
Speculative Decoding

Karl Stratos

1 Speculative Sampling

Let p be a distribution over x ∈ X . Let q ̸= p be a proposal distribution. We want to design a “speculative”
distribution s that (i) first samples x ∼ q, (ii) accepts or rejects x, and (iii) re-samples x in the case of reject, such
that s = p. We want to accept x ∼ q as frequently as possible (e.g., a bad solution is to always reject and resample
x ∼ p). By the generative process, the probability that s assigns on each x ∈ X is

s(x) = Pr (x is accepted)× q(x) + Pr (some sample from q is rejected)× µ(x)

where µ is a re-sampling distribution. By the constraint s(x) = p(x), µ is uniquely identified by

µ(x) ∝ p(x)− Pr (x is accepted)× q(x) (1)

A reasonable policy is to accept x ∼ q iff p(x) ≥ q(x), but it rejects all x such that p(x) < q(x). To do better,

we can stochastically accept such x with probability p(x)
q(x) < 1. Then Pr (x is accepted) = min(1, p(x)

q(x)) and (1) is

simplified as

µ(x) ∝ max(p(x)− q(x), 0)

In summary, we may sample x ∼ p through q as follows:

Input: p, q over X
Output: x ∼ p

1. Sample x ∼ q.

2. Sample z ∼ Ber(min(1, p(x)
q(x)

)).

3. If z = 1, return x.

4. For each y ∈ X , set µ(y)← max(p(y)− q(y), 0). Renormalize µ.

5. Return x ∼ µ.

1.1 Speculative Decoding

Concurrent works [3, 2] proposed an autoregressive extension for fast sampling from a language model.

Input: p, q over X+, length T
Output: autoregressive sampling x1 . . . xL ∼ p for some 1 ≤ L ≤ T + 1

1. Sample x1 . . . xT ∼ q autoregressively.

2. Compute p(xt|x<t) for all t in parallel (by causal masking).

3. Sample zt ∼ Ber(min(1, p(xt|x<t)
q(xt|x<t)

)) for all t in parallel.

4. If zt = 1 for all t, return x1 . . . xT and xT+1 ∼ p(·|x≤T).

5. Let n← min {1 ≤ t ≤ T : zt = 0}.
6. For each y ∈ X , set µ(y)← max(p(y|x<n)− q(y|x<n), 0). Renormalize µ.

7. Return x1 . . . xn and xn+1 ∼ µ.

Here, p is a language model possibly conditioned on some context and q is a small “draft” language model (also
conditioned on the same context). The key ideas are (i) we can compute p’s probabilities for all autoregressively
generated tokens from q in one shot (Step 2) and (ii) we can retain all consecutively accepted tokens without loss
of correctness (Step 5). These ideas have previously been used for greedy decoding [6] (Appendix A).

1

1.1.1 Length analysis

The acceptance probabilities across steps are dependent random variables: βt = Ex∼q(·|x<t)[min(1, p(x|x<t)
q(x|x<t)

)] =∑
x∈X min(q(x|x<t), p(x|x<t)) where x1 . . . xT ∼ q. For analysis, however, assume that they are are iid (e.g., p, q

are unigram language models) and set β as their mean. Then L is a capped geometric variable with success
probability 1− β and max length T + 1. We have1

E [L] =
1− βT+1

1− β

For instance, if we accept at each step with probability β = 0.8 and set T = 10, we can expect to generate > 4
tokens in a single step of speculative decoding.

2 Iterative Speculative Sampling

We can do speculative sampling iteratively. Let p, q, q′ be distributions over X . If

p(x) = Pr (x is accepted)× q(x) + Pr (some sample from q is rejected)× µ(x)

we can again independently reparameterize

µ(x) = Pr (x is accepted)× q′(x) + Pr (some sample from q′ is rejected)× µ′(x)

Here is an iterative version of speculative sampling in Section 1. We sample from a proposal distribution K times
before resorting to p. Note that we do not require qk ̸= qk′ .

Input: p, q1 . . . qK over X
Output: x ∼ p

1. p0 ← p

2. For k = 1 . . .K:

(a) Sample x ∼ qk.

(b) Sample z ∼ Ber(min(1,
pk−1(x)

qk(x)
)).

(c) If z = 1, return x.

(d) For each y ∈ X , set pk(y)← max(pk−1(y)− qk(y), 0). Renormalize pk.

3. Return x ∼ pK .

2.1 SpecInfer

SpecInfer [4] trains K draft models q1 . . . qK to cover the top predictions of p.2 Given any context, they generate K
drafts of length T in parallel. We can economically compute all of p’s conditional distributions by “tree attention”:
pack the drafts into a prefix tree and perform tree masking on tokens ordered by depth-first search. An example
with K = 4 drafts of length T = 2 with context (a, b) ∈ X 2 is

t -1 0 1 2

x(1) a b c e
x(2) a b c f
x(3) a b d g
x(4) a b d h

a

b

c d

e f g h



a b c e f d g h

a 0 1 1 1 1 1 1 1
b 0 0 1 1 1 1 1 1
c 0 0 0 1 1 1 1 1
e 0 0 0 0 1 1 1 1
f 0 0 0 1 0 1 1 1
d 0 0 1 1 1 0 1 1
g 0 0 1 1 1 0 0 1
h 0 0 1 1 1 0 1 0


We can run the model on (a, b, c, e, f, d, g, h) (where the hidden states of a, b are in the KV cache) with tree masking

to compute p(·|x(k)
≤t) for all k = 1, 2, 3, 4 and t = 0, 1, 2. This involves fewer tokens than batched causal masking.

1Deriving this formula requires a nontrivial analysis of E [L] =
∑T+1

t=1 (1− β)βt−1t.
2Specifically, they are trained in sequence where the k-th dataset excludes examples such that p and any previous q1 . . . qk−1 predict

the same output.

2

Input: p, q1 . . . qK over X+, context u = (u−M . . . u0), length T
Output: autoregressive sampling x1 . . . xL ∼ p(·|u) for some 1 ≤ L ≤ T + 1

1. For all k in parallel: sample x
(k)
1 . . . x

(k)
T ∼ qk(·|u) autoregressively. Denote x

(k)
j = uj for j = −M . . . 0.

2. Build a prefix tree and run the tree attention. Let ν0 denote the node corresponding to u0, whose t-th
descendent ν has ν.x = x

(k)
t , ν.q = qk(·|x(k)

<t), and ν.p = p(·|x(k)
≤t) for some k.

3. ν ← ν0, V ← []

4. While ν is not a leaf node:

(a) For each child γ of ν in random order:

i. Sample z ∼ Ber(min(1, ν.p(γ.x)
γ.q(γ.x)

)).

ii. If z = 1, set V ← V + [γ.x], ν ← γ, and continue Loop 4.

iii. Else, update ν.p(y) ∝ max(ν.p(y)− γ.q(y), 0).

(b) Go to Step 5.

5. Sample x ∼ ν.p and return V ← V + [x].

Correctness: At any point, V is some valid partial draft(s). The children of ν are valid continuations from some
proposal distributions. We apply the iterative speculative sampling to get another valid V .

3 Draft Models

The draft model must be both fast and similar to the main model. For instance, we may use a small model in a
family of pretrained models to draft for a big one (e.g., 8B for 70B Llama-3). To avoid running multiple models,
many works consider making the main model draft for itself. In particular, it can be trained to predict several
future tokens in parallel (aka. semi-autoregressive). A simple example is PaSS [5] which trains T “look-ahead”
embeddings [LA]1 . . . [LA]T by masking the last T tokens of any observed sequence x1 . . . xm, xm+1 . . . xm+T+1 ∈ X
and maximizing the likelihood p(xm+t|x1 . . . xm, [LA]<t). At test time, it appends [LA]1 . . . [LA]T to any context
x1 . . . xm and samples the next T + 1 tokens xm+1 . . . xm+T+1 in parallel. These tokens are verified as usual by
treating the look-ahead conditional as a proposal distribution, i.e., for t = 1 . . . T + 1, sample

zt ∼ Ber

(
min

(
1,

p(xm+t|x1 . . . xm, xm+1 . . . xm+t−1)

p(xm+t|x1 . . . xm, [LA]1 . . . [LA]t−1)
=:

P (xm+t)

Q(xm+t)

))
and accept xm+t if zt = 1, else re-sample xm+t from a renormalized distribution ∝ max(P (·)−Q(·), 0) and return
xm+1 . . . xm+t. Blockwise parallel decoding trains T separate decoding layers [6]. Medusa [1] combines these
techniques to optimize performance. It trains five additional decoding layers to sample the next six tokens in
parallel, then verifies a promising subset of speculated sequences with the tree attention on a top-k prefix tree. It
also proposes fine-tuning the backbone model itself in addition to the decoding layers (Medusa-2), which further
increases the inference speed at the cost of changing the original model.

References

[1] Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D., and Dao, T. (2024). Medusa: Simple llm inference
acceleration framework with multiple decoding heads. arXiv preprint arXiv:2401.10774 .

[2] Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre, L., and Jumper, J. (2023). Accelerating large language
model decoding with speculative sampling. arXiv preprint arXiv:2302.01318 .

[3] Leviathan, Y., Kalman, M., and Matias, Y. (2023). Fast inference from transformers via speculative decoding.
In International Conference on Machine Learning , pages 19274–19286. PMLR.

[4] Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi, X.,
Shi, C., Chen, Z., Arfeen, D., Abhyankar, R., and Jia, Z. (2024). Specinfer: Accelerating large language model
serving with tree-based speculative inference and verification. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3 , ASPLOS
’24, page 932–949, New York, NY, USA. Association for Computing Machinery.

[5] Monea, G., Joulin, A., and Grave, E. (2023). Pass: Parallel speculative sampling. arXiv preprint
arXiv:2311.13581 .

3

[6] Stern, M., Shazeer, N., and Uszkoreit, J. (2018). Blockwise parallel decoding for deep autoregressive models.
Advances in Neural Information Processing Systems, 31.

A Greedy Speculative Decoding

By (x1 . . . xT) ← Greedy(p), we mean autoregressively predicting xt = argmaxx∈X p(x|x<t). Here is a greedy
version of the speculative decoding in Section 1.1.

Input: p over X+, speculated sequence x1 . . . xT ∈ X
Output: (x1 . . . xL)← Greedy(p) for some 1 ≤ L ≤ T + 1

1. Predict yt ← argmaxy∈X p(y|x<t) for all 1 ≤ t ≤ T + 1 in parallel (by causal masking).

2. If yt = xt for all 1 ≤ t ≤ T , return (x1 . . . xT , yT+1).

3. Let n← min {1 ≤ t ≤ T : yt ̸= xt}.
4. Return (x1 . . . xn, yn+1).

A naive extension to multiple speculated sequences is straightforward: we do the above procedure in parallel by
batching, and pick the longest output. Alternatively, we can again use the tree attention in Section 2.1 to perform
greedy decoding more economically:

Input: p over X+, K speculated sequences x(1) . . . x(K) with a shared context x
(k)
j = uj for j = −M . . . 0

Output: (x1 . . . xL)← Greedy(p(·|u−M . . . u0)) for some 1 ≤ L ≤ T + 1

1. Build a prefix tree from x(1) . . . x(K) and run the tree attention. Let ν0 denote the node corresponding
to u0, whose t-th descendent ν has ν.x = x

(k)
t and ν.y = argmaxy∈X p(y|x(k)

≤t) for some k.

2. ν ← ν0, V ← []

3. While ν is not a leaf node:

(a) If some child γ of ν satisfies γ.x = ν.y: V ← V + [γ.x], ν ← γ, continue Loop 3.

(b) Go to Step 4.

4. Return V ← V + [ν.x].

Committing to some child at each node actually finds the longest accepted sequence because p’s greedy decoding
is deterministic given the same context. Thus at any node in the prefix tree, there is only one acceptable child or
none. See the example below.

a b (d) c (e) e (q)
a b (d) c (e) f (l)
a b (d) d (g) g (k)
a b (d) d (g) h (m)

a

b d

c d g

e f g k h

V = [d, g, k]

4

	Speculative Sampling
	Speculative Decoding
	Length analysis

	Iterative Speculative Sampling
	SpecInfer

	Draft Models
	Greedy Speculative Decoding

