
CS 533: Natural Language Processing (Due: 02/18/20)

Assignment 2

Instructor: Karl Stratos

• 2 problems: total 30 points (40 with bonus) (18 (+10) + 12)

• No collaboration

• Due by 11:59pm of the due date, no late submission accepted

• Use the provided LaTeX assignment template to write the answers. Upload the code as well.

Problem 1: Log-Linear Models (2 + 2 + 2 + 2 + 4 + 2 + 2 + 2 (+10) = 18 (+10) points)

You will experiment with a log-linear language model (without BOS and EOS symbols for simplicity). Download
the starter kit provided. Use the same training and validation data from A1 (put them in data/ directory). The
files assignment2.py and util.py contain partially complete code. We will retain the convention from A1 and use
the top-10,000 vocab size under the NLTK tokenizer with lowercasing.

1. Take a look at extract features in util.py. Basic feature extractors are defined for your benefit. Imple-
ment basic features1 suffix3 that extracts features in basic features1 plus suffixes of length up to 3 of
window[-2]. You can ignore suffixes whose lengths exceed the length of the word. For example, given a window
[have, an, apple], we should get feature types that look like c-1s1=n∧w=apple and c-1s2=an∧w=apple.
Note that the feature string convention is unimportant.

2. Use 10% of the training data and 10% of the validation data (default) and report the number of feature types
you extract using basic features1, basic features1 suffix3, and basic features2. Note that we are
“cheating” by including features extracted from the validation data converted to indices in our cache so that
things are faster at evaluation.

3. Implement softmax, which gets a vector and returns the softmax transformation of the vector. For numerical
stability, use the following formula:

softmaxi(v) =
evi−vmax∑
j e
vj−vmax

where vmax = maxk vk. This way we prevent the exponential from exploding. Why is this the same as the
usual definition of softmax?

4. Implement compute probs. The cache self.fcache[window] contains precomputed feature indices corre-
sponding to the given window. The cache self.x2ys[tuple(x)] contains all words y that follow x seen in
the data. You must use these caches to speed up computation. Recall that the entry of the score vector q

corresponding to target word y is

[q]ind(y) = w>φ(x, y) =

d∑
i=1: φi(x,y)=1

wi

5. Implement the gradient update in do epoch. For computational reasons, the update must be sparse: you
should never iterate over all words or features, but only iterate over cached ones found in self.x2ys and
self.fcache.

1

2

6. If you implement the gradient update correctly you should be able to reduce the training loss relatively fast (for
10% of data). Try lr = {0.1, 0.5, 1, 2, 4, 8} with basic features1 and report the best validation perplexity
in 10 epochs. It should not be much larger than 150.

7. For your best model, report top-10 feature types that have been assigned the highest weight. What do they
mean?

8. For your best model, try 10 random seeds and report the mean and standard deviation of the validation
perplexities.

9. (Bonus): train your model using 100% of the training and validation data with your choice of features (you
may design different feature extractors, such as one including the suffixes and prefixes up to length 3) and
full hyperparameter tuning over the learning rate and seed. Report the best validation perplexity. You must
provide a command that we can simply type and reproduce your result. Top 3 students will get 10 extra
points on this assignment.

Problem 2: Feedforward Neural Language Model (2 + 2 + 2 + 2 + 2 + 2 = 12 points)

You will experiment with a simple feedforward neural language model. The file assignment2 nlm.py contains
partially complete code. Unfortunately, training large neural models is infeasible without GPUs. Hence the goal of
this problem is not to obtain state-of-the-art perplexity but to become familiar with fitting a neural model using
PyTorch. To this end, we will train and test on the same data, 10% of the validation data from A1, with
vocab size 1,000, and explore the model’s capacity to fit training data. This toy configuration is set as default
arguments. You will only need to play with wdim (word embedding dimension), hdim (hidden state dimension),
nlayers (number of layers), lr (learning rate), and possibly epochs (number of training epochs), B (batch size),
and seed (seed).

Most of the code is provided for you. Take a look at class FFLM. It has a word embedding dictionary self.E and
a feedforward layer self.FF. Examine class FF to see what options you can control in the layer. Given previous
words x = (x1, . . . , xn) (already converted to indices) the model defines a distribution over the next word as

pY |X(y|x) = softmaxy

FF

Ex1

...
Exn

1. Define self.FF with correct specifications. Only specify the input dimension, hidden state dimension, output
dimension, and number of layers.

2. Implement (batch-version) forward in FFLM. You’ll want to use view to get the correct shape. The logits
just mean values to be passed to softmax (or sigmoid), which can be directly used for predefined losses like
CrossEntropyLoss.

3. Explore the impact of the number of parameters in a linear model as follows. Set nlayers = 0. Fix all default
arguments except wdim, hdim, and lr. Thus you will train a linear layer using 3 previous words with batch
size 16 up to 10 epochs. Vary wdim = hdim (tie for simplicity) across {1, 5, 10, 100, 200} and for each choice
optimize over lr = 0.00001, 0.00003, 0.0001, 0.0003, 0.001. Report the optimized perplexity (y-axis) at each
dimension (x-axis).

4. Repeat the previous exercise with nlayers = 1. Thus you will train a feedfoward network with 1 ReLU
hidden layer in otherwise the same setting.

5. You will see that adding nonlinearity doesn’t automatically make training loss smaller given the same number
of epochs. One hypothesis is that it takes more updates for bigger models to converge, but when they do
they can achieve a smaller training loss. Verify or refute this hypothesis by running the linear and nonlinear
models to convergence (e.g., set epochs = 1000) using wdim = hdim = 30 and your optimized learning rates
from the previous exercises.

6. The code also prints nearest neighbors of trained word embeddings (in cosine similarity). Explore these
neighbors. Do they always/sometimes/never make sense? What do you think is the reason?

https://pytorch.org/docs/stable/nn.html

