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The Problem

I We observe symbol sequences x ∈ [n]∗ and their probabilities p(x).

I God says there is some HMM (π, t, o) with m states such that

p(x1 . . . xL) =
∑

h1...hL∈[m]L

π(h1)o(x1|h1)

L∏
l=2

t(ht|ht−1)o(xt|ht)

I Goal. Learn p̂ : [n]∗ → [0, 1] satisfying

p̂(x) = p(x) ∀x ∈ [n]∗
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Two Approaches to Spectral Learning of HMMs

I Special case of learning weighted finite automata (Balle et al., 2014;
Hsu et al., 2008)

I Dimensionality reduction followed by the method of moments
(Foster et al., 2012)
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Overview

I Spectral Learning of WFAs

I Dimensionality Reduction + Method of Moments
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Weighted Finite Automaton (WFA)

I Hypothesis class of WFAs

H :=
{

(a0, {Aσ}σ∈[n]∗ , a∞) : a0, a∞ ∈ Rm, Aσ ∈ Rm×m,m ∈ N
}

I A ∈ H induces fA : [n]∗ → R by

fA(x) = a>0 A
x1 · · ·AxL︸ ︷︷ ︸

Ax

a∞

I Given access to input-output pairs of f : [n]∗ → R, find a minimal
WFA computing f

Af ∈ arg min
A∈H: f=fA

mA
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Hankel Matrix

I Theorem (Carlyle and Paz, 1971). Define Hf ∈ R∞×∞ by

[Hf ]yz := f(yz) ∀y, z ∈ [n]∗

(called Hankel matrix associated with f). Then

rank (Hf ) = min
A∈H: f=fA

mA

I Thus if B ∈ H satisfies f = fB and mB = rank (Hf ), then B is a
minimal WFA computing f .

I A sufficient Hankel sub-block is H̃f ∈ R|P|×|S| indexed by some
finite P,S ⊂ [n]∗ such that ε ∈ P ∩ S and

rank
(
H̃f

)
= rank (Hf )
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Derivation of a Spectral Algorithm

I Consider any fA : [n]∗ → R where mA = m.

I Since [H̃f ]yz = a>0 A
yAza∞, a sufficient Hankel sub-block admits a

natural rank-m decomposition

H̃f︸︷︷︸
|P|×|S|

= P︸︷︷︸
|P|×m

S︸︷︷︸
m×|S|

[P ]y,: := a>0 A
y, [S]:,z := Aza∞

I If we define [H̃x
f ]yz := f(yxz) for x ∈ [n], similarly we have

H̃x
f︸︷︷︸

|P|×|S|

= P︸︷︷︸
|P|×m

Ax︸︷︷︸
m×m

S︸︷︷︸
m×|S|

I Thus if God gives us P and S, we can recover A by

Ax = P+H̃x
f S

+ a>0 = [P ]ε,: a∞ = [S]:,ε
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Derivation of a Spectral Algorithm (Cont.)

I Consider any rank-m decomposition

H̃f︸︷︷︸
|P|×|S|

= U︸︷︷︸
|P|×m

W︸︷︷︸
m×|S|

I Claim. B ∈ H defined by

Bx = U+H̃x
fW

+ b>0 = [U ]ε,: b∞ = [W ]:,ε

is a minimal WFA computing fA.

I Proof. Follows from the fact that

Bx = GAxG−1 b>0 = a>0 G
−1 b∞ = Ga∞

where G := U+P with inverse G−1 = SW+.
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Application to HMM Learning

I Organizie HMM parameters as vector/matrices (assumed to be
full-rank):

π ∈ [0, 1]m [π]h = π(h)

T ∈ [0, 1]m×m [T ]:h = t(·|h)

O ∈ [0, 1]n×m [O]:h = o(·|h)

I Matrix form of the forward algorithm

p(x1 . . . xL) = π> diag(O>δx1
)T︸ ︷︷ ︸

Ax1

· · · diag(O>δxL
)T︸ ︷︷ ︸

AxL

1

I Sufficient Hankel sub-block P1,2 ∈ [0, 1](n+1)×(n+1) given by

[P1,2]yz := p(yz) ∀y, z ∈ [n] ∪ {ε}

(Exercise: to show this, express P1,2 in terms of π, T,O.)
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Algorithm

1. Estimate P̂1,2, P̂1,x,3 ∈ [0, 1](n+1)×(n+1) from HMM samples:

[P̂1,2]yz ≈ p(yz) [P̂1,x,3]yz ≈ p(yxz) ∀y, z ∈ [n] ∪ {ε}

2. Rank-m SVD

P̂1,2 ≈ Û︸︷︷︸
(n+1)×m

Σ̂︸︷︷︸
m×m

V̂ >︸︷︷︸
m×(n+1)

3. Let Ŵ = Σ̂V̂ > and compute

B̂x = Û>P̂1,x,3Ŵ
+ b̂>0 = [Û ]ε,: b̂∞ = [Ŵ ]:,ε

4. Given any x1 . . . xL ∈ [n]∗, predict

p̂(x1 . . . xL) = b̂>0 B̂
x1 · · · B̂xL b̂∞
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Overview

I Spectral Learning of WFAs

I Dimensionality Reduction + Method of Moments
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Idea

I Let U ∈ Rn×m be any matrix such that U>O is invertible.

I Calculate m-dimensional representation of first three observations
x1, x2, x3 ∈ [n] under HMM by

yi = U>δxi

I Verify that

µ := E [y1] = U>Oπ

Σ := E
[
y1y
>
2

]
= U>Odiag(π)TO>U

Kx := E
[
[[x2 = x]] y1y

>
3

]
= U>Odiag(π)Tdiag(O>δx)TO>U
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Idea (Cont.)

I Thus if we define

c>0 := µ> = π>(O>U)

c∞ := Σ−1µ = (O>U)−11

Cx := Σ−1Kx = (O>U)−1diag(O>δx)T (O>U)

it follows that

p(x1 . . . xL) = c>0 C
x1 · · ·CxLc∞
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How to Choose U

I What U ∈ Rn×m (such that U>O is invertible) should we use?

I Assume |Ui,j | ≤ 1.

I Answer: whatever U that makes estimation θ̂ easier

I Challenge in analysis: we need to estimate the matrix inverse

Σ−1

by first estimating Σ and then taking the inverse of that estimate:

Σ̂−1
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First Lemma

Given N samples of y1, y2 to estimate Σ = E
[
y1y
>
2

]
,

Pr

∣∣∣∣∣∣Σ̂− Σ
∣∣∣∣∣∣

2
≤ m

√
ln 2m

δ

N︸ ︷︷ ︸
J

 ≥ 1− δ
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Proof

Pr
(∣∣∣∣∣∣Σ̂− Σ

∣∣∣∣∣∣
2
≥ ε
)
≤ Pr

(
m
∣∣∣∣∣∣Σ̂− Σ

∣∣∣∣∣∣
max
≥ ε
)

≤
m∑

i,j=1

Pr
(∣∣∣Σ̂i,j − Σi,j

∣∣∣ ≥ ε

m

)
≤ 2m2 exp

(
−2N

ε2

m2

)
= δ

holds if

ε = m

√
ln 2m

δ

N
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Second Lemma

Assuming N ≥ 16J2

σm(Σ)2 ,

Pr

(∣∣∣∣∣∣Σ̂−1 − Σ−1
∣∣∣∣∣∣

max
≤ 4J

σm(Σ)2

)
≥ 1− δ

Key matrix perturbation tools:∣∣∣∣∣∣Σ̂−1 − Σ−1
∣∣∣∣∣∣

2
≤ 2 max

{∣∣∣∣∣∣Σ̂−1
∣∣∣∣∣∣2

2
,
∣∣∣∣Σ−1

∣∣∣∣2
2

} ∣∣∣∣∣∣Σ̂− Σ
∣∣∣∣∣∣

2

|σ̂i − σi| ≤
∣∣∣∣∣∣Σ̂− Σ

∣∣∣∣∣∣
2

∀i ∈ [m]
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Proof

Using σm − σ̂m ≤ J (w.p. 1− δ),

1

σ̂m
≤ 1

σm − J

If N ≥ 16J2

σ2
m

, then σm ≥ 4J so σm − J ≥ 3σm

4 and

(
1

σ̂m − J

)2

≤
(

4

3σm

)2

≤ 2

σ2
m

It follows that

max

{∣∣∣∣∣∣Σ̂−1
∣∣∣∣∣∣2

2
,
∣∣∣∣Σ−1

∣∣∣∣2
2

}
= max

{(
1

σm

)2

,

(
1

σ̂m

)2
}

≤
(

1

σ̂m − J

)2

≤ 2

σ2
m
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Proof (Cont.)

From previous two slides and the first lemma,

Pr

(∣∣∣∣∣∣Σ̂−1 − Σ−1
∣∣∣∣∣∣

2
≥ 4J

σ2
m

)
≤ δ

Thus

Pr

(∣∣∣∣∣∣Σ̂−1 − Σ−1
∣∣∣∣∣∣

max
≥ 4J

σ2
m

)
≤ Pr

(∣∣∣∣∣∣Σ̂−1 − Σ−1
∣∣∣∣∣∣

2
≥ 4J

σ2
m

)
≤ δ
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Sample Complexity

∣∣∣θ̂ − θ∣∣∣ ≤ 4J

σm(Σ)2
⇒ θ − 4J

σm(Σ)2
≤ θ̂ ≤ θ − 4J

σm(Σ)2

⇒ 1− 4J

σm(Σ)2θ
≤ θ̂

θ
≤ 1− 4J

σm(Σ)2θ

⇒ 1− 4J

σm(Σ)2Λ
≤ θ̂

θ
≤ 1− 4J

σm(Σ)2Λ

⇒
(

1− 4J

σm(Σ)2Λ

)2L+3

≤ p̂

p
≤

(
1− 4J

σm(Σ)2Λ

)2L+3

⇒ 1− ε ≤ p̂

p
≤ 1 + ε

holds w.p. at least 1− δ when

N = O

(
m2 ln m

δ

((1 + ε)1/(2L+3) − 1)2σm(Σ)4Λ2

)
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So Which U?

I Choose U ∈ Rn×m so that

σm (Σ) = σm
(
E
[
U>δx1

δ>x2
U
])

= σm
(
U>P1,2U

)
is large!

I In particular, if U is the top m left singular vectors of P1,2 ∈ Rn×n,

σm (Σ) = σm (P1,2)
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