
Efficient Attention

Karl Stratos

1 FlashAttention

FlashAttention [2] is a GPU-friendly implementation of the transformer attention layer. It follows existing works on
memory-efficient attention, but explicitly focuses on reducing the number of reads from the GPU’s high bandwidth
memory (HBM). This is because data movement has been shown to be the performance bottleneck in transformers,
not FLOP count [8, 3]. As a result, FlashAttention reduces the memory overhead and increases the wall-clock
speed.

1.1 Forward Function

Numerically stable attention on v1 . . . vT ∈ RD with scores α1 . . . αT ∈ R is defined as

o =

T∑
t=1

exp(αt −maxTs=1 αs)∑T
l=1 exp(αl −maxTs=1 αs)

vt ∈ RD

Naive calculation requires three passes over the sequences (for the max, sum, and output). Several works instead
consider the streaming version [6, 4, 7]

c0 = −∞ ct = max(ct−1, αt)

π0 = 0 πt = exp(ct−1 − ct)πt−1 + exp(αt − ct)

o0 = 0D ot =
πt−1 exp(ct−1 − ct)

πt
ot−1 +

exp(αt − ct)

πt
vt

We can easily show that ct = maxl≤t αl, πt =
∑

l≤t exp(αl − ct), and ot =
∑

l≤t
exp(αl−ct)

πt
vl for t = 1 . . . T (thus

o = oT). In practice, we (i) overwrite the variables, (ii) stream in chunks, and (iii) batch queries.

The FlashAttention forward function is given below. We use the superscript [i] to denote the i-th batch and [j] to
denote the j-th chunk. See Appendix A for the broadcasting notation.

Input: Q ∈ RL×d, K ∈ RT×d, V ∈ RT×D, batch size Γ, chunk size Λ
Output: c ∈ RL×1, π ∈ RL×1, O ∈ RL×D

• (c, π,O)← (−∞L×1, 0L×1, 0L×D)

• For j = 1 . . . ⌈T
Λ
⌉, load K [j] ∈ RΛ×d, V [j] ∈ RΛ×D:

– For i = 1 . . . ⌈L
Γ
⌉, load Q[i] ∈ RΓ×d:

A[i,j] ← Q[i](K [j])⊤√
d

∈ RΓ×Λ

c[i]new ← max
(
c[i], A[i,j].max(2)

)
∈ RΓ×1

π[i]
new ← exp(c[i] − c[i]new)⊛ π[i] + exp(A[i,j] ⊖ c[i]new).sum(2) ∈ RΓ×1

O[i]
new ← (π[i] ⊘ π[i]

new)⊛ exp(c[i] − c[i]new)⊛O[i] + (exp(A[i,j] ⊖ c[i]new)⊘ π[i]
new)V

[j] ∈ RΓ×D

(c[i], π[i], O[i])← (c[i]new, π
[i]
new, O

[i]
new)

Like previous memory-efficient attention works, the algorithm has a memory overhead of O(L), rather than O(LT)
in standard attention (A.1).

1

1.2 Backward Function

To maintain the memory efficiency in the backward function, we must recompute the L × T attention matrix in
blocks (i.e., gradient checkpointing). We write zX = ∂L

∂X ∈ Rm×n to denote the gradient of the loss L ∈ R with
respect to tensor X ∈ Rm×n (see Appendix C if you need a review of backpropagation). Forget about the streaming
attention and consider the correct implementation:

A =
QK⊤
√
d
∈ RL×T P = exp(A⊖ c)⊘ π ∈ RL×T O = PV ∈ RL×D

zA = P ⊛ (zP ⊖ (P ⊛ zP).sum(2)) ∈ RL×T zP = zOV
⊤ ∈ RL×T zO ∈ RL×D

zQ ← zQ +
zAK√

d
∈ RL×d zK ← zK +

z⊤AQ√
d
∈ RT×d zV ← zV + P⊤zO ∈ RT×D

(We assume that the intermediate variables A,P are not used outside this operation.) We have c, π ∈ RL×1 from
forward and can easily recompute the attention matrix P in blocks. The bad news is that zA requires reducing over
T elements in u = (P ⊛ zP).sum(2) ∈ RL×1. We can avoid this issue by reparameterizing u = (O ⊛ zO).sum(2)
where the sum is now over D dimensions [2]. The identity is not standard linear algebra but can be directly verified:
for any query i ∈ [L],

ui =

T∑
t=1

Pi,tzP,i,t =

T∑
t=1

Pi,t︸︷︷︸
R

zO,i︸︷︷︸
1×D

v⊤t︸︷︷︸
D×1

= zO,i︸︷︷︸
1×D

(
T∑

t=1

Pi,tv
⊤
t

)
︸ ︷︷ ︸

D×1

= zO,i︸︷︷︸
1×D

Oi︸︷︷︸
D×1

Putting together, we give the FlashAttention backward function below:

Input: Q ∈ RL×d, K ∈ RT×d, V ∈ RT×D, batch size Γ, chunk size Λ
From forward: c ∈ RL×1, π ∈ RL×1, O ∈ RL×D

Gradients slots: zO ∈ RL×D (read); zQ ∈ RL×d, zK ∈ RT×d, zV ∈ RT×D (read/write)

• For j = 1 . . . ⌈T
Λ
⌉, load K [j] ∈ RΛ×d, V [j] ∈ RΛ×D, z

[j]
K ∈ RΛ×d, z

[j]
V ∈ RΛ×D:

– For i = 1 . . . ⌈L
Γ
⌉, load Q[i] ∈ RΓ×d, c[i], π[i] ∈ RΓ×1, O[i] ∈ RΓ×D, z

[i]
Q ∈ RΓ×d, z

[i]
O ∈ RΓ×D:

P [i,j] ← exp

(
Q[i](K [j])⊤√

d
⊖ c[i]

)
⊘ π[i] ∈ RΓ×Λ z

[j]
V ← z

[j]
V + (P [i,j])⊤z

[i]
O ∈ RΛ×D

z
[i,j]
A ← P [i,j] ⊛ (z

[i]
O (V [j])⊤ ⊖ (O[i] ⊛ z

[i]
O).sum(2)) ∈ RΓ×Λ z

[j]
K ← z

[j]
K +

(z
[i,j]
A)⊤Q[j]

√
d

∈ RΛ×d

z
[i]
Q ← z

[i]
Q +

z
[i,j]
A K [j]

√
d

∈ RΓ×d

1.3 Memory Read Analysis

Assume L = T , D = d, and T > d. Standard attention makes O(T 2) reads since it explicitly computes the

full attention probability matrix P ∈ RT×T to read from. FlashAttention makes O(Td + T 2d
Λ) reads: loading

K,V ∈ RT×d in the outer loop and Q,O ∈ RT×d for T
Λ times in the inner loop. Assuming an SRAM size of

M < Td, FlashAttention sets Λ = M
4d as the largest chunk size that can fit the query/key/value vectors and other

intermediate results. This yields O(T
2d2

M) reads, which is fewer than O(T 2) if d <
√
M .

1.4 FlashAttention-2

FlashAttention-2 (FA-2) [1] further optimizes FlashAttention (FA-1) especially for longer sequences (i.e., large T)
with additional engineering insights.

• Parallelization over chunks. FA-1 only parallelizes over batches/heads (by putting them on different
thread blocks).1 FA-2 additionally parallelizes over chunks.2 This is trivial in the forward function since
the chunks are independent (i.e., the steps in the outer loop do not depend on each other). They are not

1We conflate heads with batches since heads can be viewed as additional queries (Appendix B.3.1).
2Confusingly, parallelization over chunks was first branded as Flash-Decoding.

2

https://pytorch.org/blog/flash-decoding/

independent in the backward function because of the shared z
[i]
Q ; updating this is handled separately with an

additional block.

• Parallelization over KV cache loading. At decoding time, FA-2 splits the KV cache across different
blocks (i.e., multiple blocks load the cache at the same time), as done in PagedAttention [5]. This speeds up
loading the KV cache which is the primary bottleneck in inference. The blocks communicate intermediate
results through HBM.

• Work partitioning between warps. Even within a thread block, we can optimize how work is partitioned
between different warps (groups of 32 threads). FA-2 splits Q across warps while keeping K,V accessible to
all warps to remove communication between warps.

• Reducing non-matmul operation. We can avoid repeating some non-matmul operations in FA-1: pulling

out ⊘π[i]
new when updating O

[i]
new in forward and combining c and π through logsumexp in backward.

• Exploiting masking. Causal attention makes it unnecessary to compute attention for a half of the blocks,
so they are skipped. For the rest, only one block at the end of each row needs masking.

2 PagedAttention

Transformer inference throughput is memory-bound: it’s low not because we don’t have enough compute power
but because we don’t have enough memory to serve more requests concurrently. PagedAttention [5], implemented
in the popular vLLM system, is a method to reduce memory fragmentation in managing KV caches. At inference
time, a decoder-only transformer generates a response to a prompt x1 . . . xm ∈ X in two stages.

1. Step t = 1 (matrix-matrix): Compute xm+1 ∼ p(·|x1 . . . xm) with m+1 queries x1 . . . xm by causal attention.

2. Step t ≥ 2 (matrix-vector): Compute xm+t ∼ p(·|x1 . . . xm+t−1) with 1 new query xm+t−1.

In the second stage, we compuate multi-head attention from 1 query to all previously computed key-value embed-

dings: the KV cache. At the t-th step, the cache consists of (k
(l)
i , v

(l)
i) ∈ Rd × Rd for all layers l = 1 . . . L and

positions 1 ≤ i < t. Since they are typically packed into tensors, which are stored as contiguous sequences of bytes
in memory (Appendix B), a naive memory management scheme such as reserving a maximum-length number of
slots for each request results in memory fragmentation as illustred by Kwon et al. [5]:

PagedAttention solves this problem by non-contiguously storing the KV cache as “physical” blocks of size B
default
= 16

on GPU memory. These blocks are dynamically managed by representing a request’s cache as “logical” blocks. This
is analogous to the concept of virtual memory that allows each program to act as if it has access to a large, contiguous
block of memory (image credit: Wikipedia).

(PagedAttention) (Virtual memory)

3

https://github.com/vllm-project/vllm
https://en.wikipedia.org/wiki/Virtual_memory

PagedAttention allows for (i) simultaneous handling of multiple requests’ caches, (ii) sharing the same cache for
different requests until not possible (e.g., parallel sampling, in-context learning, more complicated cases like beam
search), (iii) scheduling which requests to handle first given limited GPU memory (e.g., “swap” the cache of an
evicted sequence to CPU RAM). It also supports model parallel inference by managing multiple shards (which
share the same cache). Since it needs additional computation for cache management, it results in a minor increase
in latency. But it eliminates much of memory fragmentation, dramatically increasing the throughput when serving
a large number of streaming requests.

References

[1] Dao, T. (2024). Flashattention-2: Faster attention with better parallelism and work partitioning. In The Twelfth
International Conference on Learning Representations.

[2] Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. (2022). Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Information Processing Systems, 35, 16344–16359.

[3] Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., and Hoefler, T. (2021). Data movement is all you need: A case
study on optimizing transformers. Proceedings of Machine Learning and Systems, 3, 711–732.

[4] Jang, H., Kim, J., Jo, J.-E., Lee, J., and Kim, J. (2019). Mnnfast: A fast and scalable system architecture
for memory-augmented neural networks. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 250–263.

[5] Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., and Stoica, I. (2023).
Efficient memory management for large language model serving with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 611–626, New York, NY, USA. Association for
Computing Machinery.

[6] Milakov, M. and Gimelshein, N. (2018). Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867 .

[7] Rabe, M. N. and Staats, C. (2021). Self-attention does not need o(n2) memory. arXiv preprint arXiv:2112.05682 .

[8] Shazeer, N. (2019). Fast transformer decoding: One write-head is all you need. arXiv preprint arXiv:1911.02150 .

A Broadcasting Notation

We use the following binary operators for broadcasting: elementwise addition ⊕, elementwise subtraction ⊖, el-
ementwise division ⊘, elementwise multiplication ⊛, elementwise division ⊘, pairwise maximum max, matrix
multiplication matmul. If broadcasting is not needed, we use the standard mathematical notation (e.g., a matrix
A ∈ Rm×n divided by a constant c ∈ R is written as A

c ∈ Rm×n, standard matrix multiplication between A ∈ Rm×n

and B ∈ Rn×p is written as AB ∈ Rm×p). Remember the rules of broadcasting (poet: Sasha Rush):

For example, if A ∈ R9×1×3 and B ∈ R8×1, the result C ← A ⊕ B ∈ R9×8×3 contains Ci,j,k = Ai,1,k + Bj,1;
C ← max(A,B) ∈ R9×2×3 contains Ci,j,k = max(Ai,1,k, Bi,j,1). Matrix multiplication broadcasts over dimensions
excluding the last two: if A ∈ R9×1×3×2 and B ∈ R8×2×4, the result C ← matmul(A,B) ∈ R9×8×3×4 contains
matrices Ci,j = Ai,1Bj ∈ R3×4 where tensors are sliced left to right. We write boldfaced A.max(i) and A.sum(i)
to denote the maximum and summation along the i-th axis of A. When no axis is provided, all axes are used. We
keep the collapsed dimension to preserve the number of dimensions. For example, if A ∈ R3×5×2, then A.max(3) ∈
R3×5×1. See Appendix B for an overview of how tensors are stored in memory.

4

https://github.com/srush/Tensor-Puzzles?tab=readme-ov-file

A.1 Standard Attention

An implementation of the forward/backward function of standard attention, in our broadcasting notation, is given
below:

Input: Q ∈ RL×d, K ∈ RT×d, V ∈ RT×D

Memory overhead (in length): O(LT)
Output: O ∈ RL×D

1. A← QK⊤
√
d
∈ RL×T

2. c← A.max(2) ∈ RL×1

3. S ← exp (A⊖ c) ∈ RL×T

4. π ← S.sum(2) ∈ RL×1

5. P ← S ⊘ π ∈ RL×T

6. O ← PV ∈ RL×D

Input: Q ∈ RL×d, K ∈ RT×d, V ∈ RT×D; zO ∈ RL×D,
P ∈ RL×T from forward
Memory overhead (in length): O(LT)
Output: zQ ∈ RL×d, zK ∈ RT×d, zV ∈ RT×D

1. zV ← P⊤zO ∈ RT×D

2. zP ← zOV
⊤ ∈ RL×T

3. zA ← P ⊛ zP − (P ⊛ zP).sum(2)⊛ P ∈ RL×T

4. zQ ← zAK√
d
∈ RL×d

5. zK ← z⊤AQ√
d
∈ RT×d

B How Tensors Are Stored in Memory

B.1 Memory Tape

Conceptually, memory (either CPU or GPU) can be viewed as a long sequence (“tape”) of bytes. The CPU memory
(RAM) is managed by the operating system; the GPU memory is managed by the GPU itself. Modern addressing
systems are 64-bit, yielding 264 bytes (16 billion GBs) of theoretically possible memory. A pointer is the index on
the memory tape, representing the unique address of the referred byte (e.g., the pointer value 0xffe2ac6c refers to
the 4,293,045,356-th byte in hexadecimal notation).

In this section only, we assume indices start from 0. We can stride by the number of bytes needed for the considered
data type to address memory at the level of the data type. For instance, if u = (u0, u1, . . . , u7) is a vector of 8
float32 numbers, and uptr is a pointer to u, the address of the i-th element ui is

address(ui) = uptr + sizeof(float32)i

where sizeof(float32) = 4. In high-level languages like Triton, the data loading functions automatically take
care of index scaling for the considered data type (e.g., ui = load(uptr + i) performs scaling under the hood). Thus
for our purposes, we will view memory as a tape of floats.

B.2 Flattening

To store multi-dimensional tensors in memory, they must be flattened. Two popular schemes are (i) row-major
(NumPy, PyTorch) and (ii) column-major (Matlab, Fortran). For instance, the matrix A = [[a1,1, a1,2]; [a2,1, a2,2]] ∈
R2×2 is flattened as [a1,1, a1,2, a2,1, a2,2] ∈ R4 under row-major ordering and [a1,1, a2,1, a1,2, a2,2] ∈ R4 under column-
major ordering. They have different implications in efficiency, but we will assume row-major. If we have a 3-
dimensional tensor like A ∈ Rm×n×p at Aptr, the value Ai,j,k can be accessed as

Ai,j,k = load(Aptr + (np)i+ (p)j + k)

We must use the correct stride for each dimension to account for row-major flattening. For instance, the value in
the 11-th column of the 5-th row of the 4-th matrix has the address Aptr + (np)3 + (p)4 + 10 because each row has
p floats and each matrix has np floats. Using the range notation (e.g., range(3) = [0, 1, 2, 3]) and broadcasting, we
can load the entire tensor as

A = load(Aptr ⊕ (n× p× range(m)).view(m, 1, 1)⊕ (p× range(n)).view(1, n, 1)⊕ (range(p)).view(1, 1, p))

B.3 Memory-Free Operations

Transpose. Switching the axes i and j of a tensor A can be achieved without making a copy of A. For instance,
the elements of B ← A.transpose(1, 2) ∈ Rm×p×n where A ∈ Rm×n×p is pointed to by Aptr can be accessed as

Bi,j,k = load(Aptr + (np)i+ (n)k + j)

5

View. Viewing a tensor as one with a new shape by either merging or splitting certain consecutive dimensions can
be achieved without making a copy. For instance, the elements of B ← A.view(m,np) ∈ Rm×np where A ∈ Rm×n×p

is pointed to by Aptr can be accessed as

Bi,j = load(Aptr + (np)i+ (n)k + l) j = pk + l

Note that any j ∈ [np−1] can be uniquely decomposed as j = pk+ l where k ∈ [n−1] and l ∈ [p−1] (the formula is
l = j mod p and k = j−l

p). Similarly, the elements of C ← A.view(m1,m2, n, p) ∈ Rm1×m2×n×p where m = m1m2

can be accessed as

Ci,j,k,l = load(Aptr + (np)((m2)i+ j) + (p)k + l)

The viewing trick only works when the dimensions in the new shape are in the same order as in the old shape (after
merging or splitting). For instance, calling transpose to switch dimensions, then merging those dimensions (in the
resulting transposed tensor) by view will not work. In this case, we make an explicit copy of the tensor by calling
reshape.

B.3.1 Application

We can convert standard attention to multi-head (almost) for free of additional memory as follows (FLOP count
remains the same).

Input: Q ∈ RL×d, K ∈ RT×d, V ∈ RT×D

Parameters: Wq,Wk ∈ Rd×d and Wv,Wf ∈ RD×D, H dividing both d and D
Output: O ∈ RL×D

• Q← (QWq).view(L,H, d
H
).transpose(1, 2) ∈ RH×L× d

H

• K← (KWk).view(T,H, d
H
).transpose(1, 2) ∈ RH×T× d

H

• V← (VWv).view(T,H, D
H
).transpose(1, 2) ∈ RH×T×D

H

• A←
√

H
d
matmul(Q,K.transpose(2, 3)) ∈ RH×L×T

• c← A.max(3) ∈ RH×L×1

• S← exp (A⊖ c) ∈ RH×L×T

• π ← S.sum(3) ∈ RH×L×1

• P← S⊘ π ∈ RH×L×D
H

• O←matmul(P,V) ∈ RH×L×D
H

• O ← O.transpose(1, 2).reshape(L,D)Wf ∈ RL×D # O(LD) additional memory

C A Quick Review of Backprop

A loss L ∈ R on a batch is the final node of a DAG whose root nodes are inputs and parameters; internal nodes are
hidden states. The goal is to compute the gradient of L with respect to all nodes. A node x ∈ Rd affects L only
through its children yk = fk(x) ∈ Rdk where fk : Rd → Rdk is some differentiable function. By the chain rule

∂L

∂x
=

K∑
k=1

(
∂yk
∂x

)⊤
∂L

∂yk
(1)

where (∂yk

∂x)⊤ ∈ Rd×dk is the (transposed) Jacobian of fk with respect to x (i.e., (∂yk

∂x)⊤i,j =
∂yk,j

∂xi
).3 Backprop

computes (1) for all nodes by traversing the DAG from L in a reverse topological order and at each node accumulating
the Jacobian-gradient product to all its parents’ gradient slots (initialized to zeros). This works because of the DAG
structure. In the example, before reaching the node x, we will have finished accumulating ∂L

∂x (thus the value will
be correct):

3The sum over children is consistent with the “normal” chain rule without the sum if we view x as affecting L through a single node

y = (y1 . . . yK) ∈ Rd1+···+dK so that
(

∂y
∂x

)⊤
∂L
∂y

=
∑K

k=1

(
∂yk
∂x

)⊤
∂L
∂yk

.

6

x

d

y1

d1

y2 d2

L

1

f1

f2

∂L
∂θ

∂L
∂x

∂L
∂y1

∂L
∂y2

∂L
∂L = 1

(∂y1

∂x)⊤ ∂L
∂y1

(∂y2

∂x)⊤ ∂L
∂y2

(∂y2

∂θ)⊤ ∂L
∂y2

Forward pass Backward pass

A DAG is built by predefined operators that specify (1) forward: how to map parent tensors to an output tensor,
and (2) backward: how to compute the Jacobian-gradient product for each parent. For example, if w = f(u, v) is
a node created by the operator f(x, y) = ReLU(x⊛ y) ∈ Rd with z = ∂L

∂w ∈ Rd, the backward function accumulates

(∂w∂u)
⊤z and to the gradient slot of u and (∂w∂v)

⊤z and to the gradient slot of v. In PyTorch,

class Op(torch.autograd.Function):

@staticmethod

def forward(ctx, x, y):

ctx.save_for_backward(x, y, x * y > 0)

return (x * y > 0) * x * y

@staticmethod

def backward(ctx, z): # z is the grad wrt. the node

x, y, inds = ctx.saved_tensors

return inds * y * z, inds * x * z

u = torch.randn((8,), requires_grad=True)

L = (Op.apply(u, u) + 3 * u + u.exp()).sum() # Loss

L.backward() # Computes u.grad

class Layer(torch.nn.Module):

"""Computes ReLU(w * x) with a learnable w"""

def __init__(self, d):

super().__init__()

self.w = torch.nn.Parameter(torch.empty(d))

torch.nn.init.uniform_(self.w, -0.1, 0.1)

def forward(self, x):

return Op.apply(self.w, x)

layer = Layer(8)

u = torch.randn((8,), requires_grad=True)

L = layer(layer(u)).sum() # Loss

L.backward() # Computes u.grad, layer.w.grad

C.1 Tips and Examples

Matrix multiplication. Treat a matrix of shape m× n as a vector of length mn. We can then derive

C︸︷︷︸
m×p

= A︸︷︷︸
m×n

B︸︷︷︸
n×p

: zA︸︷︷︸
m×n

← zA + zC︸︷︷︸
m×p

B⊤︸︷︷︸
p×n

zB︸︷︷︸
n×p

← zB + A⊤︸︷︷︸
n×m

zC︸︷︷︸
m×p

Independent dimensions. If the dimensions along an axis are independent, the Jacobian is diagonal and the
backward function can treat the dimensions as independent transformations. In the previous example, we had

t = ReLU(x⊛ y) ⇔ ti = max(0, xiyi) : zx,i ← zx,i + 1(xiyi > 0)yizt,i zy,i ← zy,i + 1(xiyi > 0)xizt,i

The independent transformations can be multi-dimensional, e.g., batched matrix multiplication

C︸︷︷︸
N×m×p

= matmul(A︸︷︷︸
N×m×n

, B︸︷︷︸
N×n×p

) : zA︸︷︷︸
N×m×n

← zA +matmul(zC︸︷︷︸
N×m×p

, B.transpose(2, 3)︸ ︷︷ ︸
N×p×n

)

Softmax. If p = softmax (x) ∈ Rd, we can verify
∂pj

∂xi
= pi(1(i = j)− pj) which implies

zx,i ← zx,i + pizp,i −

 d∑
j=1

pjzp,j

 pi ⇔ zx ← zx + p⊛ zp − (p⊛ zp).sum() p (2)

The shifted softmax p = softmax (x− x.max()) ∈ Rd has the same backward function (2) (hint: the gradient wrt.
x.max() vanishes by the property of softmax). The row-wise softmax P = X.softmax(2) ∈ RN×d where we apply
(shifted) softmax over the rows of X ∈ RN×d independently is then

zX ← zX + P ⊛ zP − (P ⊛ zP) .sum(2)︸ ︷︷ ︸
N×1

⊛ P︸︷︷︸
N×d

= zX + P ⊛ (zP ⊖ (P ⊛ zP) .sum(2))

7

	FlashAttention
	Forward Function
	Backward Function
	Memory Read Analysis
	FlashAttention-2

	PagedAttention
	Broadcasting Notation
	Standard Attention

	How Tensors Are Stored in Memory
	Memory Tape
	Flattening
	Memory-Free Operations
	Application

	A Quick Review of Backprop
	Tips and Examples

