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Aside: Protective Measures are Meaningful

Flattening the curve
Delay outbreak
peak
Daily
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measures

Time since first case

Source: CDC
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Logistics

» Set up 1-1 meeting for proposal feedback (March 25-27)
» Proposal and A4 due March 24

» Exam: discussion
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Agenda

» EM: loose ends (hard EM)
» Autoencoders and VAEs

» VAE training techniques
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Recap: Latent-Variable Generative Models (LVGMs)

» Observed data comes from the population distribution pop yx

» LVGM: Model defining a joint distribution over X and Z

pxz(w,2) = pz(2) X px|z(x|2)

» Learning: Estimate pxz by maximizing log-likelihood of data
M 2N <~ popy

max Zlog ZPXZ

Pxz
z2€EZ

px (z(M)
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EM: Coordinate Ascent on ELBO

Input: data 2 ... z(V) ~ pop ., definition of px
Output: local optimum of

max Zlog prz

Pxz
z€Z

1. Initialize pxz (e.g., random distribution).
2. Repeat until convergence:
pXZ(I(i),Z)

ez Pxz(x®,2))
N

qz X(Z‘ZL'(Z)) —
| >

Pxz i=1 262

3. Return Pxz

VzeZ i=1...

N

Dxz < argmax Z Z (]Z\X(Z‘x(i)) longZ(x("), z)
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Hard EM: Coordinate Ascent on a Different Objective

Input: data 2V ... (") ~ popy, definition of pxz
Output: local optimum of

N
max lo 2@z
pxz, (2128 )EZN ; gpxz( )

1. Initialize pxz (e.g., random distribution).
2. Repeat until convergence:

N

(21...2y) ¢ argmax Zlogpxz(a:(i),éi)
(21..421\/)621\7 i=1

N

pxz ¢ argmax E log pxz(z'¥, ;)
Pxz P
3. Return pxz
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K-Means: Special Case of Hard EM

»2eRY ze{l... K}

1
pxz(z,2) = % X N (z; pey 1)

» Model parameters to learn: sy ...pux € R?

» Negative log joint probability as a function of parameters
2
—logpxz(x,2) = |lx — p-|]

» Observed ) ... z(") € R?, latents z;...2y € {1... K}

2

z; +— arg min Hx(i) — Uz
ze{l..K}

- (@) 2 1 = )
UE < arg min ZH:L" — || = ——— Z 2
pe{l..K} count(z = k) i
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Setting

v

Neural autoencoding: observed X, latent Z

v

Running example

» X: sentence
» Z: m-~dimensional real-valued vector
We need to define

> qz|x: encoder that transforms a sentence into a distribution
over R™

» px|z: decoder that transforms a vector z € R™ into a
distribution over sentences

> pyz: prior that defines a distribution over R™

v

v

Distributions parameterized by neural networks
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Example Encoder: LSTM + Gaussian

» Input. Sentence = € V7

» Parameters. Word embeddings E € RIVI*¢ LSTMCell
R% x RY — R?, feedforward FF; : R? — R2™
» Forward.

hi,c1 + LSTMCell(E, ,, (04, 04))
hz7 Co < LSTMCGH(E;L-Z, (hl, Cl))

hT7 CT < LSTMCGH(E:,;T, (hTfl, CT,1))

[(52({3)} « FFy(hr)

» Distribution over R™ conditioned on x

qz)x(-|r) = N(u(x), diag(o*(x)))
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Example Decoder: Conditional Language Model

» Input. Vector z € R™

» Parameters. Word embeddings E € RIVI*? (often tied with
encoder), LSTMCell R? x R — R, feedforward
FFy : R™ — R4 x R?

» Forward. Given sentence y € VX compute its probability
conditioned on z by

hi,c1 + LSTMCell(E,, , FFa(2))
hz, Co LSTN[CGH(E‘,,27 (hl, Cl))

hL,CL<—LSTMCeH( ,/],(hL 1,CL— 1))

px|z(y]z) = Hsoftmax,,,(Ehl_ )

=1 R

p(uilz,y<1)
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Example Prior: Isotropic Gaussian

» Simplest: fixed standard normal pz = N (0, Iy,).
» Parameters. None

» Can also make it more expressive, for instance a mixture of K
diagonal Gaussians

K

Pz = Z softmaxy(y) X N(Mkza diag(oi))
k=1

» Parameters. v € R™ and yy, 02 € R™ fork=1... K
» Multimodal instead of unimodal
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Summary

» Sentence X, d-dimensional vector Z

» Learnable parameters

» Word embeddings E shared by encoder and decoder
LSTM and feedforward parameters in gz x

LSTM and feedforward parameters in px |
(Optional) Parameters in the prior pz

v vYyy

» We will now consider learning all these parameters together in
the autoencoding framework
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Autoencoders (AEs)

Pz
qz|x : encoder
4z|x | |PX|z px|z : decoder
Pz - prior
Popx
Objective.
max E  [logpxz(z]2)] + R(popx,pz,px |z 4z|x)

Pz, Px|z,49z|x T~POPx
ZNQZ\X("I)

regularization

reconstruction
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Naive Autoencoders

Objective

E |l Z[LSTM(z
e 8 i 08 Px12 (] ()]

» Deterministic encoding: equivalent to learning a point-mass
encoder

qzx (LSTM(z)|x) = 1

» No regularization (hence no role for prior)
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Denoising Autoencoders

Objective

leg}%%cTM ngEF?I;?X [log px|z(@|LSTM(z + €))]

» Noise introduced at input, reconstruct original input
» Equivalent to learning encoder
97 x (LSTM(z + €)|z) = pe(e)
» Still no regularization, so no prior
» Example: masked language modeling
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BERT as Denoising AE (Devlin et al., 2019)

IsNext barked

S S N

R e A A B |

[CLS] the dog [MASK] [SEP] the cat [MASK] away [SEP]
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Variational Autoencoders (VAEs)
Objective

max E [log px|z(x]2)] — DkL(azxIpz)

Pz, Px|z,9z|x TPOPx
ZNQZ\X("x)

> Great deal of flexibility in terms of how to optimize it
» Popular approach for the current setting

» Optimize the reconstruction term by sampling +
reparameterization trick

z~qzx (|) & €~ N(Om, L)
z=p(x)+o(x)O¢

» Optimize the KL term in closed form

Dxv (N (u(z), diag(o® (@) |IN (Om, Im))

(Zof + i (@ —l—logof(m)>
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VAE Loss: Concrete Steps

Given a sentence x ~ popy (in general a minibatch)

1. Encoding. Run the encoder to calculate the Gaussian parameters
n(z), o*(z) € R™

w(z), 0 (x) « Encoder(z)

2. KL. Calculate the KL term

(Zm @) + () — 1 - 1oga?<m>)

3. Reconstruction. Estimate the reconstruction term by sampling +
reparameterization trick

p <+ DecoderNLL(z, ji(z) + o(z) O €) e~ N(Om,Im)

4. Loss. Take a gradient step (wrt. all parameters) on p — Sk where [ is
some weight.
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Uses of VAEs

» Representation learning. Run encoder on a sentence z to
obtain its m-dimensional “meaning” vector

» Controlled generation. Run decoder on some seed vector to
conditionally generate sentences
» Can “interpolate” between two sentences 1, zo

21~ QZ\X("xl)
Z2 ~ QZ\X('\%)
Zo < Decode(az; + (1 — a)z2) a € [0,1]
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Interpolation Examples

the girl is drinking milk with the camera .
“the girl is drinking milk with the camera .
the girl is drinking milk with her hands .
the girl is drinking water with a bucket .

the girl is using a camera .

two girls are outside with a blue umbrella .
two girls are outside with a blue umbrella .

two girls are outside with a dog .
two girls are taking a picture of a tree .
two guys are on a bench .

two guys are on a boat .

two boys are at a beach .

two boys are at a beach .

two men are looking at a man in a wheelchair .

the children are at the beach .

the children are looking at the sky .

a woman is looking at a man in a wheelchair .

a woman is looking at a man in a wheelchair .

a woman is looking at a map .

a woman is waiting for a bus to come out of the road .
a woman is waiting for a bus to come out of the city .

a woman is waiting for a bus .

A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text (Li et al., 2019)

Karl Stratos
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VAEs in Computer Vision

Random (never before seen) faces sampled from VAE decoder!

Generating Diverse High-Fidelity Images with VQ-VAE-2 (Razavi et al., 2019)
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VAE is EM

VAE Objective

E  [logpxz(x]2)] — Dxi(qzx|lpz) = ELBO(pxz, 4z|x)

T~Ppop x
ZNQZ|X('|$)

» Thus when you optimize VAE you are maximizing a lower
bound on marginal log likelihood defined by your LVGM

» Taking gradient steps for decoder/encoder/prior
simultaneously is alternating optimization of ELBO

» Difference with the classical EM: we no longer insist on
solving the E step exactly (i.e., setting ¢z x = pz|x)
» Train a separate variational model gz x alongside px 7

Karl Stratos CS 533: Natural Language Processing 23/30



Practical Issues

» Posterior collapse

» Quantities to monitor
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VAE Objective: Cheats

min _E  [=logpxz(x]2)] + Dxr(azix [N (Om; Im))
Px|z,49z|x T POF(’)lf)
e~qz 1 x |T

What's one undesirable strategy to minimize the VAE objective?
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Posterior Collapse

Annihilate the KL term by setting
az)x (|x) = N (O, Im) Ve e X
which leaves us with

i E [-1
min E [—log pxz(]2)]
200N (0, )

The decoder px|z will ignore =!
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Without Addressing Posterior Collapse

Posterior distribution

qz‘}((~\The company said it expects to report net income of $UNK-NUM million)

= qz|x (-|The two sides hadn’t met since Oct.

18.)

= qz‘)((-\The inquiry soon focused on the judge.)

= qz|x (-|Whatever sentence you provide)

=N(Om, Im)

Greedy decoding from px|z(-[2)

z=(0.1,0.3,...,—0.7)
z=(—0.6,0.2...,0.2)

z=(0.2,0.1...,0.1)
z=(—0.8,-0.5...,—0.5)

Karl Stratos
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Tricks to Address Posterior Collapse

» Free bits (Kingma et al., 2016): replace KL term with

K 4= Zmax {A\ Dkw(gzx|IN(0,1))}
i=1
A=1...10

» KL annealing (Bowman et al., 2016): weight on KL gradually
increasing from 0 to 1 for the first 10 epochs

Oxk 000lxk 0002xk ... 099xk 1xk

» Current best practice (Li et al., 2019): do both with encoder
pretraining
» Pretrain without KL term
> Reset decoder
» Train with annealing on the free-bits KL term
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Quantities to Monitor During Training

v

NLL (# -ELBO)

E [ogpx(z)] = E [log E [WH

x~pop z~pop z~qz x () QZ|X(Z|x>

-ELBO

» Reconstruction error
» KL

Mutual information between X and Z
Number of active units (Burda et al., 2016)

v

v

v
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Other VAE Models in NLP

> “Document hashing":
https://arxiv.org/pdf/1908.11078.pdf

» See introduction of Pelsmaeker and Aziz (2019) for other
examples: https://arxiv.org/pdf/1904.08194.pdf
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