
CS 533: Natural Language Processing (Due: 03/31/20)

Assignment 4

Instructor: Karl Stratos

• 3 problems: total 48 points (13 + 13 + 22)

• No collaboration

• Due by 11:59pm of the due date, no late submission accepted

• Use the provided LaTeX assignment template to write the answers. Upload the code as well.

Tip. For Problem 1 and 2, it will be easier to write a small program that computes all probabilties than to
manually calculate the probabilities in question.

Problem 1: HMM (1 + 6 + 6 = 13 points)

We consider a bigram HMM (o, t) that has emission probabilities o(x|y) for all word types x ∈ V and tag types
y ∈ Y and transition probabilities t(y′|y) for all y ∈ Y ∪ {∗} and y ∈ Y ∪ {STOP} where ∗ and STOP are special tags
for the beginning and the end of a sequence. It defines the probability of (x1 . . . xn, y1 . . . yn) ∈ V n×Yn by (letting
y0 = ∗)

p(x1 . . . xn, y1 . . . yn) = t(y1|∗)×

(
n∏
i=1

t(yi|yi−1)× o(xi|yi)

)
× t(STOP|yn)

1. Assume the following data of tagged sequences (x(1), y(1)), (x(2), y(2)), (x(3), y(3))

x(1) = the man saw the cut y(1) = D N V D N

x(2) = the saw cut the man y(2) = D N V D N

x(3) = the saw y(3) = N N

Write all nonzero MLE parameter values of (o, t) estimated from this corpus. In particular, what are the
nonzero emission probabilities for the word cut (i.e., possible tag types)?

2. Calculate the probability under the HMM that the third word is tagged with V conditioning on x(2) by running
the forward and backward algorithms. That is, calculate∑

(y1,y2,y3,y4,y5)∈Y5: y3=V

p(y1, y2, y3, y4, y5|the saw cut the man)

as a function of forward and backward probabilities. Round to 5 decimal places if necessary.

3. Similarly, calculate the probability that the fifth word is tagged with N conditioning on x(1):∑
(y1,y2,y3,y4,y5)∈Y5: y5=N

p(y1, y2, y3, y4, y5|the man saw the cut)

Problem 2: PCFG (1 + 6 + 6 = 13 points)

1

2

We consider a PCFG in CNF (u, b) that has unary rule probabilities u(X → x|X) for all nonterminal types X
and terminal types x and binary rule probabilities b(X → Y Z|X) for all nonterminal types X,Y, Z. It defines the
probability of the parse tree as a product of the probabilities of the rules occurred in the tree. For instance, the
first tree in the data described below is assigned the probability

u(D→ the|D)2 × u(D→ a|D)× u(N→ boy|N)× u(N→ man|N)× u(N→ telescope|N)× u(V→ saw|V)

× u(P→ with|P)× b(S→ NP VP|S)× b(NP→ D N|NP)3 × b(NP→ NP PP|NP)× b(PP→ P NP|PP)

× b(VP→ V NP|VP)

1. Assume the following data of 2 parses for sentence x = (the boy saw the man with a telescope):

S

NP

D

the

N

boy

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

telescope

S

NP

D

the

N

boy

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

telescope

Write all nonzero MLE parameter values of (u, b) estimated from this corpus.

2. Calculate the probability under the PCFG that NP spans (4, 8) (i.e., “the man with a telescope”) conditioning
on x by running the inside and outside algorithms. That is, calculate∑

τ∈GEN(x): root(τ,4,8)=NP

p(τ |x)

(where GEN(x) is the set of all possible parses and root(τ, i, j) is the nonterminal at the root of a subtree
spanning (i, j)) as a function of inside and outside probabilities.

3. Similarly, calculate the probability that VP spans (3, 5) (i.e., “saw the man”) conditioning on x∑
τ∈GEN(x): root(τ,3,5)=VP

p(τ |x)

Problem 3: Programming (CRF) (1 + 1 + 1 + 1 + 1 + 1 + 8 + 8 = 22 points)

You will implement the CRF inference layer in a tagger based on bi-directional LSTMs (BiLSTMs).1 As usual,
download the starter kit provided and follow the instructions below.

As a warmup, run python main.py /tmp/pos data/ptb-wsj-snippet --train --loss greedy --nochar.
This trains a BiLSTM greedy tagger without character-level information on a tiny POS tagging dataset in
which train/validation/test portions are the same. (When the word labels do not have the BIO format,
the code automatically sets the performance metric to be per-position accuracy.) Also run python main.py

/tmp/pos data/conll2003-snippet --train --loss greedy --nochar. This trains the tagger on a tiny
NER tagging dataset in which train/validation/test portions are the same. (When the word labels have the
BIO format, the code automatically sets the performance metric to be global F1.)

1Neural Architectures for Named Entity Recognition (Lample et al., 2016)

3

1. Take a look at tagged sequences in ptb-wsj-snippet/ and conll2003-snippet/ and the class TaggingDataset
and explain in your own words how the program organizes labeled sequences into batches. In particular: (1)
Why do we sort sequences by length? (2) When you set batch size N , does that mean every batch will contain
N sequences? (3) Is there any padding at the word sequence level? (4) How are characters organized? (5) Is
there any padding at the character sequence level?

2. Take a look at evaluate method in BiLSTMTagger and explain how output[‘acc’] and output[‘f1 <all>’]

are computed from ground-truth and predicted labeled sequences.

3. The greedy tagging loss is implemented for you in crf.py. Let (x(1), y(1)) . . . (x(N), y(N)) denote N labeled

sentences in a batch where x(i) ∈ V T and y(i) ∈ {1 . . . L}T . For i = 1 . . . N , let h(i) ∈ RT×L denote the output
of the BiLSTM layer given input x(i) ∈ V T representing label scores at T positions (i.e., scores[i]). Give a
precise formula for the greedy loss computed on this batch as a function of x(i), y(i), h(i).

4. You can make the tagger a function of characters by simply removing --nochar in the command. Explain how
character-level information is incorporated. In particular: (1) Given a word w ∈ V , how are its characters
c1 . . . c|w| ∈ C (C is the set of all character types) used to produce an embedding? (2) What is the final
dimension of a word representation to be fed into the BiLSTM layer which produces the label scores h ∈ RT×L
(as a function of wdim and cdim)?

5. Take a look at CRFLoss in crf.py. (1) What are the parameters of this layer? (2) Give a precise formula
for the single scalar score(h, y) computed by the layer in terms of the CRF parameters where h ∈ RT×L

is label scores for an input sequence and y ∈ {1 . . . L}T is a specific label sequence. This is implemented in
score targets. (3) What is the loss (computed in forward) as a function of the label sequence scores in (2)?

6. What quantities are compute normalizers brute and decode brute computing and how? What is the
computational complexity of these methods in terms of label set size L and sequence length T?

7. Forward algorithm. Implement compute normalizers with complexity O(|L|2 T) to compute the same
quantity computed by compute normalizers brute. The tensor prev ∈ RB×L contains the active part of the
conceptual B × T × L dynamic programming table, that is

prev[i][y] = log

 ∑
y1...yt−1

exp
(
score(x

(i)
1 . . . x

(i)
t , y1 . . . yt−1y)

)
where t = 1 . . . T is implicitly traversed (since we only need the information from t−1 to get t). You will have
to be careful with batch dimensions using commands like unsqueeze and expand. You will have to be careful
with details like the directionality of self.T: its value at index (y′, y) means score for y → y′ not y′ → y.
Do not introduce any for loops except for the one iterating over positions 1 . . . T . Use logsumexp. You have
to pass the test test compute normalizer in test crf.py to get any credits for this problem (run
python test crf.py). (In the reference implementation, each line is a one-liner.)

8. Viterbi algorithm. Implement decode with complexity O(|L|2 T) to compute the same quantity computed
by decode brute. The tensor prev ∈ RB×L contains the active part of the conceptual B × T × L dynamic
programming table, that is

prev[i][y] = max
y1...yt−1

score(x
(i)
1 . . . x

(i)
t , y1 . . . yt−1y)

where t = 1 . . . T is implicitly traversed (since we only need the information from t − 1 to get t). PyTorch’s
max operation will yield indices, which you will store in the list back for backtracking purposes. After the
main loop, you will backtrack from the final maximizers through back and store results into tape ∈ YB×T
(whose order will be reversed at return). Again be careful with dimensions/details and do not introduce any
for loops. You have to pass the test test decode in test crf.py to get any credits for this problem
(run python test crf.py). (In the reference implementation, each line is a one-liner.)

