
CS 533: Natural Language Processing (Due: 02/04/20)

Assignment 1

Instructor: Karl Stratos

• 3 problems: total 32 points (11 + 9 + 12)

• No collaboration

• Due by 11:59pm of the due date, no late submission accepted

• Use the provided LaTeX assignment template to write the answers. Upload the code as well.

Problem 1: Preliminaries ((1+1+1+1) + (1+1+1+1) + (1+1+1) = 11 points)

1. (Probability): The expected value of a scalar discrete random variable X ∈ X (X is the set of all possible
values that X can take) with a distribution pX is defined as

E [X] = E
x∼pX

[x] :=
∑
x∈X

pX(x)x

We will write E [X] when it’s clear which distribution the expectation is with respect to, and add x ∼ pX when
we want to make it explicit. E [X] is also called the mean of pX and denoted as µX ∈ R. The variance of
pX is defined as var (X) := E

[
(X − µX)2

]
. For this problem only, we will assume log base 2 (i.e., log 2 = 1).1

The entropy of pX is defined as

H(pX) := E
x∼pX

[− log pX(x)]

Note that if there is an element x ∈ X with probability zero, the log term in entropy diverges (i.e., log 0 is
undefined). An important convention in calculating entropy is to ignore such elements by treating 0 log 0 as
zero. For instance, if X = {1, 2, 3} and pX(1) = pX(3) = 0.5 and pX(2) = 0, we have H(pX) = 1.

Entropy is a special case of cross entropy. The cross entropy between pX and qX where qX is also some
distribution over X is defined as

H(pX , qX) := E
x∼pX

[− log qX(x)] = −
∑
x∈X

pX(x) log qX(x)

We will use the following convention about zero probabilities for cross entropy: we still treat 0 log 0 as zero,
but we treat C log 0 as −∞ where C > 0. Clearly H(pX) = H(pX , pX). In fact, H(pX , qX) ≥ H(pX) for all
qX with equality iff qX = pX .2

(a) Use the linearity of expectation to show that var (X) = E
[
X2
]
− µ2

X .

(b) Let X represent the outcome of a fair six-sided die (thus X = {1 . . . 6}). Calculate the mean, variance,
and entropy of pX (round off to two decimal places).

(c) Suppose we make the die biased so that it always yields X = 6. Calculate the mean, variance, and
entropy of pX (round off to two decimal places).

1Caution: on Google you have to type log2 to use log base 2.
2This can be easily seen from the nonnegativity of the KL divergence DKL(pX ||qX) = H(pX , qX)−H(pX) ≥ 0.

1

2

(d) Let pX denote the distribution of a fair six-sided die again. Let Cat((pi)
n
i=1) denote a categorical

distribution with probabilities p1 . . . pn. Calculate

H

(
pX ,Cat

(
1

2
, 0, 0, 0,

1

2
, 0

))
=

H

(
pX ,Cat

(
1

5
,

1

5
,

1

5
,

1

5
,

1

10
,

1

10

))
=

H

(
pX ,Cat

(
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6

))
=

2. (Linear Algebra) Calculate the following matrix products, or write invalid if not possible.

[
1 −1

] [1
4

]
=

1 4
2 5
3 6

> 0 1 1 −1
2 2 1 −2
3 0 0 1

 =

395 −773 171 597 36
777 888 −999 100 1
−18 −2 −35 53 99
587 11 236 71 316
391 7 35 128 6

0
1
0
1
0

 =

1 4
2 5
3 6

0 1 1 −1
2 2 1 −2
3 0 0 1

> =

3. (Optimization)

(a) Solve the following unconstrained minimization problems. Write −∞ if necessary.

arg min
x∈R

1

2
(x− 3)

2
+ 2 = (1)

arg min
x∈R

1

3
(x− 3)

3
+ 2 = (2)

(b) Calculate the derivative and the second derivative of (1) and justify your answer in 3a.

(c) Calculate the derivative and the second derivative of (2) and justify your answer in 3a.

Problem 2: n-Gram Models (4 + (2+1+1+1) = 9 points)

1. (Relative Frequency Lemma): We will prove the following useful lemma:

Lemma 1. Let [n] = {1 . . . n} and ∆n−1 =
{
q ∈ Rn : q ≥ 0,

∑
i∈[n] qi = 1

}
. Let ci ≥ 0 be a nonnegative

scalar associated with each i ∈ [n] and assume N =
∑
i∈[n] ci > 0. Define

q∗ = arg max
q∈Ω

∑
i∈[n]

ci log qi (3)

Then q∗i = ci/N for each i ∈ [n].

The Lagrangian relaxation of the constrained objective (3) is

min
λ∈R

max
q∈Rn

∑
i∈[n]

ci log qi − λ

1−
∑
i∈[n]

qi

 (4)

Intuitively, q is normalized in any finite solution of this unconstrained formulation because otherwise the ob-
jective is made infinitely small by taking λ→∞ (or λ→ −∞). Note that we do not enforce the nonnegativity
constraints because they are automatically satisfied in the maximization problem.

3

(a) Since
∑
i∈[n] ci log qi is concave, by the usual theory of convex programming the unique solution of (3)

is given by the stationary point (q, λ) in (4) satisfying

δ

δλ

∑
i∈[n]

ci log qi − λ

1−
∑
i∈[n]

qi

 = 0

δ

δqj

∑
i∈[n]

ci log qi − λ

1−
∑
i∈[n]

qi

 = 0 ∀j ∈ [n]

Solve the system and thereby prove Lemma 1.

2. (Maximum Likelihood Estimation (MLE) of the Trigram Language Model): A language model
qX defines a distribution over possible sentences. A sentence is a finite sequence of words x ∈ V + where V
is a finite discrete set (aka. the vocabulary). Given an unknown but samplable “true” distribution pX over
sentences, we define an MLE qMLE

X as a model that maximizes the expected log likelihood, or equivalently
minimizes the cross entropy between pX and qX ,

qMLE
X = arg max

qX∈Θ
E

x∼pX
[log qX(x)] = arg min

qX∈Θ
H(pX , qX) (5)

where Θ denotes the considered model space. By the usual property of cross entropy, if pX ∈ Θ then
qMLE
X = pX . In practice, given samples x(1) . . . x(N) drawn iid from pX (aka. a corpus) we calculate an

empirical estimate of (5) by

q̂MLE
X = arg max

qX∈Θ

1

N

N∑
i=1

log qX

(
x(i)
)

(6)

A trigram language model defines for each sentence x = (x1 . . . xM) ∈ VM , M ≥ 1, the following proba-
bility

t(x1 . . . xM) =

M+1∏
j=1

t(xj |xj−2, xj−1) (7)

where x−1 = x0 = BOS are a special symbol denoting the beginning of a sentence, and xM+1 = EOS is a
special symbol denoting the end of a sentence (we assume this convention for a sentence of any length). The
model space is Θ = {t(·|x, x′) ∈ ∆ : x, x′ ∈ V ∪ {BOS}} where ∆ denotes a distribution over V ∪ {EOS}.

(a) Given x(1) . . . x(N) drawn iid from pX , define for all x, x′, x′′ ∈ V ∪ {BOS} ∪ {EOS}

#(x, x′, x′′) =

N∑
i=1

|x(i)|+1∑
j=1

[[(
x

(i)
j−2 = x

)
∧
(
x

(i)
j−1 = x′

)
∧
(
x

(i)
j = x′′

)]]
where [[S]] is 1 if S is true and 0 otherwise; also define #(x, x′) =

∑
x′′ #(x, x′, x′′). Use Lemma 1 to

show that an empirical MLE (6) of the trigram language model (7) is

t̂MLE(x′′|x, x′) =
#(x, x′, x′′)

#(x, x′)
∀x, x′ ∈ V ∪ {BOS} : #(x, x′) > 0

∀x′′ ∈ V ∪ {EOS}

(b) Assume x(1), x(2), x(3) ∼ pX where

x(1) = the dog ignored the cat

x(2) = the cat ate the mouse

x(3) = the mouse screamed

Write all nonzero MLE parameter values t̂MLE(x′′|x, x′) estimated from this corpus.

4

(c) What is the perplexity of the model in 2b on the corpus in 2b (in nats, i.e., log base e)?

(d) What is the perplexity of the model in 2b on the following corpus

x(1) = the dog ignored the cat

x(2) = the cat ate the mouse

x(3) = the dog screamed

(in nats, i.e., log base e)?

Problem 3: Programming (2 + 1 + 1 + 1 + 2 + 1 + 3 + 1 = 12 points)

Acknowledgement. This problem is heavily adapted from A1 of COS 484 at Princeton, designed by Danqi Chen
and Karthik Narasimhan.

You will experiment with a bigram language model (without BOS and EOS symbols for simplicity) with smoothing.
Download the starter kit provided. The directory data/ contains a text corpus extracted from Gigaword for training
and validation. The files assignment1.py and util.py contain partially complete code. You are recommended to
use Python version 3: download all necessary packages using the pip command and virtual environments.

1. Implement count ngrams in Tokenizer. There is a basic test that checks for correctness.

2. Explore different choices of the tokenizer (basic, nltk, wp, bpe) by examining top-k most frequent uni-
grams/bigrams/trigrams (you can use show ngram information). For each choice, report the vocabulary
size (using all training data and without thresholding, e.g., set --vocab 99999999).

3. Use the nltk tokenizer to plot the top-100 most frequent unigrams (see the --figure flag). Paste the resulting
figure here. Does Zipf’s law seem to hold (approximately)?

For the questions below, use the nltk tokenizer and vocab size 10,000 (default).

4. Train and test the basic bigram model by running assignment1.py. What is the training and validation
perplexity? Why do you get that validation perplexity?

5. Implement Laplace smoothing

q̂α(x′|x) =
#(x, x′) + α

#(x) + α |V |
There is a basic test that checks for correct normalization. Plot the perplexity on both train and validation
sets as a function of α (with values 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10) and explain what you observe.
Explain why this fixes the issue with the validation perplexity in 4.

6. Fix α = 0.01. Vary the fraction of training data used (in increments of 10% from 10% to 100%) using the
--train fraction flag. Plot the train and test perplexities across this variation. Do the curves match your
intuition?

7. Implement interpolation smoothing

q̃α,β(x′|x) = βq̂α(x′|x) + (1− β)q̂α(x′)

where each q̂α is a Laplace-smoothed distribution. There is a basic test that checks for correct normalization.
Fix α = 0.01 and plot the perplexity on both train and validation sets as a function of β (with values in
increments of 0.1 from 0.1 to 0.9) and explain what you observe.

8. Report the best validation perplexity after exploring these choices. It should not be larger than 200 nats.

Important: For all your programming exercises, only add necessary parts to answer the questions without
modifying anything else (e.g., the command line options) or creaing any new file. Make sure your code runs
as expected before uploading. For example, the following commands should work:
python assignment1.py

python assignment1.py --quiet --smoothing laplace --alpha 0.01

python assignment1.py --quiet --smoothing interpolation --alpha 0.01 --beta 0.8

https://docs.python.org/3/tutorial/venv.html

