
CS 533: Natural Language Processing (Due: 03/10/20)

Assignment 3

Instructor: Karl Stratos

• 3 problems: total 44 points (13 + 8 + 23)

• No collaboration

• Due by 11:59pm of the due date, no late submission accepted

• Use the provided LaTeX assignment template to write the answers. Upload the code as well.

Problem 1: Backpropagation ((1 + 1 + 3 + 1 + 1) + (1 + 1 + 4) = 13 points)

1. (Scalar-Valued Variables): Let x,w1, b1, w2, b2 ∈ R and define

z1 = w1x

z2 = z1 + b1

z3 = ReLU(z2) = max {0, z2}
z4 = w2z3

z5 = z4 + b2

Thus z5 = w2ReLU(w1x + b1) + b2 ∈ R is the output of a feedforward network with one nonlinear (ReLU)
layer in which all variables are scalars.

(a) Draw the corresponding computation graph with x,w1, b1, w2, b2 as the input nodes, z5 as the output
node, and ×/+/ReLU as internal node types (corresponding to multiplication, addition, and ReLU).

(b) Evaluate z5 with input values x = 1, w1 = 1/4, b1 = 0, w2 = 1/3, and b2 = 0 by running the forward
pass on the graph.

(c) Run backpropagation to calculate the gradient of z5 with respect to b2, w2, b1, w1, x evaluated at the
input values.

(d) Add the skip connection z6 = z5 + x and draw the resulting computation graph (with z6 as the output
node). Run the forward pass to evaluate z6 and backpropagation to calculate the gradient of z6 with
respect to b2, w2, b1, w1, x evaluated at the same input values. You only need to do two additional
computations (one in forward, one in backward) on top of what you have already done in the previous
problem.

(e) What does the gradient with respect to x say about the sensitivity of the function with x before (z5)
and after (z6) adding the skip connection?

2. (Vector-Valued Variables): Let x, b1, u ∈ R2, W ∈ R2×2, and b2 ∈ R; define

z1 = Wx

z2 = z1 + b1

z3 = ReLU(z2)

z4 = u>z3

z5 = z4 + b2

Thus z5 = u>ReLU(Wx+ b1) + b2 ∈ R.

1

2

(a) Draw the corresponding computation graph with x,W, b1, u, b2 as the input nodes, z5 as the output
node, and @/+/ReLU/· as internal node types (corresponding to matrix multiplication, vector addition,
elementwise ReLU, and dot product).

(b) Evaluate z5 with input values

x =

[
1
1

]
W =

[
−1 −1
1 1

]
b1 =

[
0
0

]
u =

[
1
1

]
b2 = 0

by running the forward pass on the graph.

(c) Run backpropagation to calculate the gradient of z5 with respect to b2, u, b1,W, x evaluated at the input
values. You may use Lemma 1 below.

Lemma 1 (Gradients of the Matrix Product). Let W = UV where W ∈ Rn×p, U ∈ Rn×m, and
V ∈ Rm×p. Let z ∈ R be a differentiable function of W . Assume z is a function of U and V only though
W .1 Let W ∈ Rn×p denote a matrix of partial derivatives W i,j = ∂z/∂Wi,j, similarly for U ∈ Rn×m

and V ∈ Rm×p. Then U = WV > and V = U>W .

Proof.

U i,j =
∂z

∂Ui,j
=
∑
k,l

∂z

∂Wk,l

∂Wk,l

∂Ui,j
=
∑
k,l

W k,l

{
Vj,l if k = i

0 otherwise
=
∑
l

W i,lVj,l

Problem 2: Self-Attention (4 + 4 = 8 points)

You will manually run the forward pass on a simplified Transformer encoder layer. This does not include important
details such as layer normalization and dropout. For full details check out the implementation The Annotated
Transformer.

The layer has H heads with parameters WQ
h ,W

K
h ,WV

h ∈ Rd/H×d for h = 1 . . . H and W ∈ Rd×d. It receives a
sequence of input vectors x1 . . . xT ∈ Rd and performs the following calculation for h = 1 . . . H:

qh,t = WQ
h xt ∀t = 1 . . . T

kh,t = WK
h xt ∀t = 1 . . . T

vh,t = WV
h xt ∀t = 1 . . . T

αt′|h,t = k>h,t′qh,t ∀t = 1 . . . T, t′ = 1 . . . T

(β1|h,t . . . βT |h,t) = softmax
(
α1|h,t . . . αT |h,t

)
∀t = 1 . . . T

ah,t =

T∑
t′=1

βt′|h,tvh,t′ ∀t = 1 . . . T

hh,t = ah,t + qh,t ∀t = 1 . . . T

We define the final representation corresponding to xt ∈ Rd to be

zt = W (h1,t ⊕ · · · ⊕ hH,t) ∈ Rd

where ⊕ mean the vector concatenation operation.

1. Let H = 2 and T = 2. Draw the underlying computation graph. Be as simple as possible, do not overly
complicate the picture. You may simplify things a bit by drawing connections directly between nodes and
hide the underlying functions (e.g., xt → qh,t). Be careful with the softmax function: it intertwines all
β1|h,t . . . βT |h,t with all α1|h,t . . . αT |h,t.

1This assumption is merely for simplicity. As usual in a computation graph, if U is used multiple times we can accrue the “local”
gradients to obtain the “global” gradient. For instance, if A = UB and z is a function of U through both W and A, then U =
WV > +AB>.

https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://nlp.seas.harvard.edu/2018/04/03/attention.html

3

2. Run the forward pass with the following input nodes (d = 2):

x1 =

[
1
2

]
x2 =

[
−1
3

]
WQ

1 =
[
1 0

]
WK

1 =
[
1 0

]
WV

1 =
[
1 0

]
W =

[
1 0
0 1

]
WQ

2 =
[
0 1

]
WK

2 =
[
0 1

]
WV

2 =
[
0 1

]

Problem 3: Programming (1 + 2 + (1 + 1 + 1) + (1 + 1 + 1) + 5 + 4 + 1 + 1 + 3 = 23 points)

As usual, download the starter kit provided and follow the instructions below.

BLEU. Pass the tests in test bleu.py by finishing the implementation of get ngram counts and compute bleu

in bleu.py (you can just type python test bleu.py to run the tests). We follow the standard practice de-
scribed here.

1. Implement get ngram counts. It receives a list of reference sentences r(1) . . . r(M), a hypothesis sentence h,
and an integer n. Let NGRAMS(h, n) denote the list of all n-grams in h. The function outputs a pair of
integers an, bn such that bn = max {1, |NGRAMS(h, n)|} (already implemented) and

an =
∑

(g,c)∈Counter(NGRAMS(h,n))

min

{
c,

M
max
j=1

#(g|r(j))
}

where (g, c) denotes an n-gram type g that appears c times in h, and #(g|r(j)) is the number of times g
appears in reference r(j).

2. Implement compute bleu. It receives (r(l,1) . . . r(l,Ml), h(l)) for l = 1 . . . N and computes

BLEU = min

{
1, exp

(
1− R

H

)}
×

(
4∏

n=1

pn

)1/4

where R =
∑N

l=1

∣∣r(l,j∗)∣∣ with j∗ = arg minMl
j=1

∣∣∣∣r(l,j)∣∣− ∣∣h(l)∣∣∣∣, H =
∑N

l=1

∣∣h(l)∣∣, and pn =
∑N

l=1 a(l)
n∑N

l=1 b
(l)
n

.

Input-feeding attention. For this part, we again train and test on the same data (!) for computational
reasons. Keep in mind that this is something you will never do in practice; reporting performance on the
training set is meaningless (i.e., for generalization purposes) except for checking the model’s ability to “fit
data”, which is what we do here.

3. Type python main.py --train to train an LSTM language model on data/train.txt and data/valid.txt.
The default command should yield perplexity 179.27 (or similar) after 10 epochs. Study how this is done by
tracking computation. You will see that the training corpus is organized as one matrix of parallel sequences
(Tlong × B where B is the batch size). Explain: (1) What does bptt (stands for “backpropagation through
time”) do? (2) In which function does the model compute the loss and calculate gradients? (3) How does the
model “carry over” the hidden state from the previous batch?

4. Type python main.py --train --cond --batch method translation to to train an LSTM language model
on data/train.txt and data/valid.txt where for each sentence the model conditions on the last hidden
state of the source sentence in data/src-train.txt and data/src-valid.txt. These source sentences are
actually the very same sentences the model is predicting! So we obviously expect the perplexity should go
down. The default command should yield perplexity 145.86 (or similar) after 10 epochs. Again, study how
this is done by tracking computation. You will see that the training corpus is now organized as bundles of
source-target sequences with padding. Explain: (1) In this case bptt is no loger used. Why? (2) In which
function does the model encode the source sentence? (3) In which function does the model condition on the
final encoding of the source sentence?

https://en.wikipedia.org/wiki/BLEU

4

5. Implement score in attention.py. It receives (batched) query vectors Q ∈ RB×T ′×d and key vectors
K ∈ RB×T×d and computes score matrix L ∈ RB×T ′×T where

L[l]i,j = Q[l]>i,:WK[l]j,: ∀l = 1 . . . B

where W ∈ Rd×d is a parameter of the model. Multiplying by W corresponds to feeding Q to the linear layer
already in the model (self.linear in), so do that. You should not use any for loops. You can do this using
torch.bmm (batched matrix multiplication, look it up). You will want to change/switch dimensions of the
input tensors efficiently by using view and transpose.

6. Implement Eq. (5) of Luong et al. (2015) in forward in attention.py. The ct is already given (assum-
ing score). The ht is just queries. The multiplication by Ws should be done by feeding (ct, ht) to
self.linear out already in the model. You will want to use torch.cat, view, torch.tanh to align di-
mensions correctly.

7. Pass the simple tests in test attention.py to check if you did the previous two problems correctly.

8. Type python main.py --train --cond --batch method translation --attn to train an LSTM language
model on data/train.txt and data/valid.txt where for each sentence the model conditions on the source
sentence in data/src-train.txt and data/src-valid.txt using input-feeding attention. The default com-
mand should yield perplexity 137.25 (or similar) after 10 epochs. Attach a screenshot of the training session.

9. Train the attention model to convergence (e.g., set epochs to 1000) to see how small the perplexity can get.
Examine the attention weights of the decoder Do they correspond to what you’d expect? If so, give one
illustrative example (e.g., [a/0.1, b/0.5, c/0.4], [a, b, c], b with the meaning that the attention weights at b (we
want to predict c) has a distribution (0.1, 0.5, 0.4) over (a, b, c)).

https://arxiv.org/pdf/1508.04025.pdf

