
Your Title (simple, specific, and informative is enough; do not be vague or
general and do not try to sound catchy)

Team Member Name 1
netid1

Team Member Name 2
netid2

Abstract

Concisely summarize the sections below.1

1 Problem

Precisely define the problem and the scope to be
considered in the project. You need serious brain-
storming. Possible scenarios include: (1) you al-
ready have a legitimate research problem that you
want to work on for the project, (2) you can con-
sider combining one idea with another (that have
never been combined before), (3) you can find lit-
tle tweaks or other experiments not been done yet
in an existing work, (4) you choose a predefined
project (limited).

2 Goal

Define the specific goal/hypothesis of the project
(the more details the better).2 Good examples:

• Investigate a brand new exciting machine
learning model or algorithm recently proposed
at AISTATS, ICLR, ICML, NeurIPS, or UAI
that has never been applied to NLP before to
improve a specific and relevant NLP task over
existing baselines. Reasons this is good: tech-
nically challenging and not been done before.

• Reimplement a technically challenging NLP
paper from scratch and replicate its results
(ideally with additional exploration). This is
only an option if the paper does not have pub-
licly available code (e.g., on GitHub); we will
check and reject the project if we find out that
there is an implementation already available.

1The content is heavily adapted from the project guide-
line at Princeton: https://nlp.cs.princeton.edu/
cos484/projects.html.

2Even if you are doing a predefined project you must for-
mulate a goal in your own terms.

Reasons this is good: also technically chal-
lenging and provides a useful implementation
for people.

Bad examples:

• Use BERT for analyzing financial news (too
vague/generic, also not technically challeng-
ing)

• Improve machine translation (how?)

Some real-world examples (course projects at
Stanford): https://web.stanford.edu/class/

archive/cs/cs224n/cs224n.1174/reports.

html.

3 Achievability

Describe in detail how you will actually achieve
what you propose. Important considerations:

• Computing resources: do you have the com-
puting power (e.g., GPUs) to execute your
proposed experiments? How long does it take
to train the models?

• Availability of data: in general, do not try
to collect your own data. Significant time
investment (at your own risk).

• Code framework: Python > 3.6 with PyTorch
> 1.0 should be enough.

• You are learning a model, that is a func-
tion. What is your function (i.e., architecture)?
What is the input and output of the function?
What are the parameters of the model?

• Supervision setting: are you using labeled or
unlabeled data or both?

https://nlp.cs.princeton.edu/cos484/projects.html
https://nlp.cs.princeton.edu/cos484/projects.html
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports.html
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports.html
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports.html


4 Related Work

Do a thorough literature search. It is almost certain
that someone has attempted something identical
or similar before you. Start by Googling several
variants of keyword (e.g., “neural style transfer
NLP” and also “adapting models for different writ-
ing styles NLP”). It is okay if there is a similar
existing work, if what you propose has something
to add to it: but you must explain how your work
is distinguished from that work in what ways.

Doing a literature search is also a good way
to find an inspiration. For example take a look
at a pick of top 100 NLP papers: https://

github.com/mhagiwara/100-nlp-papers. Also
a list of state-of-the-art methods with code: https:
//paperswithcode.com/sota. These are all influ-
ential papers. You cannot just repeat them unless
you can justify as discussed above, but you can get
a sense of what good NLP papers are like and track
their recent followup works (see recent works that
cite them on Google Scholar).

5 Tips (no need to include this in
submission)

Clearly divide work between team members for
optimal progress. Start early and work on it ev-
ery 1-2 days rather than rush at the end. Set up
work flow asap: download data, verify data, set up
base code. Have running code and fully trained
baseline model by milestone. Have a clear, well-
defined hypothesis to be tested. Have meaningful
tables, plots to display the key results.

Types of projects. Not exhaustive

• Experiment with improving an architecture on
a predefined task

• Case study: Apply an architecture to a dataset
in the real world (that has not been done be-
fore)

• Compete in a predefined competition (Se-
mEval 2020, Kaggle, etc.)

• Stress test or comparison study of known mod-
els/architecture (e.g. when are RNNs better
than Transformers for task XYZ?)

• Design a novel NN layer, objective function,
optimizer, etc.

• Multi-modal tasks (RL + NLP, CV + NLP,
etc.)

• Visualization/interpretability study of deep
learning models

How to read papers. Do not read from start to
finish in order. Spend the majority of time focusing
on technical parts: deriving equations, verifying
theorems, reading numbers in a table and under-
standing empirical behaviors. Avoid spending too
much time reading text. Focusing on the abstract,
the technical section, and the experiments section
is usually enough; after that you can go to the in-
troduction and other sections. Of course if you are
not familiar with the problem at all and need to
understand motivations, you may need to read the
paper in order. You probably need to take multiple
careful readings to understand a dense paper. If the
paper has code available, checking the code is a
good way to verify details.

Scenarios to avoid.

• Data not available or hard to get access to,
which stalls progress

• All experiments run with prepackaged source,
no extra code written for model/data process-
ing

• Team starts late, only draft of code up by mile-
stone

• Just ran model once or twice on the data and
reported results (not much hyperparameter
search done)

• A few standard graphs: loss curves, accuracy,
without any analysis

• Results/Conclusion dont say much besides
that it didnt work (even if results are negative,
analyze them)

Milestone goals.

• Have code up and running

• Source of data explained correctly, along with
true train/test/val split

• Acknowledge what Github repo, or other code
you are basing off of

• Run baseline model and have results

• Brief discussion of initial, preliminary results

• Reasonable literature review (2+ related pa-
pers)

• 1-2 page progress report (not very formal)

https://github.com/mhagiwara/100-nlp-papers
https://github.com/mhagiwara/100-nlp-papers
https://paperswithcode.com/sota
https://paperswithcode.com/sota


What makes a good paper. A good paper is a
paper from which the reader “learns a lot”. While
simple, this is packed with significance. The reader
learns a lot because the paper proposes a refreshing,
creative, shockingly unexpected idea; because the
paper develops a technically daunting framework
(something not everyone is qualified to achieve)
and explains it in simple, approachable, yet rigor-
ous terms; because the paper executes an idea with
excellence and reveals nontrivial empirical find-
ings; because the paper analyzes its results post-
mortem thoroughly and insightfully.

A good paper becomes great if it achieves a com-
bination of these.


