I For all x, x′ with count(x, x′) > 0, set

q(x′|x) = count(x, x′)

count(x)
Otherwise q(x′|x) = 0.

I In the previous example:

q(the|x0) = 3/3 = 1

q(chased|dog) = 1/3 = 0.3̄

q(dog|the) = 2/6 = 0.3̄

q(STOP|cat) = 1/2 = 0.5

q(dog|cat) = 0

I Called maximum likelihood estimation (MLE).
Karl Stratos CS 533: Natural Language Processing 22/40

Justification of MLE

Claim. The solution of the constrained optimization problem

q∗ = arg max
q: q(x′|x)≥0 ∀x,x′∑
x′∈V q(x′|x)=1∀x

N∑
i=1

li+1∑
j=1

log q(xj |xj−1)

is given by

q∗(x′|x) =
count(x, x′)

count(x)

(Proof?)

Karl Stratos CS 533: Natural Language Processing 23/40

MLE: Other n-Gram Models

Unigram:

q(x) =
count(x)

N

Bigram:

q(x′|x) = count(x, x′)

count(x)

Trigram:

q(x′′|x, x′) = count(x, x′, x′′)

count(x, x′)
Karl Stratos CS 533: Natural Language Processing 24/40

Overview

Probability of a Sentence

n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation
Smoothing

Log-Linear Language Models

Karl Stratos CS 533: Natural Language Processing 25/40

Evaluation of a Language Model

“How good is the model at predicting unseen sentences?”

Held-out corpus:

Used for evaluation purposes only

Do not use held-out data for training the model!

Popular evaluation metric: perplexity

Karl Stratos CS 533: Natural Language Processing 26/40

What We Are Doing: Conditional Density Estimation

I True context-word pairs distributed as (c, w) ∼ pCW
I We define some language model qW |C
I Learning: minimize cross entropy between pW |C and qW |C

H(pW |C , qW |C) = E
(c,w)∼pCW

[
− ln qW |C(w|c)

]
Number of nats to encode the behavior of pW |C using qW |C

H(pW |C) ≤ H(pW |C , qW |C) ≤ ln |V |

I Evaluation of qW |C : check how small H(pW |C , qW |C) is!
I If the model class of qW |C is universally expressive, an optimal

model q∗W |C will satisfy H(pW |C , q
∗
W |C) = H(pW |C) with

q∗W |C = pW |C .

Karl Stratos CS 533: Natural Language Processing 27/40

Perplexity

I Exponentiated cross entropy

PP(pW |C , qW |C) = eH(pW |C ,qW |C)

I Interpretation: effective vocabulary size

eH(pW |C) ≤ PP(pW |C , qW |C) ≤ |V |

I Empirical estimation: given (c1, w1) . . . (cN , wN) ∼ pCW ,

P̂P(pW |C , qW |C) = e−
1
N

∑N
i=1 ln qW |C(wi|ci)

What is the empirical perplexity when qW |C(wi|ci) = 1 for all
i? When qW |C(wi|ci) = 1/ |V | for all i?

Karl Stratos CS 533: Natural Language Processing 28/40

Example Perplexity Values for n-Gram Models

I Using vocabulary size |V | = 50, 000 (Goodman, 2001)
I Unigram: 955, Bigram: 137, Trigram: 74

I Modern neural language models: probably � 20

I The big question: what is the minimum perplexity achievable
with machines?

Karl Stratos CS 533: Natural Language Processing 29/40

Overview

Probability of a Sentence

n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation
Smoothing

Log-Linear Language Models

Karl Stratos CS 533: Natural Language Processing 30/40

Smoothing: Additive

In practice, it’s important to smooth estimation to avoid zero
probabilities for unseen words:

qα(x′|x) = #(x, x′) + α

#(x) + α |V |

Also called Laplace smoothing:
https://en.wikipedia.org/wiki/Additive_smoothing

Karl Stratos CS 533: Natural Language Processing 31/40

https://en.wikipedia.org/wiki/Additive_smoothing

Smoothing: Interpolation

With limited data, enforcing generalization by using less context
also helps:

qsmoothed(x′′|x, x′) =λ1qα(x′′|x, x′)+
λ2q

α(x′′|x′)+
λ3q

α(x′′)

where λ1 + λ2 + λ3 = 1 and λi ≥ 0. Called linear interpolation.

Karl Stratos CS 533: Natural Language Processing 32/40

Many Other Smoothing Techniques

I Kneser-Ney smoothing: Section 3.5 of
https://web.stanford.edu/~jurafsky/slp3/3.pdf

I Good-Turing estimator: the “missing mass” problem
I On the Convergence Rate of Good-Turing Estimators

(McAllester and Schapire, 2001)

Karl Stratos CS 533: Natural Language Processing 33/40

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Final Aside: Tokenization

I Text: initially a single string

“Call me Ishmael.”

I Naive tokenization: by space

[Call, me, Ishmael.]

I English-specific tokenization using rules or statistical model:

[Call, me, Ishmael, .]

I Language-independent tokenization learned from data
I Wordpiece: https://arxiv.org/pdf/1609.08144.pdf
I Byte-Pair Encoding:

https://arxiv.org/pdf/1508.07909.pdf
I Sentencepiece:

https://www.aclweb.org/anthology/D18-2012.pdf

Karl Stratos CS 533: Natural Language Processing 34/40

https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1508.07909.pdf
https://www.aclweb.org/anthology/D18-2012.pdf

Overview

Probability of a Sentence

n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation
Smoothing

Log-Linear Language Models

Karl Stratos CS 533: Natural Language Processing 35/40

Bashing n-Gram Models

I Model parameters: probabilities q(x′|x)
I Training requires constrained optimization

q∗ = arg max
q: q(x′|x)≥0 ∀x,x′∑

x′∈V q(x′|x)=1∀x

N∑
i=1

li+1∑
j=1

log q(xj |xj−1)

Though easy to solve, not clear how to develp more complex
functions

I Brittle: function of raw n-gram identities
I Generalizing to unseen n-grams require explicit smoothing

(cumbersome)

Karl Stratos CS 533: Natural Language Processing 36/40

Feature Function

I Design a feature representation φ(x1 . . . xn) ∈ Rd of any
n-gram x1 . . . xn ∈ V n

I For example,

φ(dog saw) = (0, 0, 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 0)

might be a vector in {0, 1}|V |+|V |
2

indicating the presence of
unigrams “dog” and “saw” and also the bigram “dog saw”

Karl Stratos CS 533: Natural Language Processing 37/40

The Softmax Function

I Given any v ∈ RD, we define softmax(v) ∈ [0, 1]D to be a
vector such that

softmaxi(v) =
evi∑D
j=1 e

vj
∀i = 1 . . . D

I Check nonnegativity and normalization

I Softmax transforms any length-D vector into a distribution
over D items

Karl Stratos CS 533: Natural Language Processing 38/40

Log-Linear (n-Gram) Language Models

I Model parameter: w ∈ Rd

I Given x1 . . . xn−1, defines a conditional distribution over V by

q(x|x1 . . . xn−1;w) = softmaxx([w>φ(x1 . . . xn−1, x)]x∈V)

I Reason it’s called log-linear:

ln q(x|x1 . . . xn;w) = w>φ(x1 . . . xn−1, x)− ln
∑
x′∈V

ew
>φ(x1...xn−1,x′)

Karl Stratos CS 533: Natural Language Processing 39/40

Training: Unconstrained Optimization

I Assume N samples (x
(i)
1 . . . x

(i)
n , x(i)), find

w∗ = arg max
w∈R|V |×d

N∑
i=1

ln q(x(i)|x(i)
1 . . . x(i)

n ;w)︸ ︷︷ ︸
J(w)

I Unlike n-gram models, there is no closed-form solution for
maxw J(w)

I But actually this optimization problem is more “standard”
because we can just do gradient ascent

I It can be checked that J(w) is concave, so doing gradient
ascent will get us W ∗

Karl Stratos CS 533: Natural Language Processing 40/40

