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1 Sinusoidal Embedding

An absolute position embedding E : N0 → Rd maps any position t ≥ 0 to a vector E(t) ∈ Rd. A “good”
embedding should satisfy properties like

1. Well-behaved output values (e.g., have bounded variance)

2. E(t) ̸= E(t′) for all t ̸= t′

3. Holding k fixed, E(t + k) has the same relationship with E(t) for all t.

Property 3 is useful because if a model only uses pairwise positions, it allows for generalization to unseen positions.

1.1 Case d = 2

The transformer paper [2] proposed a sinusoidal embedding defined as

E(t) :=

[
sin(t)
cos(t)

]
(1)

See Appendix A for a review of trigonometry. We see that

1. The output values oscillate between −1 and 1 with frequency 1
2π .

2. Sine and cosine have period 2π which is irrational, so E(0), E(1), . . . will never repeat.

3. Holding k fixed, E(t + k) = AkE(t) for all t where Ak ∈ R2×2 is some matrix (8).

1.2 Case d = 2M

Assuming M frequency multipliers σ1 . . . σM , define E : N0 → [−1, 1]2M by E(t) = (E1(t) . . . EM (t)) where

El(t) =

[
sin(σlt)
cos(σlt)

]
(2)

which is an independent sinusoidal embedding like (1) but with frequency σl

2π . Clearly E(t) ∈ Rd is still a “good”
embedding, with E(t + k) = BkE(t) for some block diagonal matrix Bk ∈ Rd×d. The multipliers are typically

chosen to decay geometrically as β
l−1
M for some 0 < β < 1, that is

σ1 = 1 > σ2 = β
1
M > σ3 = β

2
M > · · · > σM = β

M−1
M > β (3)

(popularly β = 0.0001). Intuitively, the different frequencies can capture different types of relative distance (e.g.,
long vs short).

2 Rotary Position Embeddings (RoPE)

A relative position embedding E : Rd × N0 → Rd maps vectors q, k ∈ Rd at positions t, t′ ≥ 0 to new vectors
E(q, t), E(k, t′) ∈ Rd satisfying

⟨E(q, t), E(k, t′)⟩ = F (t′ − t) (4)

where F : Z → R is some function. The goal is to make pairwise inner products sensitive to relative distances.
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2.1 Case d = 2

RoPE [1] proposes to rotate q, k ∈ R2 by t, t′ ∈ N0 radians. This achieves (4) since the resulting inner product
corresponds to a rotation by t′ − t radians. Mathematically, recall the Θ-radian counterclockwise rotation matrix

RΘ =

[
cos Θ − sin Θ
sin Θ cos Θ

]
(5)

Define E(u, t) := Rtu. Since the rotation matrix is orthogonal,

⟨E(q, t), E(k, t′)⟩ = q⊤R⊤
t Rt′k

= q⊤Rt′−tk

= ⟨q, k⟩ cos(t′ − t) + (q2k1 − q1k2) sin(t′ − t)

which is a periodic function of t′ − t. Note that the rotation cancels if t = t′.

2.1.1 Complex plane

By the usual correspondence between R2 and C (Appendix B), we can compute RoPE using complex numbers. Let
z = C(q) ∈ C and z′ = C(k) ∈ C denote the complex identities of q, k ∈ R2, specifically

z = q1 + q2i = ||q|| eθi (θ is the angle of q ∈ R2)

z′ = k1 + k2i = ||k|| eϕi (ϕ is the angle of k ∈ R2)

Rotating by t radians in R2 is the same as multiplying with cis eti in C, so we define:

EC(z, t) := zeti

We can recover the real-valued RoPE embedding and their inner product as

E(q, t) = C−1(EC(z, t))

E(k, t′) = C−1(EC(z′, t′))

⟨E(q, t), E(k, t′)⟩ =
〈
C−1(EC(z, t)), C−1(EC(z′, t′))

〉
= Re(⟨EC(z, t), EC(z′, t′)⟩)

where ⟨EC(z, t), EC(z′, t′)⟩ = ⟨z, z′⟩ e(t′−t)i (Lemma C.1). The following code verifies the claim numerically:

from torch import manual_seed, randn, rand, pi, tensor, view_as_complex, view_as_real, polar, dot, conj

def rotate_R2(x, angle): return tensor([[angle.cos(), -angle.sin()], [angle.sin(), angle.cos()]]) @ x

def rotate_C1(z, angle): return z * polar(tensor(1.), angle)[0]

def inner(z1, z2): return z1 * conj(z2) # == torch.vdot(tensor([z2]), tensor([z1]))

manual_seed(0)

q, k = randn(2), randn(2) # [1.5410, -0.2934], [-2.1788, 0.5684]

zq, zk = view_as_complex(q), view_as_complex(k) # 1.5410-0.2934j, -2.1788+0.5684j

t1, t2 = rand(1) * pi, rand(1) * pi # [1.4314], [1.9864]

q_t1, k_t2 = rotate_R2(q, t1), rotate_R2(k, t2) # [0.5047, 1.4853], [0.3597, -2.2228]

zq_t1, zk_t2 = rotate_C1(zq, t1), rotate_C1(zk, t2) # 0.5047+1.4853j, 0.3597-2.2228j

print(dot(q_t1, k_t2)) # -3.1199

print(dot(view_as_real(zq_t1), view_as_real(zk_t2))) # -3.1199

print(inner(zq_t1, zk_t2)) # -3.1199+1.6562j

print(rotate_C1(inner(zq, zk), t1 - t2)) # -3.1199+1.6562j

2.2 Case d = 2M

We can treat q, k ∈ R2M at positions t, t′ ≥ 0 as M pairs of 2-dimensional vectors q(l), k(l) ∈ R2 where q
(l)
1 = ql

and q
(l)
2 = qM+l (similarly for k(l)). Each pair is rotated independetly by σlt and σlt

′ radians where σl is a
“base degree”. Intuitively, σ1 . . . σM can capture different “speeds” at which the relative distance changes the
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inner product. RoPE uses the same geometric decay in the sinusoidal embedding (3), thus rotating q(l) ∈ R2 by

(0.00001)
l−1
M t and k(l) ∈ R2 by (0.00001)

l−1
M t′ radians (progressively smaller). Since

RΘu =

[
cos Θ − sin Θ
sin Θ cos Θ

] [
u1

u2

]
=

[
(cos Θ)u1 − (sin Θ)u2

(cos Θ)u2 + (sin Θ)u1

]
= cos Θ

[
u1

u2

]
+ sin Θ

[
−u2

u1

]
with σ = (1, (0.00001)

1
M , . . . , (0.00001)

M−1
M ) ∈ (0, 1]M we can compute the M rotations efficiently as

E(q, t) = (cos(tσ) ⊕ cos(tσ)) ⊙ q + (sin(tσ) ⊕ sin(tσ)) ⊙ (−q[M :] ⊕ q[: M ]) (6)

E(k, t′) = (cos(t′σ) ⊕ cos(t′σ)) ⊙ k + (sin(t′σ) ⊕ sin(t′σ)) ⊙ (−k[M :] ⊕ k[: M ])

where ⊕,⊙ are vector concatenation and elementwise multiplication. Even more simply, we can compute

E(q, t) = C−1(C(q) ⊙ cis(σ, t)) (7)

E(k, t′) = C−1(C(k) ⊙ cis(σ, t′))

where cisl(σ, t) := eσlti and C : CM → R2M is a bijection like (18). RoFormer (the RoPE paper), OpenLM, and
OLMo use (6) whereas Llama uses (7).

RoPE is considered one of the few modifications of the original transformer architecture (e.g., along with the layer
norm reordering and more nonlinear activation functions) whose improvement generalizes well across tasks.
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A Trigonometry

A function f is called periodic if it repeats after every P inputs. We call the smallest positive such P the period
(or wavelength) of f and 1

P as the frequency of f . Trigonometric functions, mapping the angle of a right triangle
θ (in radian) to a ratio of two sides, are naturally periodic. In particular, sine and cosine are bounded between -1
and 1, related as cos(θ) = sin(π

2 − θ), and have the period of 2π and frequency of 1
2π .
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If f(θ) has frequency F , then g(θ) = f(σθ) has frequency σF , for instance:
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Euler’s formula allows us to write [
sin(θ + θ′)
cos(θ + θ′)

]
=

[
cos(θ′) sin(θ′)
− sin(θ′) cos(θ′)

] [
sin(θ)
cos(θ)

]
(8)

B Complex Numbers

A complex number z = x1 +x2i ∈ C is parameterized by x ∈ R2 where i2 = −1. We can add/multiply z by another
complex number z′ = y1 + y2i as expected:

z + z′ := x1 + y1 + (x2 + y2)i (9)

zz′ := x1y1 − x2y2 + (x1y2 + x2y1)i (10)

Equipped with (9–10), C is a field and behaves like R (e.g., ensures an inverse). Let Re(a+bi) := a and Im(a+bi) :=
b denote extractors for the real and imaginary component.

B.1 Complex Plane

We have a bijection C : R2 → C where C((x1, x2)) = x1 + x2i and C−1(x1 + x2i) = (x1, x2). This allows us to view
a complex number as a point on a 2-dimensional plane called the complex plane. As usual, we can use either the
rectangular/Cartesian or polar coordinate system to characterize this plane. In the rectangular system, z = x1+x2i
is identified by a pair of coordinates (x1, x2). In the polar system, it is identified by its length ||x|| =

√
x2
1 + x2

2 and
angle θ = tan−1(x2

x1
).1 We can convert between the two forms by

z = x1 + x2i︸ ︷︷ ︸
rectangular form

= ||x|| cos θ + i ||x|| sin θ (since x1 = ||x|| cos θ and x2 = ||x|| sin θ)

= ||x|| (cos θ + i sin θ)

= ||x|| eθi︸ ︷︷ ︸
polar form

(Euler’s formula: eθi = cos θ + i sin θ)

1The inverse tangent needs to be more carefully defined to handle division by zero (e.g., atan2).
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The polar form is more suited for multiplication. The product of z = ||x|| eθi and z′ = ||y|| eϕi is

zz′ = ||x|| ||y|| e(θ+ϕ)i (11)

(11) and (10) have the same value, but (11) makes it clear that zz′ is obtained by adding the angles and multiplying
the lengths of z and z′ in the polar system. In particular, we can just rotate z ∈ C by Θ radians by multipying
with the complex exponential eΘi (sometimes called cis, “cos i sin”). For instance, multiplying by i corresponds to
90◦ counterclockwise rotation since i = e

π
2 i.

At this point, it is useful to define the complex conjugate of z = x1 + x2i as

z̄ = x1 − x2i

The conjugate operation has convenient properties (e.g., distributive, self-inverse). Geometrically in the complex
plane, z̄ is obtained by flipping z across the horizontal axis. Thus if z = ||x|| eθi in polar form, then z̄ = ||x|| e−θi.

B.2 Complex Inner Product

The real inner product between x, y ∈ R2 measures directional alignment:

⟨x, y⟩ = x1y1 + x2y2 = ||x|| ||y|| cos(θ − ϕ) (12)

where θ, ϕ are their angles on the plane. When viewed as complex numbers z = x1 + x2i and z′ = y1 + y2i, their
(1-dimensional) complex inner product ⟨·, ·⟩ : C× C → C is

⟨z, z′⟩ := zz̄′ (definition) (13)

= (x1y1 + x2y2) + (x2y1 − x1y2)i (expaned in rectangular form) (14)

= ||x|| ||y|| e(θ−ϕ)i (expanded in polar form) (15)

The use of complex conjugate has several consequences.

Consequence 1. It satisfies the three axioms of an inner product:

⟨z, z′⟩ = zz̄′ = z̄z′ = ⟨z′, z⟩ (conjugate symmetry)

⟨αz + βt, z′⟩ = (αz + βt)z̄′ = αzz̄′ + βtz̄′ = α ⟨z, z′⟩ + β ⟨t, z′⟩ (linearity in the first argument)

⟨z, z⟩ = x2
1 + x2

2 = ||x||2 ≥ 0 (positive semi-definite)

In particular, we have a real-valued induced norm ||z|| :=
√
⟨z, z⟩ ∈ R within C.

Consequence 2. It provides a connection between the real inner product between x, y ∈ R2 and the complex inner
product between their complex identities z, z′ ∈ C as follows:

⟨x, y⟩ = Re(⟨z, z′⟩) (16)

which follows immediately from (14).

Consequence 3. It gives a geometric meaning to the inner product. Expanding (15) with Euler’s formula we have

⟨z, z′⟩ = ||x|| ||y|| cos(θ − ϕ)︸ ︷︷ ︸
Re(⟨z,z′⟩)

+ ||x|| ||y|| sin(θ − ϕ)︸ ︷︷ ︸
Im(⟨z,z′⟩)

i (17)

where

• Re(⟨z, z′⟩): directional alignment between x, y (i.e., ⟨x, y⟩)

• Im(⟨z, z′⟩): signed area of parallelogram formed by x, y2

2Let L denote the shortest distance between x and the span of y. Since sin(θ − ϕ) = L
||x|| , ||x|| ||y|| sin(θ − ϕ) = L ||y||.
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B.2.1 Multi-dimensional complex inner product

The general d-dimensional complex inner product ⟨·, ·⟩ : Cd × Cd → C is defined as

⟨z, z′⟩ :=

d∑
j=1

zj z̄′j = (z′)Hz

where zj , z
′
j ∈ C are the j-th element of z, z′ ∈ Cd. The second expression alternatively uses the conjugate transpose,

treating z, z′ as d× 1 column vectors.3 The axioms of an inner product are obviously preserved. The connection to
the real counterpart is also preserved. Define a bijection C : R2d → Cd by

Cj(x) = xj + xd+ji (18)

(Other bijections, such as grouping by consecutive pairs, would equally work.) For x, y ∈ R2d with angles θ, ϕ in
the 2d-dimensional vector space, if z = C(x), z′ = C(y) ∈ Cd we have

⟨z, z′⟩︸ ︷︷ ︸
inner product in Cd

= ⟨x, y⟩︸ ︷︷ ︸
inner product in R2d

+ ||x|| ||y|| sin(θ − ϕ)︸ ︷︷ ︸
signed area of parallelogram

i (19)

C Lemmas

Lemma C.1. Let q, k ∈ R2 denote vectors with angles θ, ϕ ∈ R in radian. Let z = C(q) = q1 + q2i ∈ C and
z′ = C(k) = k1 + k2i ∈ C denote their complex identities. Pick any angles t, t′ ∈ R and let q(t) = Rtq ∈ R2

and kt = Rt′k ∈ R2 denote the counterclockwise rotations of k, q where RΘ ∈ R2 is the rotation matrix (5). Let
z(t) = zeti ∈ C and z′(t′) = z′et

′i ∈ C denote the cis multiplies of z, z′. Then

q(t) = C−1(z(t)) (20)

k(t) = C−1(z′(t)) (21)

⟨q(t), k(t′)⟩ = Re (⟨z(t), z′(t′)⟩) (22)

⟨z(t), z′(t′)⟩ = ⟨z, z′⟩ e(t−t′)i (23)

Proof. (20) and (21) are immediate from the equivalence of rotation and cis multiply (Appendix B.1). It follows
that (22) holds by (16). We can check (23) as

⟨z(t), z′(t′)⟩ =
〈
zeti, z′et

′i
〉

=
〈
||q|| e(θ+t)i, ||k|| e(ϕ+t′)i

〉
=

(
||q|| e(θ+t)i

)(
||k|| e−(ϕ+t′)i

)
= ||q|| ||k|| e(θ−ϕ)ie(t−t′)i

= ⟨z, z′⟩ e(t−t′)i

3Note that the order has to be switched under the column assumption. Software implementations such as torch.vdot often use this
as the complex “dot product” to make it compatible with the real dot product. Specifically, vdot implements vdot(u, v) = ⟨v, u⟩ = uHv
which corresponds in form to the real dot product dot(x, y) = x⊤y assuming u, v ∈ Cd and x, y ∈ Rd are column vectors.
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