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1 Definitions

Let µ ∈ Rd and Σ ∈ Rd×d≻0 where we assert Σ ≻ 0 (i.e., positive-definite) to avoid handling degenerate cases. We
define the Gaussian distribution N (µ,Σ) : Rd → [0, 1] as

N (µ,Σ)(x) :=
1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
> 0 (1)

which integrates to 1 over Rd (Lemma E.4). The following statements about a random variable X ∈ Rd are
equivalent (Lemma E.12):

1. X ∼ N (µ,Σ). That is, the probability of X = x is N (µ,Σ)(x) defined in (1).

2. The moment-generating function is MX(t) := E[exp(t⊤X)] = exp(t⊤µ+ 1
2 t

⊤Σt) for all t ∈ Rd.

3. X = µ+Σ1/2Z where Z ∼ N (0d, Id×d).

4. a⊤X ∼ N (a⊤µ, a⊤Σa) for all nonzero a ∈ Rd.1

If any holds, we say X ∈ Rd is normally distributed with parameters (µ,Σ). Note that 3 and 4 just reduce
general normality to simpler forms of (1) (standard and univariate). These alternative definitions are useful in
different contexts, for instance

• By 2, a point-mass distribution on x ∈ Rd is “normal” with parameters (x, 0d×d) since its MGF isE[exp(t⊤X)] =
exp(t⊤x).

• 3 is exactly the reparameterization trick in GANs where we view X sampled from a Gaussian distribution as
a differentiable perturbation of model parameters (µ,Σ).

• By 4, we can show that two random variables Y and Z are jointly normal (Section 2) by showing that any
scalar projection of (Y,Z) using a nonzero vector is (univariate) normal.

Linear transformation. A critical property of the Gaussian distribution is that it is closed under linear trans-
formation. Note that definitions 3 and 4 are consistent with this property. For any A ∈ Rd′×d and b ∈ Rd′ where
A is full-rank with d′ ≤ d (so that AΣA⊤ ≻ 0), X ∼ N (µ,Σ) implies (Lemma C.2):

AX + b ∼ N (Aµ+ b, AΣA⊤) (2)

Sample mean and covariance. Another characteristic of the Gaussian distribution is that the sample mean and
covariance are independent. For any iid X1 . . . XN ∼ Unk with mean µ ∈ Rd and covariance Σ ∈ Rd×d≻0 , unbiased
estimators of the mean and covariance are given by

sXN =
1

N

N∑
i=1

Xi
sS2
N =

1

N − 1

N∑
i=1

(Xi − sXN )(Xi − sXN )⊤

It turns out that sXN and sS2
N are independent iff Unk is normal (Geary, 1936). In fact, if Unk is normal, then

sXN ∼ N (µ, (1/N)Σ) and, independently, (N−1)sS2
N ∼ Wd(N−1,Σ) where Wd is known as the Wishart distribution

(proof).2 If d = 1 and Σ = σ2 > 0, this implies the better known form (N − 1)/σ2
sS2
N ∼ χ2(N − 1) where χ2(k) is

the chi-square distribution with k degrees of freedom.

1The mean and variance of a⊤X are always a⊤µ and a⊤Σa, so this is simply saying that a⊤X has the distribution (1) with d = 1.
2Specifically, Wd(k,Σ) is the distribution over (u1 . . . uk)

⊤(u1 . . . uk) ∈ Rd×d where u1 . . . uk ∈ Rd are iid samples from N (0d,Σ).
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2 Joint Distribution

We say X ∈ Rd and Y ∈ Rd′ are jointly normally distributed with parameters (µ,Σ) if the concatenation (X,Y )
follows N (µ,Σ). More explicitly, [

X
Y

]
∼ N

(
µ =

[
µX
µY

]
,Σ =

[
ΣX ΣXY
ΣY X ΣY

])
where µX ∈ Rd, µY ∈ Rd′ , ΣX ∈ Rd×d≻0 , ΣY ∈ Rd

′×d′
≻0 , ΣXY ∈ Rd×d′ , and ΣY X = Σ⊤

XY .
3 A subtle fact is that X and

Y can be individual normal but not jointly normal (Appendix F), so we must explicitly establish joint normality
even for normal variables (e.g., by using 4). However, if X and Y are independently normal, then they are jointly
normal since we can write [

X
Y

]
∼ N

(
µ =

[
µX
µY

]
,Σ =

[
ΣX 0d×d′

0d′×d ΣY

])
On the other hand, if X,Y are jointly normal and uncorrelated, then they are independent. This follows from the
form of conditional distribution (4):

ΣXY = 0d×d′ ⇒ N (µ,Σ)(y|x) = N (µY +ΣY XΣ−1
X (x− µX),ΣY − ΣY XΣ−1

X ΣXY )(y) = N (µY ,ΣY )(y)

The following lemma is an application of this fact.

Lemma 2.1. Let X ∼ N (µ,Σ). For any A ∈ Rn×d and B ∈ Rm×d,

AΣB⊤ = 0n×m ⇔ AX ∈ Rn and BX ∈ Rm are independent

Proof. If A or B is zero then the statement is trivially true (a constant is independent by definition). Otherwise,
for all nonzero (u, v) ∈ Rn+m, (u, v)⊤(AX,BX) = (u⊤A + v⊤B)X is normal by the closure under linear trans-
formation (2). Thus (AX,BX) is normal by 4. Hence AX and BX are independent iff they are uncorrelated:
E
[
A(X − µ)(X − µ)⊤B⊤] = AΣB⊤ = 0n×m.

As a reference we give a related theorem about the independence of quadratic forms under normal distributions
attributed to Allen T. Craig. Despite its striking similarity to Lemma 2.1, it is difficult to prove and has a long
and complicated history (Driscoll and Gundberg Jr, 1986).

Theorem 2.2 (Craig’s theorem). Let X ∼ N (µ,Σ). For any A,B ∈ Rd×d,

AΣB = 0d×d ⇔ X⊤AX ∈ R and X⊤BX ∈ R are independent

A final remark: recall that uncorrelatedness generally does not imply independence, so we must show joint normality
before claiming independence from uncorrelatedness. For instance, Appendix F gives X,Y ∈ R that are individually
normal (but not jointly normal) and uncorrelated but not independent.

2.1 Linear Combinations

Let A ∈ Rp×d, B ∈ Rp×d′ , and b ∈ Rp where A,B are full-rank with p ≤ min(d, d′). If X ∈ Rd and Y ∈ Rd′ are
jointly normal with parameters (µ,Σ), we have from (2) that

AX +BY + b ∼ N (AµX +BµY + b, AΣXA
⊤ +AΣXYB

⊤ +BΣY XA
⊤ +BΣYB

⊤) (3)

In particular, if X and Y are independently normal, then their sum is normal:

X + Y ∼ N (µX + µY ,ΣX +ΣY )

Note that we need joint normality to guarantee the normality of a linear combination. In general a linear combination
of normal variables may not be normal (e.g., (68)).

3ΣX ,ΣY ≻ 0 since they are main-diagonal blocks of Σ ≻ 0 (Lemma E.9) and ΣXY = Σ⊤
Y X since Σ is symmetric.
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2.2 Conditional Distribution

If X ∈ Rd and Y ∈ Rd′ are jointly normal with parameters (µ,Σ), and if ΣY −ΣY XΣ−1
X ΣXY is invertible, then for

all x ∈ Rd and y ∈ Rd′ (Lemma E.10):

N (µ,Σ)((x, y)) = N (µX ,ΣX)(x)

×N (µY +ΣY XΣ−1
X (x− µX),ΣY − ΣY XΣ−1

X ΣXY )(y) (4)

Therefore the conditional distribution over Y |X = x is also Gaussian. This is useful for applications like Kalman
filtering.

3 Entropy

Let µ′ ∈ Rd and Σ′ ∈ Rd×d≻0 be parameters of an additional Gaussian distribution over Rd. Then (Lemma E.6):

H(N (µ′,Σ′),N (µ,Σ)) =
1

2
(µ′ − µ)⊤Σ−1(µ′ − µ) +

1

2
tr
(
Σ−1Σ′)+ 1

2
log((2π)d det(Σ))

It follows that

H(N (µ,Σ)) =
1

2
log
(
(2πe)d det(Σ)

)
DKL(N (µ′,Σ′)||N (µ,Σ)) =

1

2
(µ′ − µ)⊤Σ−1(µ′ − µ) +

1

2
tr
(
Σ−1Σ′ − Id×d

)
+

1

2
log

(
det(Σ)

det(Σ′)

)
N (µ,Σ) has the largest entropy among all distributions over Rd with mean µ and covariance Σ (Theorem B.1).
This is mainly because it standardizes x inside the exponential function.

3.1 Mutual Information

Let X ∈ Rd and Y ∈ Rd′ be jointly normal with parameters (µ,Σ). If ΣY − ΣY XΣ−1
X ΣXY is invertible, then

(Lemma E.11):

H(Y |X) =
1

2
log
(
(2πe)d

′
det(ΣY − ΣY XΣ−1

X ΣXY )
)

I(X,Y ) =
1

2
log

(
det(ΣX) det(ΣY )

det(Σ)

)
(5)

Note that I(X,Y ) is infinite if Y = X. By the noisy-channel coding theorem, mutual information is the capacity
(highest information rate that can be achieved nearly error-free) of a communication channel between X and Y .
Below we give some well-known models with controllable mutual information.

Additive white Gaussian noise channel. Let X ∼ N (0, σ2) and Z ∼ N (0, ν2) independently, and define
Y = X +Z. X and Y are jointly normal because a1X + a2Y = (a1+ a2)X + a2Z is a sum of independently normal
variables and thus normal for all nonzero a = (a1, a2) (definition 4). Since Var (Y ) = σ2 + ν2 and Cov (X,Y ) = σ2,[

X
Y

]
∼ N

([
0
0

]
,

[
σ2 σ2

σ2 σ2 + ν2

])
⇒ I(X,Y ) =

1

2
log

(
1 +

σ2

ν2

)
Thus I(X,X + Z) grows logarithmically in signal-to-noise ratio σ2

ν2 .

Correlated standard normal channel. Let X,Y ∈ R be jointly standard normal with correlation ρ < 1. One

way to construct them is to let X,Z
iid∼ N (0, 1) and set Y = ρX +

√
1− ρ2Z. Then[

X
Y

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
⇒ I(X,Y ) = −1

2
log
(
1− ρ2

)
By taking the correlation ρ→ 1 we can arbitrarily increase I(X,Y ).
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4 Central Limit Theorem

Let Unk(µ, σ2) denote an unknown distribution over R with mean µ and variance σ2 > 0. It is often of interest to
consider the sample average sXN defined as

X1 . . . XN
iid∼ Unk(µ, σ2) sXN :=

1

N

N∑
i=1

Xi

The average is itself random: every time we draw N iid samples from Unk(µ, σ2), we draw a single sample of sXN .

We can easily verify that E[ sXN ] = µ and Var
(

sXN

)
= σ2

N , which states that sXN concentrates around µ as N → ∞
(this is called the “law of large numbers”). But what is the distribution of sXN? The central limit theorem
(CLT) states that sXN is asympotically normal. More precisely, as N → ∞ we have

√
N
(

sXN − µ
) approx.∼ N (0, σ2) (6)

or, using the closure under linear transformation,

sXN
approx.∼ N

(
µ,
σ2

N

)
(7)

which is consistent with but not implied by the law of large numbers. CLT allows us to make probabilistic statements
about sample averages regardless of the underlying distribution. For instance, if X1 . . . XN are arbitrary iid samples
with mean 42 and variance 7, then approximately sXN ∼ N (42, 7

N ) so that we can calculate quantities like Pr( sXN ≤
50) (e.g., by consulting a standard normal table).

A proof of CLT shows that the KL divergence between the distribution of
√
N
(

sXN − µ
)
and N (0, σ2) goes to zero

as N → ∞. It is nontrivial: we refer to Marsh (2013) for details. CLT generalizes naturally to multivariate. If
Unk(µ,Σ) is an unknown distribution over Rd with mean µ and covariance Σ ≻ 0, then the average sXN of samples

X1 . . . XN
iid∼ Unk(µ,Σ) satisfies as N → ∞:

√
N
(

sXN − µ
) approx.∼ N (0d,Σ) (8)

sXN
approx.∼ N

(
µ,

1

N
Σ

)
(9)

5 Exponential Family

The Gaussian distribution is an exponential family (Appendix D), with one parameterization (Lemma E.19)

N (µ,Σ)(x) =
1

(
√
2π)d︸ ︷︷ ︸
h(x)

exp


[

Σ−1µ
− 1

2vec
(
Σ−1

)]︸ ︷︷ ︸
θ

⊤ [
x

vec
(
xx⊤

)]︸ ︷︷ ︸
τ(x)

− 1

2

(
µ⊤Σ−1µ+ log (det(Σ))

)
︸ ︷︷ ︸

Ah,τ (θ)

 (10)

where h(x) ≥ 0 is the base measure, θ ∈ Rd(d+1) is the natural parameter, τ(x) ∈ Rd(d+1) is the sufficient statistic,
and Ah,τ (θ) = log

(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
is the log-partition function. Thus Gaussian distributions inherit

the usual properties of an exponential family such as the concavity of the likelihood function and the availability
of conjugate priors.

6 Exponential Tilting

The Gaussian distribution is closed under exponential tilting (Lemma E.22):

Pr(Xt = x) ∝ et
⊤x ×N (µ,Σ)(x) ⇒ Xt ∼ N (µ+Σt,Σ) (11)
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7 Cumulant-Generating Function

The cumulant-generating function ψX(t) := logE[et
⊤X ] of X ∼ N (µ,Σ) and the first two cumulants are

ψX(t) = t⊤µ+
1

2
t⊤Σt

∇ψX(t) = µ+Σt

∇2ψX(t) = Σ

The corresponding Legendre transform ψ∗
X(t) := supλ∈Rd λ⊤t− ψX(λ) of ψX is (Lemma E.24)

ψ∗
X(t) =

1

2
(t− µ)⊤Σ−1(t− µ) (12)

8 Sub-Gaussian Distribution

A random scalar S ∈ R with E[S] = 0 is sub-Gaussian with variance factor σ2, denoted by S ∼ G(σ2), if

ψS(t) ≤ ψZ∼N (0,σ2)(t) =
σ2t2

2
(13)

for all t ∈ R. It is stable in the following sense:

1. Var (S) ≤ σ2 (Lemma E.25).

2. −S ∼ G(σ2). This can be seen by noting that ψ−S(t) = ψS(−t).

3. Pr(S ≥ ϵ) ≤ exp(− ϵ2

2σ2 ) for all ϵ ≥ 0. Use Chernoff’s inequality (E.15) with Lemma E.26 and (12).

4. If S1 . . . SN are independent with Si ∼ G(σ2
i ), then

∑N
i=1 Si ∼ G(

∑N
i=1 σ

2
i ).

Combining these properties, we have (Lemma E.27)

Si ∼ G(σ2
i ) independently ⇒ Pr

(∣∣∣∣∣ 1N
N∑
i=1

Si

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

− N2ϵ2

2
(∑N

i=1 σ
2
i

)
 (14)

An important class of sub-Gaussian variables is bounded scalars: ifX ∈ [a, b] thenX−E[X] ∼ G( (b−a)
2

4 ) (Hoeffding’s
lemma, E.23). This yields the following popular tail inequality.

Corollary 8.1 (Hoeffding’s inequality). If X1 . . . XN ∈ [a, b] are iid with mean µ = E[Xi] ∈ R,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2Nϵ2

(b− a)2

)
(15)

Proof. By Hoeffding’s lemma, Xi − µ ∼ G( (b−a)
2

4 ). We get the statement by plugging σ2
i = (b−a)2

4 in (14).

9 TODO: High-Dimensional Behavior

10 TODO: Gaussian Process
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A Integration for Dummies

A.1 Single-Variable

An antiderivative of f : R → R is a function F : R → R such that F ′ = f . If F is an antiderivative, then so is
F + C for any constant C ∈ R. For instance, (1/3)x3 + 42 is an antiderivative of x2.

The (definite) integral of f : R → R over [a, b] is a scalar
∫ b
a
f(x)dx ∈ R that represents the signed area of f

on [a, b]. The quantity f(x)dx is interpreted as the product of the function value and an infinitesimally small
interval. There are different ways to formalize the area. The most common definition is the Riemannn integral
which partitions [a, b] into intervals [iδ, (i+ 1)δ] of width δ > 0 and define∫ b

a

f(x)dx := lim
δ→0

∑
i

f(xδi )δ (16)

where xδi ∈ [iδ, (i+1)δ]. The finite sum
∑
i f(x

δ
i )δ for a given width δ is called a Riemann sum. Thus an integral

is simply the limiting value of a Riemann sum (if it exists it is unique). A more general definition is a Lebesque
integral which partitions the range of f .

The fundamental theorem of calculus (FTC) allows us to evaluate integrals by antiderivatives: if F is any
antiderivative of f , then ∫ b

a

f(x)dx = F (x)
∣∣b
a
:= F (b)− F (a) (17)

For instance, the signed area under x2 over [−1, 1] is 2/3. Basic properties of integration include∫ b

a

αf(x) + βg(x)dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx (linearity) (18)∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du (u-substitution) (19)∫ b

a

f(x)G(x)dx = F (x)G(x)
∣∣b
a
−
∫ b

a

F (x)g(x)dx (integration by parts) (20)

(Exercise: verify (19–20) using the chain rule and the product rule in differentiation.)

A.1.1 Substitution in practice

While (19) is the standard form of u-substitution, we often use it mechanically as follows. We wish to integrate f
over the interval a < b. We view f as a (hopefully simpler) function of u = g(x) where g : R → R is invertible and
differentiable with nonzero derivative over (a, b). The infinitesimals are related as du = g′(x)dx by the chain rule,
or equivalently dx = g′(g−1(u))−1du. This yields a “plug-in” version of (19) where we substitute g(x) = u and
dx = g′(g−1(u))−1du, ∫ b

a

f(g(x))dx =

∫ g(b)

g(a)

f(u)g′(g−1(u))−1du (21)

For instance, ∫ √
π
2

0

2x cos
(
x2
)
dx =

∫ π
2

0

2
√
u cos (u)

(
1

2
√
u

)
du

=

∫ π
2

0

cos (u) du = sin (u)

∣∣∣∣π2
0

= 1

where 2x cos
(
x2
)
= 2

√
u cos (u) with u = g(x) = x2. Note that g is invertible on (0,

√
π
2 ) so that x =

√
u; it is also

differentiable with nonzero derivative g′(x) = 2x. Writing dx = (2
√
u)−1du, we cancel terms and are finally able to

use FTC (17).
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Orientation of region. Observe that

1 =

∫ 1

0

1dx =

∫ −1

0

(−1)du =

∫ 0

−1

(+1)du

The first equality is by FTC. The second equality is by (21) with f(x) = 1 and u = g(x) = −x. The final equality
is again by FTC, simply acknowledging that (−x)|−1

0 = x|0−1 = 1. More generally, when g′(x)−1 < 0 (i.e., u is
moving in the opposite direction of x), we also change the “orientation of region” in integration (right-to-left instead
of left-to-right). We can consider an alternative orientation-free formulation of u-substitution by always assuming
integrating left-to-right. Let R denotes a region a < b, then∫

R

f(g(x))dx =

∫
g(R)

f(u)
∣∣g′(g−1(u))−1

∣∣ du (22)

where g(R) is the output region of g when applied to R, integrated from a smaller value to a larger value. This
formulation is useful because it generalizes to higher dimensions (24).

A.2 Multi-Variable

The integral of f : Rd → R over a region R ⊆ Rd is a scalar
∫
R
f(x)dx ∈ R that represents the signed hypervolume

of f on R. Evaluation of such an integral is generally challenging because the region may take complicated forms
(high-dimensional curves).

We can greatly simplify the problem by restricting the region to be a hypercube R = [a, b] where a, b ∈ Rd specify a
d-dimensional bounding box [a1, b1]× · · · × [ad, bd] (potentially all of Rd). A central tool in this setting is Fubini’s
thoerem, which states that∫

[a,b]

f(x)dx =

∫ bπ(d)

aπ(d)

(
· · ·

(∫ bπ(1)

aπ(1)

f(x1 . . . xd)dxπ(1)

)
· · ·

)
dxπ(d)

where π is any permutation of {1 . . . d}. Thus we can evaluate a multi-variable integral by iteratively evaluating a
single-variable integral in any order.

Many properties of integration carry over (like linearity), but some need to be generalized. One important gener-
alization is multi-variable u-substitution. Let R ⊆ Rd and g : R → Rd such that Jg(x) ∈ Rd×d (Jacobian of g)
is nonzero for all x ∈ R. Then ∫

R

f(g(x)) |det(Jg(x))| dx =

∫
g(R)

f(u)du (23)

Similar to the single-variable case, we often use substitution mechanically as follows. We integrate f over a region R
by viewing it as a simpler function of u = g(x) where g : R→ Rd is assumed to be invertible (i.e., det(Jg(x)) ̸= 0).

The infinitesimals are related as du = |det(Jg(x))| dx or equivalently dx = |det(Jg(x))|−1
du. This gives∫

R

f(g(x))dx =

∫
g(R)

f(u)
∣∣det(Jg(g−1(u)))

∣∣−1
du (24)

where we “plug in” g(x) = u and dx =
∣∣det(Jg(g−1(u)))

∣∣−1
du. This strictly generalizes (22).

A.2.1 Applications to probability

Let X ∈ Rd be a random vector with distribution pX supported on S ⊆ Rd (i.e., pX(x) ≥ 0 and
∫
S
pX(x)dx = 1).

The probability that X lies in a region R ⊆ S is

Pr (X ∈ R) =

∫
R

pX(x)dx

Let t : S → T be a smooth invertible function where T ⊆ Rd. Define a new random vector Y = t(X) supported on
T . We claim that Y has the distribution

pY (y) = pX(t−1(y)) |det(Jt−1(y))| ∀y ∈ T (25)
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Equivalently,

pY (t(x)) = pX(x) |det(Jt−1(t(x)))| ∀x ∈ S (26)

Proof sketch. For any R ⊆ T ,

Pr(Y ∈ R) = Pr(X ∈ t−1(R)) =

∫
t−1(R)

pX(x)dx =

∫
R

pX(t−1(y)) |det(Jt−1(y))| dy

where the last equality applies (23) with g = t−1. This implies (25).

B Continuous Entropy and KL Divergence

We generalize results in Marsh (2013) to multivariate. The continuous/differential entropy of X ∈ Rd with density
pX supported on S ⊆ Rd is defined as4

H(X) := −
∫
S

pX(x) log pX(x)dx (27)

It is easily seen that entropy is additive for independent variables. That is, if X ∈ Rd and Y ∈ Rd′ are independent
then the entropy of Z = (X,Y ) ∈ Rd+d′ is H(Z) = H(X) +H(Y ).

• The uniform distribution u[a,b](x) :=
1
b−a over [a, b] ⊂ R has entropy

H(X) =

∫ b

a

1

b− a
log(b− a)dx = log(b− a) (28)

• The Gaussian distribution N (µ,Σ) over Rd has entropy (Corollary E.7)

H(X) =
1

2
log
(
(2πe)d det(Σ)

)
• The exponential distribution eλ(x) := λ exp(−λx) over [0,∞) with parameter λ > 0 has entropy (Lemma E.5)

H(X) = 1− log λ (29)

Unfortunately, continuous entropy suffers from various shortcomings (reviewed in Section B.1), most notably neg-
ativity (e.g., (28) is negative if b− a < 1, (29) is negative if λ > e). On the other hand, let qX be another density
of X with support S. Define the continuous KL divergence (aka. relative entropy) between pX and qX as

DKL(pX ||qX) :=

∫
S

pX(x) log
pX(x)

qX(x)
dx (30)

Continuous KL divergence is nonnegative:

DKL(pX ||qX) = E
x∼pX

[
log

pX(x)

qX(x)

]
= E
x∼pX

[
− log

qX(x)

pX(x)

]
≥ − log

(
E

x∼pX

[
qX(x)

pX(x)

])
(convexity of − log)

= − log

(∫
S

pX(x)
qX(x)

pX(x)
dx

)
= − log

(∫
S

qX(x)dx

)
= 0

where DKL(pX ||qX) = 0 iff pX = qX almost everywhere. This has useful implications.

4We use the term “density” in this section to distingiush continuous vs discrete variables.
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• The cross entropy between pX and qX upper bounds the entropy of pX ,

H(pX , qX) := H(pX) +DKL(pX ||qX) ≥ H(pX) (31)

• Mutual information is nonnegative,

I(X,Y ) := DKL(pXY ||pXpY ) ≥ 0 (32)

The cross entropy upper bound can be used to derive various maximum entropy densities.

Theorem B.1.

N (µ,Σ) ∈ argmax
pX : E[X]=µ, Var(X)=Σ

H(pX) (33)

u[a,b] ∈ argmax
pX : Support(pX)=[a,b]

H(pX) (34)

eλ ∈ argmax
pX : Support(pX)=Rd

≥0, E[X]=λ−1

H(pX) (35)

where u[a,b] denotes the uniform distribution over [a, b] ⊂ Rd and eλ denotes the product exponential density over

Rd≥0 with λ > 0d

Proof. (33): Let pX with mean µ ∈ Rd and covariance Σ ≻ 0. Then

H(pX ,N (µ,Σ)) =

∫
Rd

pX(x)

(
1

2
(x− µ)⊤Σ−1(x− µ) +

1

2
log((2π)d det(Σ))

)
=

1

2
E

x∼pX

[
(x− µ)⊤Σ−1(x− µ)

]
+

1

2
log((2π)d det(Σ))

=
d

2
+

1

2
log((2π)d det(Σ))

=
1

2
log((2πe)d det(Σ)) = H(N (µ,Σ)) ≥ H(pX)

(34): Assume d = 1. Given any pX with support [a, b] we have

H(pX , uX) =

∫ b

a

pX(x) log(b− a)dx = log(b− a) = H(u[a,b]) ≥ H(pX)

The statement holds for d > 1 since each dimension is independently optimized.

(35): Assume d = 1. Given any pX with support [0,∞) and mean λ−1 > 0 we have

H(pX , eλ) =

∫ ∞

0

pX(x)(λx− log λ)dx = λ E
x∼pX

[x]− log λ = 1− log λ = H(eλ) ≥ H(pX , eλ)

The statement holds for d > 1 since each dimension is independently optimized.

B.1 Shortcomings of Continuous Entropy

B.1.1 Inconsistency with Shannon entropy

The Shannon entropy of discrete X ∈ {x1 . . . xn} with distribution pX is

H(X) := −
n∑
i=1

pX(xi) log pX(xi) (36)

This definition was derived by Shannon as a solution that satisfies axioms of information (regarding monotonicity,
non-negativity, zero information, and independence). (27) appears to be a natural continuous extension of (36) in
the sense that both are Ex∼pX [− log pX(x)], but it fails to satisfy the axioms (e.g., it can be negative). One way to
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better understand why is to show that (27) is inconsistent with (36) in the limit. Assume d = 1 and let pX be a
density supported on [a, b]. By definition∫ b

a

pX(x)dx = lim
δ→0

∑
i

pX(xδi )δ = 1 (37)

where
∑
i pX(xδi )δ is a finite Riemann sum of width δ > 0. Thus we can cast the density pX as an increasingly

fine-grained discrete distribution with probabilities pX(xδi )δ as δ → 0. Note that each value of δ > 0 yields a discrete
distribution with a well-defined Shannon entropy. This Shannon entropy, in the limit, is

lim
δ→0

(
−
∑
i

(pX(xδi )δ) log(pX(xδi )δ)

)
= − lim

δ→0

∑
i

(pX(xδi ) log pX(xδi ))δ − lim
δ→0

∑
i

pX(xδi )δ log δ

= −
∫ b

a

pX(x) log pX(x)dx− lim
δ→0

∑
i

pX(xδi )δ log δ

= H(X)−

(
lim
δ→0

∑
i

pX(xδi )δ

)(
lim
δ→0

log δ

)
(38)

= H(X) +∞ (39)

where (38) follows from the generalized product rule of limits using (37).5 So the limiting Shannon entropy diverges
from the continuous entropy by an infinite offset.

B.1.2 Variability under change of coordinates

A good measure of information should not depend on the representation of samples from a distribution. For instance,
let pX be a distribution over finitely many circles, each of which can be specified by its radius or area. Clearly,
the Shannon entropy of the circle is the same regardless of the representation. Now let pX be a density over all
circles. The continuous entropy of the circle under the radius representation is different from that under the area
representation. A general statement that implies this result is given below.

Lemma B.2. Let X ∈ Rd with density pX supported on S. For any invertible mapping t on S,

H(t(X)) = H(X)− E
x∼pX

[log |det(Jt−1(t(x)))|]

Proof.

H(t(X)) = −
∫
S

pX(x) log pX(t(x))dx

= −
∫
S

pX(x) log pX(x)dx−
∫
S

pX(x) log |det(Jt−1(t(x)))| dx (by (26))

= H(X)− E
x∼pX

[log |det(Jt−1(t(x)))|]

Corollary B.3. For any invertible A ∈ Rd×d and b ∈ Rd,

H(AX + b) = H(X)− log
∣∣det(A−1)

∣∣ (40)

Corollary B.4. For α > 0,

H(αX) = H(X) + d logα

5Assume limx→a f(x) ̸= 0. If g(x) does not oscillate around a,

lim
x→a

f(x)g(x) = lim
x→a

f(x) lim
y→a

g(y)

If g(x) oscillates around a, then so does f(x)g(x).
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Proof.

H(αX) = H(X)− log
∣∣det(α−1Id×d)

∣∣ (by (40))

= H(X)− log
∣∣α−d∣∣

= H(X)− logα−d (since α > 0)

= H(X) + d logα

Corollary B.4 states that we can vacuously increase the continuous entropy of X ∈ Rd to infinity by multiplying
each value with a scalar α as we take α→ ∞.

C Moment-Generating Function

Let X ∈ Rd denote a random vector with distribution pX . The moment-generating function (MGF) of X is
a real-valued positive mapping MX : Rd → (0,∞) defined as

MX(t) := E
x∼pX

[
exp

(
t⊤x

)]
(41)

Not every distribution has a corresponding MGF (because (41) may diverge). But a classical result in probability
theory is that an MGF uniquely determines a probability distribution. More formally, let X,Y ∈ Rd be random
vectors with distributions pX , pY with well-defined MGFs MX ,MY . Then pX = pY iff MX = MY . Thus an MGF
is an alternative characterization of a random variable.

What makes MX special is obviously the exponential function. Since ez =
∑∞
n=0

zn

n! ,

MX(t) = 1 + t⊤ E [X]︸ ︷︷ ︸
1st moment

+
1

2
t⊤ E

[
XX⊤]︸ ︷︷ ︸

2nd moment

t+ · · ·

so that ∂nMX(t)
∂nt |t=0d is the n-th moment of pX (hence the name).

Lemma C.1. Let X ∼ N (µ,Σ). Then

MX(t) = exp

(
t⊤µ+

1

2
t⊤Σt

)

Proof. We use the same substitution in the proof of Lemma E.4. Let Σ = UΛU⊤ denote an orthonormal
eigendecomposition. Let u = g(x) where g(x) = Λ−1/2U⊤(x − µ), which implies x = UΛ1/2u + µ. Thus
|det(Jg(x))| =

∣∣det(Λ−1/2U⊤)
∣∣ = det(Λ)−1/2, so we have the infinitesimal dx =

√
det(Λ)du. Then∫

Rd

1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
exp(t⊤x)dx

=

∫
Rd

√
det(Λ)

(
√
2π)d

√
det(Λ)

exp

(
−1

2
u⊤u

)
exp(t⊤UΛ1/2u+ t⊤µ)du

= exp(t⊤µ)

∫
Rd

1

(
√
2π)d

exp

(
−1

2
u⊤u+ t⊤UΛ1/2u

)
du

= exp(t⊤µ)

∫
Rd

1

(
√
2π)d

exp

(
−1

2

∣∣∣∣∣∣u− UΛ1/2t
∣∣∣∣∣∣2 + 1

2
t⊤Σt

)
du

= exp

(
t⊤µ+

1

2
t⊤Σt

)∫
Rd

1

(
√
2π)d

exp

(
−1

2

∣∣∣∣∣∣u− UΛ1/2t
∣∣∣∣∣∣2) du

= exp

(
t⊤µ+

1

2
t⊤Σt

)
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An interesting consequence of the Gaussian MGF in Lemma C.1 is that a point-mass density can be viewed as a
degenerate Gaussian distribution with zero variance. That is, if X ∈ Rd takes value a ∈ Rd with probability 1, then
MX(t) = exp(a⊤t), which is equal to the Gaussian MGF with Σ = 0d×d.

One application of MGF is showing that a linear transformation of a Gaussian random variable is also Gaussian.
Note that the MGF of a linear transformation of X is generally

MAX+b(t) = E
x∼pX

[
exp

(
t⊤Ax

)
exp

(
t⊤b
)]

= exp
(
t⊤b
)
MX(A⊤t) (42)

Lemma C.2. Let X ∼ N (µ,Σ). Let A ∈ Rd′×d and b ∈ Rd′ where d′ ≤ d and A has full rank. Then AX + b ∼
N (Aµ+ b, AΣA⊤).

Proof. For any t ∈ Rd′ ,

MAX+b(t) = exp
(
t⊤b
)
MX(A⊤t) (by (42))

= exp
(
t⊤b
)
exp

(
t⊤Aµ+

1

2
t⊤AΣA⊤t

)
(by Lemma C.1)

= exp

(
t⊤(Aµ+ b) +

1

2
t⊤AΣA⊤t

)
The last term is the MGF of a random variable with distribution N (Aµ + b, AΣA⊤) where AΣA⊤ ≻ 0. The
statement follows from the one-to-one correspondence between MGFs and distributions.

C.1 Cumulant-Generating Function

The log MGF ψX(t) := logE[et
⊤X ] is called the cumulant-generating function (CGF) of X. We see that it is

the (convex) log-partition function of t-tilted Xt distributed as (Appendix D)

pXt
(x) =

et
⊤xpX(x)

E[et⊤X ]

We call ∇(n)ψX(t) the n-th cumulant of X. From (49–50), we have

∇ψX(t) = E[Xt] (43)

∇2ψX(t) = Cov(Xt) (44)

In particular,

∇ψX(0d) = E[X] (45)

∇2ψX(0d) = Cov(X) (46)

This fact is used in Hoeffding’s lemma which bounds the CGF of a bounded scalar random variable by using Taylor’s
approximation of the CGF around 0 and then bounding the mean/variance of that variable (Lemma E.23).

Example. The CGF of X ∼ N (µ,Σ) is ψX(t) = µ⊤t+ 1
2 t

⊤Σt, so

∇ψX(t) = µ+Σt

∇2ψX(t) = Σ

which is consistent with the fact that Xt ∼ N (µ+Σt,Σ) (Lemma E.22).

D Exponential Family

D.1 Exponential Tilting

Given any “base” distribution p over Rd, we can generate a set of distributions qp,τ,θ by

qp,τ,θ(x) :=
eθ

⊤τ(x)p(x)

Ex′∼p[eθ
⊤τ(x′)]

(47)

for any τ : Rd → Rm and θ ∈ Rm such that Ex′∼p[e
θ⊤τ(x′)] exists. Note that
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• qp,τ,θ is nonnegative and sums/integrates to 1.

• qp,τ,θ has the same support as p.

• qp,τ,θ assigns a weight eθ
⊤τ(x) on the probability of x, changing the tails of p.

• qp,τ,0m = p.

This technique is called exponential tilting of p. We can rewrite (47) as

qp,τ,θ(x) = p(x) exp
(
θ⊤τ(x)−Bp,τ (θ)

)
(48)

where the log-partition function Bp,τ (θ) := logEx∼p[e
θ⊤τ(x)] normalizes qp,τ,θ. We note several properties:

• Bp,τ (θ) is convex (Lemma E.17).

• τ is a sufficient statistic for θ (Theorem E.16).

• Differentiating Bp,τ (θ) generates the cumulants of τ(x) over x ∼ qp,τ,θ, for instance (Lemma E.18)

∇Bp,τ (θ) = E
x∼qp,τ,θ

[τ(x)] (49)

∇2Bp,τ (θ) = Cov
x∼qp,τ,θ

(τ(x)) (50)

In particular, ∇Bp,τ (0m) = Ex∼p[τ(x)] and ∇2Bp,τ (0m) = Covx∼p(τ(x)).

• Aside: (50) implies that Bp,τ (θ) is convex since ∇2Bp,τ (θ) ⪰ 0.

Exponential tilting often preserves the distribution family. For instance, if X ∼ N (µ,Σ) and Xt is the t-tilted X
with t ∈ Rd (τ(x) = x), then Xt ∼ N (µ+Σt,Σ) (Lemma E.22).

D.2 Unnormalized Form

More generally, we may consider any nonnegative function h : Rd → (0,∞) (“base measure”) and define

qh,τ,θ(x) =
exp

(
θ⊤τ(x)

)
h(x)∫

x∈Rd exp (θ⊤τ(x))h(x)dx
(51)

for any τ : Rd → Rm and θ ∈ Rm such that
∫
x∈Rd exp

(
θ⊤τ(x)

)
h(x)dx exists. We can rewrite (51) as

qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
(52)

where Ah,τ (θ) := log
(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
and τ is again a sufficient statistic for θ. Clearly, exponential

tilting is a special case where the base measure is normalized. However, (51) is strictly more general since it allows
for h such that

∫
x
h(x)dx diverges. It is easy to check that the previous properties hold without a normalized base

measure, specifically:

• Differentiating Ah,τ (θ) generates the cumulants of τ(x) over x ∼ qh,τ,θ, in particular

∇Ah,τ (θ) = E
x∼qh,τ,θ

[τ(x)] (53)

∇2Ah,τ (θ) = Cov
x∼qh,τ,θ

(τ(x)) (54)

• (54) implies that Ah,τ (θ) is convex.

A set of distributions that can be expressed in the form (52) is called an exponential family. θ ∈ Rm is called
its natural parameter. Note that there are many exponential families. For instance, the set of all normal
distributions is one exponential family. The set of all categorical distributions is another exponential family.
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D.2.1 Discussions

CGF. The CGF ψτ(X)(t) = logE[et
⊤τ(X)] of τ(x) takes the form (Lemma E.20):

ψτ(X)(t) = Ah,τ (θ + t)−Ah,τ (θ) (55)

where we see ∇(n)ψτ(X)(0m) = ∇(n)Ah,τ (θ); this is consistent with the fact that in an exponential family, the
log-partition function generates cumulants.

Conjugate prior. In Bayesian probability theory, a prior over the parameter of a distribution is called a con-
jugate prior if the implied posterior over the parameter conditioning on a sample from the distribution is in the
same distribution family that the prior is in. For an exponential family, we can define a prior

πh,τ (θ;α, β) =
1

Zh,τ (α, β)
exp

(
θ⊤α− βAh,τ (θ)

)
(56)

for any “pseudo-counts” α ∈ Rm and β ∈ R such that Zh,τ (α, β) =
∫
θ∈Rm exp

(
θ⊤α− βAh,τ (θ)

)
dθ exists. Then

the posterior over θ given x ∼ qh,τ,θ is given by (Lemma E.21)

κh,τ (θ|x;α, β) = πh,τ (θ; τ(x) + α, 1 + β) (57)

thus (56) is a conjugate prior.

Identifying an exponential family. To check if a set of distributions
{
p(x; θ̄)

}
θ̄
is an exponential family, it is

sufficient to propose any h(x) ≥ 0, a transformation of θ̄ into natural parameter form θ = g(θ̄) ∈ Rm and x into
sufficient statistic form τ(x) ∈ Rm, and some function Ah,τ (θ), such that it can be written as (52):

p(x; θ̄) = qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
In particular, we do not need to explicitly calculate Ah,τ (θ) = log

(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
since the normal-

ization of p(x; θ̄) enforces it (and guarantees its existence).

Non-unique parameterization. An exponential family has infinitely many equivalent parameterizations:

qh,τ,θ(x) = qah,u⊙τ,inv(u)⊙θ(x) ∀a ∈ R\ {0} , u ∈ (R\ {0})m

where ⊙ is the elementwise multiplication and inv(u) is the elementwise inverse of vector u. It is often clear what
a natural parameterization is (e.g., choose u that makes τ(x) as simple as possible).

Limitations. A dizzying array of distributions are exponential families, including the normal (Lemma E.19),
categorical, exponential, geometric, Bernoulli, Poisson, beta, and many others. But there are certain properties
that an exponential family cannot capture. First, the form

h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
implies that the support of this distribution cannot depend on the parameter θ. This rules out distributions like
a uniform distribution on [a, b] ⊂ R whose support depends on the paramters a, b. Second, some distributions
simply cannot be expressed using an inner product between the input and the parameter, for instance the Laplace
distribution

Laplace(µ, b)(x) =
1

2b
exp

(
−|x− µ|

b

)
Third, an exponential family necessarily has a well-defined MGF by (55), so it rules out distributions without an
MGF such as the Cauchy distribution.
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E Lemmas

Lemma E.1 (Polar coordinates). For any integrable f : R → R,∫
R2

f(x2 + y2)d(x, y) = 2π

∫ ∞

0

f(r2)rdr

Proof. Let R = [0,∞) × [0, 2π] and define g : R → R2 by g(r, θ) = (r cos θ, r sin θ). Note that r2 = x2 + y2 and
g(R) = R2. The Jacobian of g at (r, θ) is

Jg(r, θ) =

[
∂r cos θ
∂r

∂r cos θ
∂θ

∂r sin θ
∂r

∂r sin θ
∂θ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
Thus |det(Jg(r, θ))| =

∣∣r(cos2 θ + sin2 θ)
∣∣ = r. Thus∫

R2

f(x2 + y2)d(x, y) =

∫
R

f(g1(r, θ)
2 + g2(r, θ)

2) |Jg(r, θ)| d(r, θ) (by (23))

=

∫
R

f(r2)rd(r, θ)

=

∫ ∞

0

(∫ 2π

0

exp(−r2)rdθ
)
dr (Fubini)

=

∫ ∞

0

2π exp(−r2)rdr (FTC)

= 2π

∫ ∞

0

exp(−r2)rdr (linearity)

Lemma E.2 (Gaussian integral). ∫ ∞

−∞
exp

(
−x2

)
dx =

√
π (58)

Proof. A standard proof shows that (
∫∞
−∞ exp

(
−x2

)
dx)2 = π as follows:(∫ ∞

−∞
exp

(
−x2

)
dx

)(∫ ∞

−∞
exp

(
−y2

)
dy

)
=

∫ ∞

−∞

(∫ ∞

−∞
exp

(
−x2

)
dx

)
exp

(
−y2

)
dy (linearity)

=

∫ ∞

−∞

(∫ ∞

−∞
exp

(
−x2

)
exp

(
−y2

)
dx

)
dy (linearity)

=

∫
R2

exp
(
−(x2 + y2)

)
d(x, y) (Fubini)

= 2π

∫ ∞

0

exp
(
−r2

)
rdr (Lemma E.1)

= 2π

(
−1

2
exp(−r2)

) ∣∣∣∣∞
0

(FTC)

= 2π

(
0 +

1

2

)
= π

Lemma E.3. For any µ ∈ R and σ2 > 0,∫ ∞

−∞

1√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx = 1 (59)
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Proof. Let u = x−µ√
2σ

which gives the infinitesimal dx =
√
2σdu. Then∫ ∞

−∞

1√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx =

∫ ∞

−∞

√
2σ√
2πσ

exp
(
−u2

)
du (by (21))

=

∫ ∞

−∞

1√
π
exp

(
−u2

)
du

=
1√
π

∫ ∞

−∞
exp

(
−u2

)
du (linearity)

= 1 (Lemma E.2)

Lemma E.4. ∫
Rd

1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
dx = 1

Proof. Let Σ = UΛU⊤ denote an orthonormal eigendecomposition. Let u = g(x) where g(x) = Λ−1/2U⊤(x − µ).
Thus |det(Jg(x))| =

∣∣det(Λ−1/2U⊤)
∣∣ = det(Λ)−1/2, so we have the infinitesimal dx =

√
det(Λ)du. Then∫

Rd

1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
dx =

∫
Rd

√
det(Λ)

(
√
2π)d

√
det(Λ)

exp

(
−1

2
u⊤u

)
du

=

∫
Rd

d∏
i=1

1√
2π

exp

(
−u

2
i

2

)
du

By Fubini and linearity,∫
Rd

d∏
i=1

1√
2π

exp

(
−u

2
i

2

)
du =

∫ ∞

−∞

(
· · ·

(∫ ∞

−∞

d∏
i=1

1√
2π

exp

(
−u

2
i

2

)
du1

)
· · ·

)
dud

=

d∏
i=1

∫ ∞

−∞

1√
2π

exp

(
−u

2
i

2

)
dui

=

(∫ ∞

−∞

1√
2π

exp

(
−x

2

2

)
dx

)d
= 1

where the last step applies Lemma E.3 with µ = 0 and σ2 = 1.

Lemma E.5. For any λ > 0, the exponential distribution eλ(x) := λ exp(−λx) over [0,∞) has entropy

H(X) = 1− log λ

Proof.

H(X) = −
∫ ∞

0

λ exp(−λx) log(λ exp(−λx))dx

= − log λ− λ

∫ ∞

0

exp(−λx)(−λx)dx

We evaluate the last integral as follows. Let u = g(x) = −λx, then g′(x) = −λ so that
∣∣g′(g−1(u))−1

∣∣ = 1/λ.
Reorienting the region between g(0) = 0 and g(∞) = −∞ and applying (22),

λ

∫ ∞

0

exp(−λx)(−λx)dx =

∫ 0

−∞
exp(u)udu

= exp(u)u|0−∞ −
∫ 0

−∞
exp(u)du (integration by parts (20))

= (0− 0)− exp(u)|0−∞ (limu→−∞ exp(u)u = 0)

= −1
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Lemma E.6. Define ∆ := µ′ − µ. Then

H(N (µ′,Σ′),N (µ,Σ)) =
1

2
∆⊤Σ−1∆+

1

2
tr
(
Σ−1Σ′)+ 1

2
log((2π)d det(Σ))

Proof.

H(N (µ′,Σ′),N (µ,Σ)) := E
x∼N (µ′,Σ′)

[− logN (µ,Σ)(x)]

=
1

2
E

x∼N (µ′,Σ′)

[
(x− µ)⊤Σ−1(x− µ)

]
+

1

2
log((2π)d det(Σ))

By the cyclic property and the linearity of trace,

E
x∼N (µ′,Σ′)

[
(x− µ)⊤Σ−1(X − µ)

]
= E
x∼N (µ′,Σ′)

[
tr
(
(x− µ)⊤Σ−1(x− µ)

)]
= E
x∼N (µ′,Σ′)

[
tr
(
Σ−1(x− µ)(x− µ)⊤

)]
= tr

(
Σ−1 E

x∼N (µ′,Σ′)

[
(x− µ)(x− µ)⊤

])
Rewriting the expectation,

E
x∼N (µ′,Σ′)

[
(x− µ)(x− µ)⊤

]
= E
x∼N (µ′,Σ′)

[
(x− µ′ +∆)(x− µ′ +∆)⊤

]
= E
x∼N (µ′,Σ′)

[
(x− µ′)(x− µ′)⊤ + (x− µ′)∆⊤ +∆(x− µ′)⊤ +∆∆⊤]

= Σ′ +∆∆⊤

Therefore we have

H(N (µ′,Σ′),N (µ,Σ)) =
1

2
tr
(
Σ−1Σ′ +Σ−1∆∆⊤)+ 1

2
log((2π)d det(Σ))

=
1

2
tr
(
Σ−1Σ′)+ 1

2
∆⊤Σ−1∆+

1

2
log((2π)d det(Σ))

Corollary E.7 (Of Lemma E.6).

H(N (µ,Σ)) =
1

2
log
(
(2πe)d det(Σ)

)

Corollary E.8 (Of Lemma E.6 and Corollary E.7). Define ∆ := µ′ − µ. Then

DKL(N (µ′,Σ′)||N (µ,Σ)) =
1

2
∆⊤Σ−1∆+

1

2
tr
(
Σ−1Σ′ − Id×d

)
+

1

2
log

det(Σ)

det(Σ′)

Lemma E.9. Let A ∈ Rd×d. The main-diagonal block matrix of A at index k ∈ {1 . . . d} with size n is a
matrix B(k, n) ∈ Rn×n with entries Bi,j(k, n) = Ak+i−1,k+j−1 for i, j ∈ {1 . . . n}. If A ≻ 0, then B(k, n) ≻ 0 for all
valid k, n.

Proof. Suppose u⊤B(k, n)u ≤ 0 for some nonzero u ∈ Rn. Define v ∈ Rd where vk+i−1 = ui for i = 1 . . . n and
other entries are zero. Then v is nonzero and v⊤Av = u⊤B(k, n)u ≤ 0, contradicting the premise that A ≻ 0.
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Lemma E.10. Let X ∈ Rd and Y ∈ Rd′ be jointly normal with parameters (µ,Σ). Assume that ΣY −ΣY XΣ−1
X ΣXY

is invertible. Then for any z = (x, y) ∈ Rd+d′ ,

1

(
√
2π)d+d′

√
det(Σ)

exp

(
−1

2
(z − µ)⊤Σ−1(z − µ)

)
=

1

(
√
2π)d

√
det(ΣX)

exp

(
−1

2
(x− µX)⊤Σ−1

X (x− µX)

)
× 1

(
√
2π)d′

√
det(Ω)

exp

(
−1

2
(y − ϕ(x))⊤Ω−1(y − ϕ(x))

)
(60)

where Ω ∈ Rd′×d′ and ϕ(x) ∈ Rd′ are defined as

Ω := ΣY − ΣY XΣ−1
X ΣXY (61)

ϕ(x) := µY +ΣY XΣ−1
X (x− µX) ∀x ∈ Rd (62)

Proof. By block matrix inversion and abbreviating O = Σ−1
X ΣXY ,

Σ−1 =

[
ΣX ΣXY
ΣY X ΣY

]−1

=

[
Σ−1
X +OΩ−1O⊤ −OΩ−1

−Ω−1O⊤ Ω−1

]
Abbreviating u = x− µX and v = y − µY ,

(z − µ)⊤Σ−1(z − µ) = u⊤
(
Σ−1
X +OΩ−1O⊤)u− u⊤OΩ−1v − v⊤Ω−1O⊤u+ v⊤Ω−1v

= u⊤Σ−1
X u+ u⊤OΩ−1O⊤u− 2u⊤OΩ−1v + v⊤Ω−1v

= u⊤Σ−1
X u+ (v −O⊤u)⊤Ω−1(v −O⊤u)

= (x− µX)⊤Σ−1
X (x− µX) + (y − ϕ(x))⊤Ω−1(y − ϕ(x))

where we use the fact that Ω is symmetric. By the determinant identity of a block matrix, we have det(Σ) =
det(ΣXΩ) = det(ΣX) det(Ω). Applying these identities to the LHS of (60) yields the RHS.

Lemma E.11. Let X ∈ Rd and Y ∈ Rd′ be jointly normal with parameters (µ,Σ). Assume that ΣY −ΣY XΣ−1
X ΣXY

is invertible. Then

H(Y |X) =
1

2
log
(
(2πe)d

′
det(ΣY − ΣY XΣ−1

X ΣXY )
)

(63)

I(X,Y ) =
1

2
log

(
det(ΣX) det(ΣY )

det(Σ)

)
(64)

Proof. By Lemma E.10, Y |X = x is distributed as N (ϕ(x),Ω) for any x ∈ Rd where ϕ(x) := µY +ΣY XΣ−1
X (x−µX)

and Ω := ΣY − ΣY XΣ−1
X ΣXY . Thus

H(Y |X = x) = E [− log Pr(Y |X = x)] =
1

2
E
[
(Y − ϕ(x))⊤Ω−1(Y − ϕ(x))

]
+

1

2
log((2π)d

′
det(Ω))

Using trace similarly as in the proof of Lemma E.6, we can verify

E
[
(Y − ϕ(x))⊤Ω−1(Y − ϕ(x))

]
= Ω−1(ΣY − ΣY XΣ−1

X (x− µX)(x− µX)⊤Σ−1
X ΣXY )

Taking the expectation over x yields Id′×d′ . This shows (63). To show (64), we have

I(X,Y ) = H(Y )−H(Y |X)

=
1

2
log
(
(2πe)d

′
det(ΣY )

)
− 1

2
log
(
(2πe)d

′
det(Ω)

)
=

1

2
log

(
det(ΣY )

det(Ω)

)
=

1

2
log

(
det(ΣX) det(ΣY )

det(Σ)

)
where for the last equality we use the fact that det(Σ) = det(ΣXΩ) = det(ΣX) det(Ω).
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Lemma E.12. The following statements about X ∈ Rd are equivalent.

1. X ∼ N (µ,Σ).

2. MX(t) = exp(t⊤µ+ 1
2 t

⊤Σt) for all t ∈ Rd.

3. X = Σ1/2Z + µ where Z ∼ N (0d, Id×d).

4. Y = a⊤X has the density N (a⊤µ, a⊤Σa) for all nonzero a ∈ Rd.

Proof. Lemma C.1 gives 1 ≡ 2. To show 2 ≡ 3 we note that by (42)

MΣ1/2Z+µ(t) = exp
(
t⊤µ

)
MZ(Σ

1/2t) = exp

(
t⊤µ+

1

2
t⊤Σt

)
=MX(t)

We have 1 ⇒ 4 since the density of Y is N (a⊤µ, a⊤Σa) by Lemma C.2. To show 4 ⇒ 2, pick any nonzero a ∈ Rd.
For all t ∈ R

MX(ta) =Ma⊤X(t) = exp

(
ta⊤µ+

1

2
t2a⊤Σa

)
where the first equality uses (42) and the second equality uses Lemma C.1. Setting t = 1 gives MX(a) =
exp

(
a⊤µ+ 1

2a
⊤Σa

)
. Additionally, MX(0d) = 1 = exp

(
0⊤d µ+ 1

20
⊤
d Σ0d

)
. Thus MX(t) = exp(t⊤µ + 1

2 t
⊤Σt) for

all t ∈ Rd.

Lemma E.13 (Popoviciu’s inequality). For any bounded scalar random variable X ∈ [a, b],

Var (X) ≤ (b− a)2

4

with equality iff Pr(X = a) = Pr(X = b) = 1
2 .

Proof. For any constant c ∈ R, E[(X − c)2] = E[(X −E[X] +E[X]− c)2] ≥ Var (X). Choosing c = b−a
2 and using

the fact that
∣∣X − b−a

2

∣∣ ≤ b−a
2 , we have Var (X) ≤ E[(X − b−a

2 )2] ≤ (b−a)2
4 .

Lemma E.14 (Markov’s inequality). For any nonnegative scalar random variable X ≥ 0, for any ϵ > 0:

Pr(X ≥ ϵ) ≤ E[X]

ϵ

Proof.

E[X] =

∫ ∞

0

Pr(X = x)x dx (proof similar if X is discrete)

≥
∫ ∞

ϵ

Pr(X = x)x dx

≥
∫ ∞

ϵ

Pr(X = x)ϵ dx

≥ ϵPr(X ≥ ϵ)

Lemma E.15 (Chernoff’s inequality). For any scalar random variable X ∈ R and ϵ ≥ E[X],

Pr(X ≥ ϵ) ≤ e−ψ
∗
X(ϵ)

where ψ∗
X(ϵ) = supt∈R tϵ− ψX(t) is the Legendre transform of the CGF ψX(t) = logE[etX ].
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Proof.

Pr(X ≥ ϵ) ≤ Pr(tX ≥ tϵ) ∀t ≥ 0

= Pr(etX ≥ etϵ)

=
E[etX ]

etϵ
(Markov’s inequality, since etX ≥ 0 and etϵ > 0)

= e−(tϵ−ψX(t))

In particular,

Pr(X ≥ ϵ) ≤ inf
t≥0

e−(tϵ−ψX(t))

= e−(supt≥0 tϵ−ψX(t))

= e−(supt∈R tϵ−ψX(t)) (65)

= e−ψ
∗
X(ϵ)

The step (65) uses the following lemma.

Lemma. Let J(t) := tϵ− ψX(t) and J∗ = supt∈R J(t). Then J∗ ≥ J(0).

Proof.

J(t) = tϵ− logE[etX ]

≤ tϵ− tE[X] (Jensen’s inequality: logE[X] ≥ E[logX])

= t (ϵ−E[X])︸ ︷︷ ︸
≥0

Thus J(t) ≤ 0 for all t < 0. The lemma follows from the fact that J(0) = 0.

Theorem E.16 (Factorization Theorem). Assume a joint distribution

pΘXT (θ, x, t) = pΘ(θ)× pX|Θ(x|θ)× [[τ(x) = t]]

where X ∈ X is a sample from a distribution parametrized by Θ ∈ H, and T = τ(X) ∈ T is the sample statistic for
some function τ : X → T . The following statements about τ are equivalent: if any holds, we say τ is a sufficient
statistic for Θ.

• X is conditionally independent of Θ given T = t:

pX|T (x|t) = pX|TΘ(x|t, θ) (66)

• There exist fT : X → R and g : T ×H → R such that

pX|Θ(x|θ) = fT (x)× g(τ(x), θ) (67)

Proof. (67)⇒(66): For any t, θ,

pT |Θ(t|θ) =
∑

x∈X : τ(x)=t

pX|Θ(x|θ) (proof similar if X is continuous)

=
∑

x∈X : τ(x)=t

fT (x)× g(τ(x), θ) (67)

=

 ∑
x∈X : τ(x)=t

fT (x)

× g(t, θ)
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thus for any x satisfying τ(x) = t,

pX|TΘ(x|t, θ) =
pXT |Θ(x, t|θ)
pT |Θ(t|θ)

=
fT (x)× g(t, θ)(∑

x∈X : τ(x)=t fT (x)
)
× g(t, θ)

=
fT (x)∑

x∈X : τ(x)=t fT (x)

and pX|TΘ(x|t, θ) = 0 for x such that τ(x) ̸= t. This implies pX|T (x|t) = pX|TΘ(x|t, θ) for all θ.

(66)⇒(67): Define fT (x) = pX|T (x|τ(x)) and g(t, θ) = pT |Θ(t|θ). Then

pX|Θ(x|θ) = pXT |Θ(x, τ(x)|θ)
= pX|TΘ(x|τ(x), θ)× pT |θ(τ(x)|θ)
= pX|T (x|τ(x))× pT |Θ(τ(x)|θ) (66)

= fT (x)× g(τ(x), θ)

Lemma E.17. Let X ∈ X be a random variable and τ : X → Rm be a function such that

Bp,τ (θ) := logE
[
eθ

⊤τ(X)
]

exists for all θ ∈ Rm. Then Bp,τ : Rm → R is convex.

Proof. We use Hölder’s inequality which states that E[|XY |] ≤ E[|X|p]
1
pE[|Y |q]

1
q for any p, q ≥ 1 satisfying 1

p+
1
q =

1. For any α ∈ [0, 1] and θ, ω ∈ Rm:

exp (Bp,τ (αθ + (1− α)ω)) = E
[
eαθ

⊤τ(X)+(1−α)ω⊤τ(X)
]

= E
[∣∣∣eαθ⊤τ(X)

∣∣∣ ∣∣∣e(1−α)ω⊤τ(X)
∣∣∣]

≤ E

[∣∣∣eαθ⊤τ(X)
∣∣∣ 1
α

]α
E

[∣∣∣e(1−α)ω⊤τ(X)
∣∣∣ 1
1−α

](1−α) (
p =

1

α
, q =

1

1− α

)
= E

[
eθ

⊤τ(X)
]α

E
[
eω

⊤τ(X)
](1−α)

= exp (Bp,τ (θ))
α
exp (Bp,τ (ω))

(1−α)

Taking the log on both sides yields Bp,τ (αθ + (1− α)ω) ≤ αBp,τ (θ) + (1− α)Bp,τ (ω).

Lemma E.18. Let p be a distribution over Rd and define qp,τ,θ(x) :=
eθ

⊤τ(x)p(x)

Ex′∼p[e
θ⊤τ(x′)]

for function τ : Rd → Rm and

θ ∈ Rm where Ex′∼p[e
θ⊤τ(x′)] exists. Let Bp,τ (θ) := logEx∼p[e

θ⊤τ(x)]. Then

∇Bp,τ (θ) = E
x∼qp,τ,θ

[τ(x)]

∇2Bp,τ (θ) = Cov
x∼qp,τ,θ

(τ(x))

Proof.

∇Bp,τ (θ) =
Ex∼p[e

θ⊤τ(x)τ(x)]

Ex′∼p[eθ
⊤τ(x′)]

∇2Bp,τ (θ) =
Ex∼p[e

θ⊤τ(x)τ(x)τ(x)⊤]

Ex′∼p[eθ
⊤τ(x′)]

−

(
Ex∼p[e

θ⊤τ(x)τ(x)]

Ex′∼p[eθ
⊤τ(x′)]

)(
Ex∼p[e

θ⊤τ(x)τ(x)]

Ex′∼p[eθ
⊤τ(x′)]

)⊤

Thus by the definition of qp,τ,θ

∇Bp,τ (θ) = E
x∼qp,τ,θ

[τ(x)]

∇2Bp,τ (θ) = E
x∼qp,τ,θ

[
τ(x)τ(x)⊤

]
−
(

E
x∼qp,τ,θ

[τ(x)]

)(
E

x∼qp,τ,θ
[τ(x)]

)⊤
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Lemma E.19. N (µ,Σ) is in the exponential family, with one parameterization given by

h(x) =
1

(
√
2π)d

(base measure)

θ =

[
Σ−1µ

− 1
2vec

(
Σ−1

)] ∈ Rd(d+1) (natural parameter)

τ(x) =

[
x

vec
(
xx⊤

)] ∈ Rd(d+1) (sufficient statistic)

Ah,τ (θ) =
1

2

(
µ⊤Σ−1µ+ log (det(Σ))

)
(log-partition function)

where vec(M) ∈ Rn2

is the vector form of matrix M ∈ Rn×n with [vec(M)](i−1)n+j =Mi,j .

Proof.

N (µ,Σ)(x) =
1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
=

1

(
√
2π)d

exp

(
µ⊤Σ−1x− 1

2
x⊤Σ−1x− 1

2
µ⊤Σ−1µ− 1

2
log (det(Σ))

)
=

1

(
√
2π)d

exp

([
Σ−1µ

− 1
2vec

(
Σ−1

)]⊤ [ x
vec
(
xx⊤

)]− 1

2

(
µ⊤Σ−1µ+ log (det(Σ))

))

where we use the fact that u⊤Mv = vec(M)⊤vec(uv⊤).

Lemma E.20. Let qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
with Ah,τ (θ) = log

(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
denote

an exponential family. The log-MGF of the sufficient statistic τ(x) is given by

ψτ(X)(t) = Ah,τ (θ + t)−Ah,τ (θ)

Proof.

Mτ(X)(t) = E
x∼qh,τ,θ

[
exp(t⊤τ(x))

]
=

∫
x∈Rd

h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
exp(t⊤τ(x))dx

= exp (−Ah,τ (θ))
∫
x∈Rd

h(x) exp
(
(θ + t)⊤τ(x)

)
dx

= exp (Ah,τ (θ + t)−Ah,τ (θ))

Lemma E.21. Let qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
with Ah,τ (θ) = log

(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
denote

an exponential family. Define a distribution over θ ∈ Rm by

πh,τ (θ;α, β) :=
1

Zh,τ (α, β)
exp

(
θ⊤α− βAh,τ (θ)

)
for α ∈ Rm and β ∈ R such that Zh,τ (α, β) :=

∫
θ∈Rm exp

(
θ⊤α− βAh,τ (θ)

)
dθ exists. Then the conditional

distribution over θ given x is

κh,τ (θ|x;α, β) = πh,τ (θ; τ(x) + α, 1 + β)
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Proof. By Bayes’ rule,

κh,τ (θ|x;α, β) ∝ πh,τ (θ;α, β)× qh,τ,θ(x)

=
1

Zh,τ (α, β)
exp

(
θ⊤α− βAh,τ (θ)

)
× h(x) exp

(
θ⊤τ(x)−Ah,τ (θ)

)
∝ exp

(
θ⊤(τ(x) + α)− (1 + β)Ah,τ (θ)

)
This implies κh,τ (θ|x;α, β) = πh,τ (θ; τ(x) + α, 1 + β).

Lemma E.22. Let Xt denote the t-tilted X ∼ N (µ,Σ) using τ(x) = x. Then

Xt ∼ N (µ+Σt,Σ)

Proof. We can directly verify this claim using the fact that the CGF of X is µ⊤t+ 1
2 t

⊤Σt:

Pr(Xt = x) =
et

⊤x

Ex′∼N (µ,Σ)[et
⊤x′ ]

N (µ,Σ)(x)

=
1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ) + t⊤x− µ⊤t− 1

2
t⊤Σt

)
=

1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ− Σt)⊤Σ−1(x− µ− Σt)

)

Lemma E.23 (Hoeffding’s lemma). Let X ∈ [a, b] be a bounded scalar random variable. Then

ψX−E[X](t) ≤
(b− a)2t2

8

Proof. For any t ∈ R, by Taylor’s approximation of ψX around 0, for some η between 0 and t:

ψX(t) = ψX(0)︸ ︷︷ ︸
0

+ψ′
X(0)︸ ︷︷ ︸
E[X]

t+
1

2
ψ′′
X(η)︸ ︷︷ ︸

Var(Xη)

t2 ⇔ ψX−E[X](t) =
Var (Xη) t

2

2

where Xη ∈ [a, b] is the η-tilted X (44). By Popoviciu’s inequality (Lemma E.13), Var (Xη) ≤ (b−a)2
4 .

Lemma E.24. Let ψ∗
X(t) := supλ∈Rd λ⊤t− ψX(λ) denote the Legendre transform of ψX . If X ∼ N (µ,Σ),

ψ∗
X(t) =

1

2
(t− µ)⊤Σ−1(t− µ)

Proof. J(λ) = λ⊤t− ψX(λ) is concave in λ ∈ Rd since ψX is convex. The stationary condition is

∇J(λ) = t−∇ψX(λ) = t− µ− Σλ = 0d

Thus λ∗ = Σ−1(t− µ) is the maximizer of J . Then

ψ∗
X(t) = (λ∗)⊤t− ψX(λ∗)

= (λ∗)⊤t− (λ∗)⊤µ− 1

2
(λ∗)⊤Σλ∗

= (t− µ)⊤Σ−1t− (t− µ)⊤Σ−1µ− 1

2
(t− µ)⊤Σ−1(t− µ)

=
1

2
(t− µ)⊤Σ−1(t− µ)
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Lemma E.25. If X ∼ G(σ2), then Var (X) ≤ σ2.

Proof. By the Taylor series of ez = 1 + z + z2

2 + z3

6 + · · · ,

f(t) := E[etX ] = E

[
1 + tX +

t2X2

2
+
t3X3

6
+ · · ·

]
= 1 +

t2E
[
X2
]

2
+ t3P1(t)

g(t) := E[e
σ2t2

2 ] = 1 +
σ2t2

2
+
σ4t4

4
+ · · · = 1 +

σ2t2

2
+ t3P2(t)

where P1, P2 are some polynomials. By premise, for all t ∈ R

f(t) ≤ g(t) ⇔
t2E

[
X2
]

2
+ t3P1(t) ≤

σ2t2

2
+ t3P2(t)

⇔ E[X2]− σ2 ≤ tG(t)

where G is again some polynomial. Thus

E[X2]− σ2 ≤ lim
t→0

tG(t) = 0 ⇔ E[X2] ≤ σ2

Lemma E.26. If X,Z ∈ R are random variables with the CGFs ψX , ϕZ : R → R,

ψX(t) ≤ ϕZ(t) ∀t ∈ R ⇒ exp(−ψ∗
X(t)) ≤ exp(−ϕ∗Z(t)) ∀t ∈ R

where ψ∗
X(t) = supλ∈R λt− ψX(t) is the Legendre transform of ψX (similarly for ψ∗

Z(t)).

Proof.

ψX(t) ≤ ϕZ(t) ⇔ −ψX(t) ≥ −ϕZ(t)
⇔ λt− ψX(t) ≥ λt− ϕZ(t) ∀λ ∈ R
⇒ sup

λ∈R
λt− ψX(t) ≥ sup

λ∈R
λt− ϕZ(t)

⇔ ψ∗
X(t) ≥ ϕ∗Z(t)

⇔ −ψ∗
X(t) ≤ −ϕ∗Z(t)

⇔ exp(−ψ∗
X(t)) ≤ exp(−ϕ∗Z(t))

Lemma E.27. If X1 . . . XN are independently sub-Gaussian with Xi ∼ G(σ2
i ), then for all ϵ ≥ 0:

Pr

(∣∣∣∣∣ 1N
N∑
i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

− N2ϵ2

2
(∑N

i=1 σ
2
i

)


Proof. Let X̃ :=
∑N
i=1Xi. Note that X̃ ∼ G(

∑N
i=1 σ

2
i ) (4) and −X̃ ∼ G(

∑N
i=1 σ

2
i ) (2). Thus

Pr

(∣∣∣∣ 1N X̃

∣∣∣∣ ≥ ϵ

)
= Pr

(
1

N
X̃ ≤ −ϵ ∨ 1

N
X̃ ≥ ϵ

)
≤ Pr

(
1

N
X̃ ≤ −ϵ

)
+ Pr

(
1

N
X̃ ≥ ϵ

)
(union bound)

= Pr
(
−X̃ ≥ Nϵ

)
+ Pr

(
X̃ ≥ Nϵ

)
≤ 2 exp

− N2ϵ2

2
(∑N

i=1 σ
2
i

)
 (3)
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F Individually Normal But Not Jointly Normal

This is an example from Wikipedia. Let X ∼ N (0, 1) and, independently, ϵ ∼ R where R denotes the Rademacher
distribution. Let Y = ϵX. By the symmetry of the distribution of X, we have Y ∼ N (0, 1). More formally,

Pr(Y ≤ x) = Pr(ϵ = 1)Pr(X ≤ x) + Pr(ϵ = −1)Pr(X ≥ −x)
= Pr(ϵ = 1)Pr(X ≤ x) + Pr(ϵ = −1)Pr(−X ≤ x)

=
1

2
Pr(X ≤ x) +

1

2
Pr(X ≤ x)

= Pr(X ≤ x)

Let Z = X + Y . Then Z = 0 with probabilty 1
2 and Z = 2X with probability 1

2 , so

Pr(Z = z) =
1

2

(
[[z = 0]] +N (0, 1)

(z
2

))
(68)

which is not a normal distribution. Then by definition 4, (X,Y ) ∈ R2 is not normally distributed. Thus X and Y
are not jointly normal, even though they are individually normal.

Mutual information. X and Y are uncorrelated. More formally,

Cov (X,Y ) = E [XY ]−E [X]E [Y ] = E
[
ϵX2

]
= E [ϵ]E

[
X2
]
= 0

Thus cor (X,Y ) = 0. But X and Y are not independent. Specifically, Pr(Y = x|X = x) = 1
2 is not equal to

Pr(Y = x) = N (0, 1)(x) for any x ∈ R. This illustrates the limitation of linear correlation. On the other hand, the
mutual information between X and Y is positive:

I(X,Y ) = H(X)−H(X|Y ) = H(X)− log(2) = log

√
πe

2
≈ 0.73
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https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

	Definitions
	Joint Distribution
	Linear Combinations
	Conditional Distribution

	Entropy
	Mutual Information

	Central Limit Theorem
	Exponential Family
	Exponential Tilting
	Cumulant-Generating Function
	Sub-Gaussian Distribution
	TODO: High-Dimensional Behavior
	TODO: Gaussian Process
	Integration for Dummies
	Single-Variable
	Substitution in practice

	Multi-Variable
	Applications to probability


	Continuous Entropy and KL Divergence
	Shortcomings of Continuous Entropy
	Inconsistency with Shannon entropy
	Variability under change of coordinates


	Moment-Generating Function
	Cumulant-Generating Function

	Exponential Family
	Exponential Tilting
	Unnormalized Form
	Discussions


	Lemmas
	Individually Normal But Not Jointly Normal

