Latent-Variable Generative Models and the Expectation Maximization (EM) Algorithm
Motivation: Bag-Of-Words (BOW) Document Model

- Fixed-length documents \(x \in V^T \)
- BOW parameters: word distribution \(p_W \) over \(V \) defining

\[
px(x) = \prod_{t=1}^{T} p_W(x_t)
\]

- Model’s generative story: any word in any document is independently generated.
- What if the true generative story underlying data is different?

\[
V = \{a, b\} \quad x^{(1)} = (a, a, a, a, a, a, a, a, a, a)
\]
\[
T = 10 \quad x^{(2)} = (b, b, b, b, b, b, b, b, b, b)
\]

- MLE: \(px(x^{(1)}) = px(x^{(2)}) = (1/2)^{10} \)
Latent-Variable BOW (LV-BOW) Document Model

▶ LV-BOW parameters
 ▶ p_Z: “topic” distribution over $\{1 \ldots K\}$
 ▶ $p_{W|Z}$: conditional word distribution over V

\[
p_{X|Z}(x|z) = \prod_{t=1}^{T} p_{W|Z}(x_t|z) \quad \forall z \in \{1 \ldots K\}
\]

\[
p_X(x) = \sum_{z=1}^{K} p_Z(z) \times p_{X|Z}(x|z)
\]

▶ Model’s generative story: for each document, a topic is generated and conditioning on that words are independently generated
Back to the Example

\[V = \{a, b\} \quad x^{(1)} = (a, a, a, a, a, a, a, a, a) \]

\[T = 10 \quad x^{(2)} = (b, b, b, b, b, b, b, b, b) \]

- \(K = 2 \) with \(p_Z(1) = p_Z(2) = 1/2 \)
- \(p_{W|Z}(a|1) = p_{W|Z}(b|2) = 1 \)
- \(p_X(x^{(1)}) = p_X(x^{(2)}) = 1/2 \gg (1/2)^{10} \)

Key idea: introduce a **latent variable** \(Z \) to model true generative process more faithfully
The Latent-Variable Generative Model Paradigm

Model. Joint distribution over X and Z

$$p_{XZ}(x, z) = p_Z(z) \times p_{X|Z}(x|z)$$

Learning. We don’t observe Z!

$$\max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right]_{p_X(x)}$$
The Learning Problem

▶ How can we solve

$$\max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right]$$

▶ Specifically for LV-BOW, given N documents $x^{(1)} \ldots x^{(N)} \in V^T$, how can we learn topic distribution p_Z and conditional word distribution $p_{W|Z}$ that maximize

$$\sum_{i=1}^{N} \log \left(\sum_{z \in Z} p_Z(z) \times \prod_{t=1}^{T} p_{W|Z}(x_t^{(i)} | z) \right)$$
A Proposed Algorithm

1. Initialize p_Z and $p_{W|Z}$ as random distributions.
2. Repeat until convergence:

 2.1 For $i = 1 \ldots N$ compute conditional posterior distribution

$$p_{Z|X}(z|x^{(i)}) = \frac{p_Z(z) \times \prod_{t=1}^{T} p_{W|Z}(x_t^{(i)}|z)}{\sum_{z'=1}^{K} p_Z(z') \times \prod_{t=1}^{T} p_{W|Z}(x_t^{(i)}|z')}$$

2.2 Update model parameters by

$$p_Z(z) = \frac{\sum_{i=1}^{N} p_{Z|X}(z|x^{(i)})}{\sum_{z'=1}^{K} \sum_{i=1}^{N} p_{Z|X}(z'|x^{(i)})}$$

$$p_{W|Z}(w|z) = \frac{\sum_{i=1}^{N} p_{Z|X}(z|x^{(i)}) \times \text{count}(w|x^{(i)})}{\sum_{w' \in V} \sum_{i=1}^{N} p_{Z|X}(z|x^{(i)}) \times \text{count}(w'|x^{(i)})}$$

where $\text{count}(w|x^{(i)})$ is number of times $w \in V$ appears in $x^{(i)}$.

Karl Stratos
CS 533: Natural Language Processing
7/32
```python
def compute_posterior(data, pZ, pW_Z):
    pZ_cond = {}
    for i in range(len(data)):
        pZ_cond[i] = {}
        normalizer = 0
        for z in Z:
            pZ_cond[i][z] = pZ[z] * np.prod([pW_Z[z][w] for w in data[i]])
            normalizer += pZ_cond[i][z]
        for z in Z:
            pZ_cond[i][z] /= normalizer
    return pZ_cond

for i in range(M):
    ll = compute_log_likelihood(data, pZ, pW_Z)
    print_stuff(inum, pZ, pW_Z, ll)

    pZ_cond = compute_posterior(data, pZ, pW_Z)

    expected_count_Z = {}
    total_expected_count_Z = 0
    for z in Z:
        expected_count_Z[z] = sum([pZ_cond[i][z] for i in range(len(data))])
        total_expected_count_Z += expected_count_Z[z]
    for z in Z:
        pZ[z] = expected_count_Z[z] / total_expected_count_Z

    expected_count_ZW = {}
    for z in Z:
        for w in V:
            expected_count_ZW[(z, w)] = sum([pZ_cond[i][z] * data[i].count(w) for i in range(len(data))])
    expected_count_Z = {}
    for z in Z:
        expected_count_Z[z] = sum([expected_count_ZW[(z, w)] for w in V])
    for z in Z:
        for w in V:
            pW_Z[z][w] = expected_count_ZW[(z, w)] / expected_count_Z[z]
```

Code
Code in Action

Data

| a | a | a | a | a | a | a | a | a | a | b | b | b | b | b | b | b | b | b | b |

Iteration 1

$P(Z(1)) = 0.38$ $P(Z(2)) = 0.62$

$P(W|Z(a1)) = 0.76$ $P(W|Z(b1)) = 0.24$

$P(W|Z(a2)) = 0.31$ $P(W|Z(b2)) = 0.69$

Log likelihood: -7.96229

Iteration 2

$P(Z(1)) = 0.50$ $P(Z(2)) = 0.50$

$P(W|Z(a1)) = 1.00$ $P(W|Z(b1)) = 0.00$

$P(W|Z(a2)) = 0.00$ $P(W|Z(b2)) = 1.00$

Log likelihood: -1.38887

Iteration 3

$P(Z(1)) = 0.50$ $P(Z(2)) = 0.50$

$P(W|Z(a1)) = 1.00$ $P(W|Z(b1)) = 0.00$

$P(W|Z(a2)) = 0.00$ $P(W|Z(b2)) = 1.00$

Log likelihood: -1.38629

Iteration 4

$P(Z(1)) = 0.50$ $P(Z(2)) = 0.50$

$P(W|Z(a1)) = 1.00$ $P(W|Z(b1)) = 0.00$

$P(W|Z(a2)) = 0.00$ $P(W|Z(b2)) = 1.00$

Log likelihood: -1.38629

$p_X(a a a a a a a a a a) = 0.50$

$p_X(b b b b b b b b b b) = 0.50$
Code in Action: Bad Initialization

Data
a a a a a a a a a a
b b b b b b b b b b

Iteration 1
pZ(1)=0.50 pZ(2)=0.50
pW_Z(a|1)=0.50 pW_Z(b|1)=0.50 pW_Z(a|2)=0.50 pW_Z(b|2)=0.50
Log likelihood: -13.86294

Iteration 2
pZ(1)=0.50 pZ(2)=0.50
pW_Z(a|1)=0.50 pW_Z(b|1)=0.50 pW_Z(a|2)=0.50 pW_Z(b|2)=0.50
Log likelihood: -13.86294

Iteration 3
pZ(1)=0.50 pZ(2)=0.50
pW_Z(a|1)=0.50 pW_Z(b|1)=0.50 pW_Z(a|2)=0.50 pW_Z(b|2)=0.50
Log likelihood: -13.86294

Iteration 4
pZ(1)=0.50 pZ(2)=0.50
pW_Z(a|1)=0.50 pW_Z(b|1)=0.50 pW_Z(a|2)=0.50 pW_Z(b|2)=0.50
Log likelihood: -13.86294

pX(a a a a a a a a a)=0.000977
pX(b b b b b b b b b)=0.000977
Another Example

Initial values

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>a a a a a a a a a</td>
</tr>
<tr>
<td>b b b b b a a a a a a</td>
</tr>
<tr>
<td>a a a a a b b b b b</td>
</tr>
</tbody>
</table>

Iteration 1
- $p_Z(1) = 0.38$, $p_Z(2) = 0.62$
- $p_{W|Z}(a|1) = 0.76$, $p_{W|Z}(b|1) = 0.24$
- Log likelihood: -19.53394

Iteration 2
- $p_Z(1) = 0.47$, $p_Z(2) = 0.53$
- $p_{W|Z}(a|1) = 0.85$, $p_{W|Z}(b|1) = 0.15$
- $p_{W|Z}(a|2) = 0.50$, $p_{W|Z}(b|2) = 0.50$
- Log likelihood: -17.41683

Iteration 3
- $p_Z(1) = 0.35$, $p_Z(2) = 0.65$
- $p_{W|Z}(a|1) = 0.97$, $p_{W|Z}(b|1) = 0.03$
- $p_{W|Z}(a|2) = 0.50$, $p_{W|Z}(b|2) = 0.50$
- Log likelihood: -16.03630

Iteration 4
- $p_Z(1) = 0.33$, $p_Z(2) = 0.67$
- $p_{W|Z}(a|1) = 1.00$, $p_{W|Z}(b|1) = 0.00$
- $p_{W|Z}(a|2) = 0.50$, $p_{W|Z}(b|2) = 0.50$
- Log likelihood: -15.77058

Iteration 5
- $p_Z(1) = 0.33$, $p_Z(2) = 0.67$
- $p_{W|Z}(a|1) = 1.00$, $p_{W|Z}(b|1) = 0.00$
- $p_{W|Z}(a|2) = 0.50$, $p_{W|Z}(b|2) = 0.50$
- Log likelihood: -15.77052

After convergence

<table>
<thead>
<tr>
<th>Iteration 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_Z(1) = 0.33$, $p_Z(2) = 0.67$</td>
</tr>
<tr>
<td>$p_{W</td>
</tr>
<tr>
<td>$p_{W</td>
</tr>
<tr>
<td>Log likelihood: -15.77052</td>
</tr>
</tbody>
</table>

$p_X(a a a a a a a a a a) = 0.333333$
$p_X(b b b b b a a a a a) = 0.000652$
$p_X(a a a a a b b b b b) = 0.000652$
Again Possible to Get Stuck in a Local Optimum

Initial values

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>a a a a a a a a a a</td>
</tr>
<tr>
<td>b b b b b a a a a a a</td>
</tr>
<tr>
<td>a a a a a b b b b b b</td>
</tr>
</tbody>
</table>

Iteration 1
- $pZ(1) = 0.50$, $pZ(2) = 0.50$
- $pW(Z(a1)) = 0.50$, $pW(Z(b1)) = 0.50$
- $pW(Z(a2)) = 0.50$, $pW(Z(b2)) = 0.50$
- Log likelihood: -20.79442

Iteration 2
- $pZ(1) = 0.50$, $pZ(2) = 0.50$
- $pW(Z(a1)) = 0.67$, $pW(Z(b1)) = 0.33$
- $pW(Z(a2)) = 0.67$, $pW(Z(b2)) = 0.33$
- Log likelihood: -19.09543

Iteration 3
- $pZ(1) = 0.50$, $pZ(2) = 0.50$
- $pW(Z(a1)) = 0.67$, $pW(Z(b1)) = 0.33$
- $pW(Z(a2)) = 0.67$, $pW(Z(b2)) = 0.33$
- Log likelihood: -19.09543

Iteration 4
- $pZ(1) = 0.50$, $pZ(2) = 0.50$
- $pW(Z(a1)) = 0.67$, $pW(Z(b1)) = 0.33$
- $pW(Z(a2)) = 0.67$, $pW(Z(b2)) = 0.33$
- Log likelihood: -19.09543

Iteration 5
- $pZ(1) = 0.50$, $pZ(2) = 0.50$
- $pW(Z(a1)) = 0.67$, $pW(Z(b1)) = 0.33$
- $pW(Z(a2)) = 0.67$, $pW(Z(b2)) = 0.33$
- Log likelihood: -19.09543

After convergence

<table>
<thead>
<tr>
<th>Iteration 100</th>
</tr>
</thead>
</table>
| $pZ(1) = 0.50$, $pZ(2) = 0.50$
- $pW(Z(a1)) = 0.67$, $pW(Z(b1)) = 0.33$
- $pW(Z(a2)) = 0.67$, $pW(Z(b2)) = 0.33$
- Log likelihood: -19.09543

$pX(a a a a a a a a a a a) = 0.017342$
pX(b b b b b a a a a a) = 0.000542$
pX(a a a a a b b b b b) = 0.000542
Why Does It Work?

- A special case of the **expectation maximization (EM) algorithm** adapted for LV-BOW

- EM is an extremely important and general concept
 - Another special case: variational autoencoders (VAEs, next class)
Setting

- Original problem: difficult to optimize (nonconvex)

\[
\max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right]
\]

- Alternative problem: easy to optimize (often concave)

\[
\max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X \ z \sim q_{Z|X}(\cdot|x)} \left[\log p_{XZ}(x, z) \right]
\]

where \(q_{Z|X} \) is some arbitrary posterior distribution that is easy to compute
Many models we considered (LV-BOW, HMM, PCFG) can be written as

\[p_{XZ}(x, z) = \prod_{(\tau, a) \in \mathcal{E}} p_\tau(a)^{\text{count}_\tau(a|x,z)} \]

- \(\mathcal{E} \) is a set of possible event type-value pairs.
- \(\text{count}_\tau(a|x,z) \) is number of times \(\tau = a \) happens in \((x, z) \)
- Model has a distribution \(p_\tau \) over possible values of type \(\tau \)

Example

\[
\begin{align*}
 p_{XZ}((a, a, a, b, b), 2) &= p_Z(2) \times p_{W|Z}(a|2)^3 \times p_{W|Z}(b|2)^2 \quad \text{(LV-BOW)} \\
p_{XZ}((La, La, La), (N, N, N)) &= o(La|N)^3 \\
& \quad \times t(N|\ast) \times t(N|N)^2 \times t(\text{STOP}|N) \quad \text{(HMM)}
\end{align*}
\]
Closed-Form Solution

If \(x^{(1)} \ldots x^{(N)} \sim \text{pop}_X \) are iid samples,

\[
\max_{p_{xz}} \mathbb{E}_{x \sim \text{pop}_X, z \sim q_{z|x} (\cdot | x)} \left[\log p_{xz} (x, z) \right] \\
\approx \max_{p_{xz}} \sum_{i=1}^{N} \sum_{z} q_{z|x} (z | x^{(i)}) \log p_{xz} (x^{(i)}, z) \\
= \max_{p_{\tau}} \sum_{i=1}^{N} \sum_{z} q_{z|x} (z | x^{(i)}) \sum_{(\tau, a) \in \mathcal{E}} \text{count}^\tau (a | x^{(i)}, z) \log p_{\tau} (a) \\
= \max_{p_{\tau}} \sum_{(\tau, a) \in \mathcal{E}} \left(\sum_{i=1}^{N} \sum_{z} q_{z|x} (z | x^{(i)}) \text{count}^\tau (a | x^{(i)}, z) \right) \log p_{\tau} (a)
\]

MLE solution!

\[
p_{\tau} (a) = \frac{\sum_{i=1}^{N} \sum_{z} q_{z|x} (z | x^{(i)}) \text{count}^\tau (a | x^{(i)}, z)}{\sum_{a'} \sum_{i=1}^{N} \sum_{z} q_{z|x} (z | x^{(i)}) \text{count}^\tau (a' | x^{(i)}, z)}
\]
This is How We Derived LV-BOW EM Updates

Using $q_{Z|X} = p_{Z|X}$

$$p_Z(z) = \frac{\sum_{i=1}^{N} \sum_{z'} p_{Z|X}(z'|x^{(i)}) \text{count}^\tau(z' = z|x^{(i)}, z')}{\sum_{z''} \sum_{i=1}^{N} \sum_{z'} p_{Z|X}(z'|x^{(i)}) \text{count}^\tau(z' = z''|x^{(i)}, z')}$$

$$= \frac{\sum_{i=1}^{N} p_{Z|X}(z|x^{(i)})}{\sum_{z''} \sum_{i=1}^{N} p_{Z|X}(z''|x^{(i)})}$$

$$p_{W|Z}(w|z) = \frac{\sum_{i=1}^{N} \sum_{z'} p_{Z|X}(z'|x^{(i)}) \text{count}^\tau(z' = z, w|x^{(i)}, z')}{\sum_{w' \in V} \sum_{i=1}^{N} \sum_{z'} p_{Z|X}(z'|x^{(i)}) \text{count}^\tau(z' = z, w'|x^{(i)}, z')}$$

$$= \frac{\sum_{i=1}^{N} p_{Z|X}(z|x^{(i)}) \text{count}(w|x^{(i)})}{\sum_{w' \in V} \sum_{i=1}^{N} p_{Z|X}(z|x^{(i)}) \text{count}(w'|x^{(i)})}$$
Game Plan

- So we have established that it is often easy to solve the alternative problem

\[
\max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X, z \sim q_{Z|X}(\cdot|x)} \left[\log p_{XZ}(x, z) \right]
\]

where \(q_{Z|X}\) is any posterior distribution easy to compute

- We will relate the original log likelihood objective with this quantity by the following slide.
For any $q_{Z|X}$ we define

$$\text{ELBO}(p_{XZ}, q_{Z|X}) = \mathbb{E}_{x \sim \text{pop}_X, z \sim q_{Z|X}(\cdot|x)} \left[\log p_{XZ}(x, z) \right] + H(q_{Z|X})$$

where $H(q_{Z|X}) = \mathbb{E}_{x \sim \text{pop}_X, z \sim q_{Z|X}(\cdot|x)} \left[- \log q_{Z|X}(z|x) \right]$.

Claim. For all $q_{Z|X}$,

$$\text{ELBO}(p_{XZ}, q_{Z|X}) \leq \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right]$$

with equality iff $q_{Z|X} = p_{Z|X}$. (Proof on board)
EM: Coordinate Ascent on ELBO

Input: sampling access to \(\text{pop}_X \), definition of \(p_{XZ} \)

Output: local optimum of

\[
\max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right]
\]

1. Initialize \(p_{XZ} \) (e.g., random distribution).
2. Repeat until convergence:

 \[
 q_{Z|X} \leftarrow \arg \max_{\tilde{q}_{Z|X}} \text{ELBO}(p_{XZ}, \tilde{q}_{Z|X})
 \]

 \[
 p_{XZ} \leftarrow \arg \max_{\tilde{p}_{XZ}} \text{ELBO}(\tilde{p}_{XZ}, q_{Z|X})
 \]

3. Return \(p_{XZ} \)
Equivalently

Input: sampling access to pop_X, definition of p_{XZ}

Output: local optimum of

$$
\max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right]
$$

1. Initialize p_{XZ} (e.g., random distribution).
2. Repeat until convergence:

$$
p_{XZ} \leftarrow \arg \max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X} \left[\log p_{XZ}(x, z) \right]_{z \sim p_{Z|X}(\cdot|x)}
$$

3. Return p_{XZ}
EM Can Only Increase the Objective (Or Leave It Unchanged)

\[\text{LL}(p_{XZ}) \quad \Rightarrow \quad \text{LL}(p_{XZ}) = \text{ELBO}(p_{XZ}, p_{Z|X}) \quad \Rightarrow \quad \text{LL}(p'_{XZ}) \]

\[\text{ELBO}(p_{XZ}, q_{Z|X}) \]

\[
\begin{align*}
\text{LL}(p_{XZ}) &= \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right] \\
\text{ELBO}(p_{XZ}, q_{Z|X}) &= \text{LL}(p_{XZ}) - D_{\text{KL}}(q_{Z|X} \| p_{Z|X}) = \mathbb{E}_{x \sim \text{pop}_X} [\log p_{XZ}(x, z)] + H(q_{Z|X}) \\
\end{align*}
\]
EM Can Only Increase the Objective (Or Leave It Unchanged)

From https://media.nature.com/full/nature-assets/nbt/journal/v26/n8/extref/nbt1406-S1.pdf
Input: \(N \) iid samples from \(\text{pop}_X \), definition of \(p_{XZ} \)

Output: local optimum of

\[
\max_{p_{XZ}} \frac{1}{N} \sum_{i=1}^{N} \log \sum_{z \in Z} p_{XZ}(x^{(i)}, z)
\]

1. Initialize \(p_{XZ} \) (e.g., random distribution).
2. Repeat until convergence:

\[
p_{XZ} \leftarrow \arg \max_{\bar{p}_{XZ}} \sum_{i=1}^{N} \sum_{z \in Z} p_{Z|X}(z|x^{(i)}) \log \bar{p}_{XZ}(x^{(i)}, z)
\]

3. Return \(p_{XZ} \)
EM for HMM (Baum-Welch)

Input: sequences $x^{(1)} \ldots x^{(N)} \in V^T$

1. Initialize emission $o(w|y)$ and transition $t(y'|y)$ probabilities.
2. Repeat until convergence:

 $$o, t \leftarrow \arg \max_{\tilde{o}, \tilde{t}} \sum_{i=1}^{N} \sum_{z \in Y^T} p_{Z|X}^{(z|x^{(i)})} \log p_{XZ}^{\tilde{o}, \tilde{t}}(x^{(i)}, z)$$

where

$$p_{XZ}^{o, t}(x, z) = \prod_{y, w} o(w|y) \text{count}((y, w)|x, z) \times \prod_{y, y'} t(y'|y) \text{count}((y, y')|x, z)$$
Baum-Welch Updates: Emission Probabilities

\[o(w|y) = \frac{\sum_{i=1}^{N} \sum_{z} p_{Z|X}(z|x^{(i)}) \text{count}((y, w)|x^{(i)}, z)}{\sum_{w' \in V} \sum_{i=1}^{N} \sum_{z} p_{Z|X}(z|x^{(i)}) \text{count}((y, w')|x^{(i)}, z)} \]

\[= \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \mu(y|x^{(i)}, t) \left\lfloor x_t^{(i)} = w \right\rfloor}{\sum_{w' \in V} \sum_{i=1}^{N} \sum_{t=1}^{T} \mu(y|x^{(i)}, t) \left\lfloor x_t^{(i)} = w' \right\rfloor} \]

where \(\mu(y|x^{(i)}, t) \) is the \textit{conditional} probability that \(t \)-th label is equal to \(y \) in \(x^{(i)} \) which can be calculated from the forward/backward probabilities:

\[\mu(y|x^{(i)}, t) = \frac{\alpha(t, y) \times \beta(t, y)}{p_X(x^{(i)})} \]
Baum-Welch Updates: Transition Probabilities

\[t(y'|y) = \frac{\sum_{i=1}^{N} \sum_{z} p_{Z|X}(z|x^{(i)}) \text{count}((y, y')|x^{(i)}, z)}{\sum_{y' \in Y} \sum_{i=1}^{N} \sum_{z} p_{Z|X}(z|x^{(i)}) \text{count}((y, y')|x^{(i)}, z)} \]

\[= \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \mu(y, y'|x^{(i)}, t)}{\sum_{w' \in V} \sum_{i=1}^{N} \sum_{t=1}^{T} \mu(y, y'|x^{(i)}, t)} \]

where \(\mu(y, y'|x^{(i)}, t) \) is the conditional probability that \(t \)-th label pair is equal to \((y, y') \) in \(x^{(i)} \) which can be calculated from the forward/backward probabilities:

\[\mu(y, y'|x^{(i)}, t) = \frac{\alpha(t, y) \times t(y'|y) \times o(x_t|y') \times \beta(t + 1, y')}{p_X(x^{(i)})} \]
Summary of Baum-Welch

Given \(N \) unlabeled sequences, find a local optimum of

\[
\arg \max_{o,t} \frac{1}{N} \sum_{i=1}^{N} \log \sum_{z \in Y^T} p^{o,t}_{XZ}(x^{(i)}, z)
\]

where \(o \) and \(t \) are emission/transition probabilities of HMM

Initialize \(o, t \) and repeat until convergence:

- Run forward-backward algorithm on \(x^{(1)} \ldots x^{(N)} \) using the current \(o, t \) values
- Use the probabilities to compute marginals.
- Use the marginals to compute “expected counts” of word-tag pairs \((w, y)\) and tag pairs \((y, y')\) across all data.
- Get new \(o, t \) by the previous updates.
EM for PCFG

Input: sequences \(x^{(1)} \ldots x^{(N)} \in V^T \)

1. Initialize rule probabilities \(q(\alpha \rightarrow \beta) \).
2. Repeat until convergence:

\[
q \leftarrow \arg \max_{\bar{q}} \sum_{i=1}^{N} \sum_{z \in \text{GEN}(x^{(i)})} p_{Z|X}(z|x^{(i)}) \log p_{XZ}^{\bar{q}}(x^{(i)}, z)
\]

where

\[
p_{XZ}^{q}(x, z) = \prod_{\alpha \rightarrow \beta} q(\alpha \rightarrow \beta)^{\text{count}(\alpha \rightarrow \beta|x, z)}
\]
Unary Rule Probability Updates

\[
q(a \rightarrow w) = \frac{\sum_{i=1}^{N} \sum_{z} p_{Z|X} (z|x^{(i)}) \text{count}(a \rightarrow w|x^{(i)}, z)}{\sum_{w'} \sum_{i=1}^{N} \sum_{z} p_{Z|X} (z|x^{(i)}) \text{count}(a \rightarrow w'|x^{(i)}, z)}
\]

\[
= \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \mu(a|x^{(i)}, t) \left[x_t^{(i)} = w \right]}{\sum_{w'} \sum_{i=1}^{N} \sum_{t=1}^{T} \mu(a|x^{(i)}, t) \left[x_t^{(i)} = w' \right]}
\]

where \(\mu(a|x^{(i)}, t) \) is the conditional probability that \(a \) spans \(x_t^{(i)} \) which can be calculated from the inside/outside probabilities:

\[
\mu(a|x^{(i)}, t) = \frac{\alpha(a, t, t) \times \beta(a, t, t)}{p_X(x^{(i)})}
\]
Binary Rule Probability Updates

\[
q(a \rightarrow b\ c) = \frac{\sum_{i=1}^{N} \sum_{z} p_{Z|X}(z|x^{(i)}) \text{count}(a \rightarrow b\ c|x^{(i)}, z)}{\sum_{(b',c')} \sum_{i=1}^{N} \sum_{z} p_{Z|X}(z|x^{(i)}) \text{count}(a \rightarrow b'\ c'|x^{(i)}, z)}
\]

\[
= \frac{\sum_{i=1}^{N} \sum_{1 \leq t \leq k < s \leq T} \mu(a \rightarrow b\ c|x^{(i)}, t, k, s)}{\sum_{(b',c')} \sum_{i=1}^{N} \sum_{1 \leq t \leq k < s \leq T} \mu(a \rightarrow b'\ c'|x^{(i)}, t, k, s)}
\]

where \(\mu(a \rightarrow b\ c|x^{(i)}, t, k, s) \) is the conditional probability that rule \(a \rightarrow b\ c \) spans \(x_t^{(i)} \ldots x_s^{(i)} \) with a split point \(k \) which can be calculated from the inside/outside probabilities:

\[
\mu(a \rightarrow b\ c|x^{(i)}, t, k, s) = \frac{\beta(a, t, s) \times q(a \rightarrow b\ c) \times \alpha(b, t, k) \times \alpha(c, k + 1, j)}{p_{X}(x^{(i)})}
\]
Summary Points

▶ Latent-variable generative models

\[p_{XZ}(x, z) = p_Z(z) \times p_{X|Z}(x|z) \]

▶ Learning objective

\[\text{LL}(p_{XZ}) = \mathbb{E}_{x \sim \text{pop}_X} \left[\log \sum_{z \in Z} p_{XZ}(x, z) \right] \]

▶ ELBO is a “variational” lower bound on the objective

\[\text{ELBO}(p_{XZ}, q_{Z|X}) \leq \text{LL}(p_{XZ}) \quad \forall q_{Z|X} \]

tight when \(q_{Z|X} = p_{Z|X} \)

▶ EM is an alternating maximization of ELBO

\[
\begin{align*}
q_{Z|X} & \leftarrow \arg \max_{\bar{q}_{Z|X}} \text{ELBO}(p_{XZ}, \bar{q}_{Z|X}) = p_{Z|X} \\
p_{XZ} & \leftarrow \arg \max_{\bar{p}_{XZ}} \text{ELBO}(\bar{p}_{XZ}, q_{Z|X}) = \arg \max_{p_{XZ}} \mathbb{E}_{x \sim \text{pop}_X} \left[\log p_{XZ}(x, z) \right] \\
& \quad z \sim q_{Z|X}(\cdot|x)
\end{align*}
\]