CS 533: Natural Language Processing Introduction

Karl Stratos

Rutgers University

Modern Natural Language Processing (NLP)

NLP is everywhere

Other examples?

Karl Stratos

Short-Term Goals

Make machines understand human language

Countless applications: machine translation (MT), personal assistant, crucial component in any AI system (e.g., autonomous driving)

Karl Stratos

Long-Term Goals

Make machines as intelligent and conscious as humans (or more)

Some History

- ▶ 1950: Alan Turing proposes the Turing test
- ▶ 1954: Georgetown–IBM experiment (rule-based MT)

"Within three or five years, machine translation will be a solved problem"

- ► 50-90s: focus on rule-based AI systems (e.g., SHRDLU)
- ► From early 90s: Rise of statistical/data-driven NLP
 - IBM: statistical MT and speech recognition

"Every time I fire a linguist, the performance of the speech recognizer goes up" -Fred Jelinek

- UPenn/AT&T: statistical techniques for tagging and parsing
- > 2011: IBM Watson wins *Jeopardy*! against human champions
- From early 2010s: Rise of deep learning for NLP
 - "Human-level" MT: The Great A.I. Awakening (NYT, 2016)
 - "Human-level" conversation": Google Duplex (2018)

Reality

"Hey Siri, tell my wife I love her"

Why NLP is Hard: Ambiguity

Actual headline in Guardian (1982)

"British Left Waffles on Falklands"

Syntactic ambiguity

- Lexical ambiguity: Every single word
- Semantic ambiguity

CS 533: Natural Language Processing

Karl Stratos

7/10

Why NLP is Hard: Nonsmoothness

A single word can completely change the meaning

Jack Black Black Jack Black

Black Jack Black playing BlackJack

Jack Black Playing BlackJack with BlackJack Black

Why NLP is Hard: World Knolwedge

Winograd (1972)

The city councilmen refused the demonstrators a permit because they <u>feared</u> violence.

The city councilmen refused the demonstrators a permit because they <u>advocated</u> violence.

Course Topics

Language modeling

 $\mathit{n}\text{-}\mathsf{gram}$ models, log-linear models, neural language models (feedforward, recurrent)

Conditional language modeling

Attention-based models, translation, summarization

Text classification

Naive Bayes classifier

Structured prediction

Hidden Markov models, probabilistic context-free grammars

Unsupervised learning

Expectation maximization algorithm, variational autoencoders

Special topics on various applications

Information extraction, question answering, dialogue, grounding

(Subject to change)

Karl Stratos