Transition-Based Dependency Parsing

- Dependency parsing framed as a sequence of transitions

\[C_0 \xrightarrow{t_0} C_1 \xrightarrow{t_1} \cdots \xrightarrow{t_{T-1}} C_T \]

- Runtime **linear** in sentence length!
 - Major advantage over graph-based dependency parsing

Example:

the dog saw the cat
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Economic news had little effect on financial markets.
Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

\[A = \{(0, \text{PRED}, 3), (3, \text{SBJ}, 2), (2, \text{ATT}, 1), (3, \text{OBJ}, 5), (3, \text{PU}, 9), (5, \text{ATT}, 4), (5, \text{ATT}, 6), (6, \text{PC}, 8), (8, \text{ATT}, 7)\} \]
Dependency Parsing \Rightarrow Arc Finding

- Sentence: $x_1 \ldots x_m$

- Associated nodes: $\mathcal{N} = \{0, 1, \ldots, m\}$
 - Convention: leftmost root 0

- Labels: $L = \{\text{PRED, SBJ, } \ldots\}$

Goal. Find a set of labeled, directed arcs

$$A \subseteq \mathcal{N} \times L \times \mathcal{N}$$

that corresponds to a **correct dependency tree** for $x_1 \ldots x_m$.

Karl Stratos
CS 533: Natural Language Processing
Valid Dependency Tree

1. (Root): 0 must not have a parent.

2. (Connected): There must be a path from 0 to every $i \in N$.

3. (Tree): A node must not have more than one parent.

4. (Acyclic): Nodes must not form a cycle.
A valid dependency tree is **projective** if for every arc \((i, l, j)\) there is a path from \(i\) to \(k\) for all \(i < k < j\).

We will focus on projective trees only!
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Parser Configuration

Triple $c = (\sigma, \beta, A)$ where
- $\sigma = [\ldots i]$: “stack” of \mathcal{N} with i at the top
- $\beta = [i \ldots]$: “buffer” of \mathcal{N} with i at the front
- $A \subseteq \mathcal{N} \times L \times \mathcal{N}$: arcs

Notation
- \mathcal{C} denotes the space of all possible configurations.
- $c.\sigma$, $c.\beta$, $c.A$ denote stack, buffer, arcs of $c \in \mathcal{C}$.
Configuration-Based Parsing Scheme

Initial configuration

\[c_0 := ([0], [1 \ldots m], \{ \}) \]

Apply “transitions” until we reach terminal \(c_T \) (defined later)

\[c_0 \xrightarrow{t_0} c_1 \xrightarrow{t_1} \cdots \xrightarrow{t_{T-1}} c_T \]

and return as a parse

\[c_T.A \]
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Shift and Reduce

SHIFT
\[(\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)\]
Illegal if \(\beta\) is empty.

REDUCE
\[(\sigma|i, \beta, A) \Rightarrow (\sigma, \beta, A)\]
Illegal if \(i\) does not have a parent.
Left-Arc

\[\text{LEFT}_l \ (\sigma|i|j, \beta, A) \Rightarrow (\sigma|j, \beta, A \cup \{(j, l, i)\}) \]

Illegal if either \(i = 0 \) or \(i \) already has a parent.
Right-Arc

\[\text{RIGHT}_l \ (\sigma|i|j, \beta, A) \Rightarrow (\sigma|i, \beta, A \cup \{(i, l, j)\}) \]

Illegal if \(j \) already has a parent.
“Eager” Left-Arc

\[
\text{LEFT}_i^e (\sigma | i, j | \beta, A) \Rightarrow (\sigma, j | \beta, A \cup \{(j, l, i)\})
\]

Illegal if either \(i = 0 \) or \(i \) already has a parent.
"Eager" Right-Arc

\[
\text{RIGHT}^e_i \quad (\sigma | i, j | \beta, A) \Rightarrow (\sigma | i | j, \beta, A \cup \{(i, l, j)\})
\]

Illegal if \(j \) already has a parent.
Legal transitions

- Certain transitions are illegal depending on $c \in C$.

- We will denote the set of legal actions at c by $\text{LEGAL}(c)$.
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Definition

$2|L| + 1$ possible transitions \mathcal{T}^{std}

- **SHIFT**: $(\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)$
- **LEFT$_l$** for each $l \in L$:

 $$(\sigma|i|j, \beta, A) \Rightarrow (\sigma|j, \beta, A \cup \{(j,l,i)\})$$

- **RIGHT$_l$** for each $l \in L$:

 $$(\sigma|i|j, \beta, A) \Rightarrow (\sigma|i, \beta, A \cup \{(i,l,j)\})$$

Terminal condition: $c.\sigma = [0]$ and $c.\beta = []$
Properties

- **Makes exactly** \(2m\) transitions to parse \(x_1 \ldots x_m\). Why?

- **Bottom-up**: a node must collect all its children before getting a parent. Why?

- **Sound**: if \(c\) is terminal, \(c.A\) forms a valid projective tree.

- **Complete**: every valid projective tree \(A\) can be produced from \(c_0\) by some sequence of transitions \(t_0 \ldots t_{T-1} \in \mathcal{T}^{\text{std}}\).

\[
\begin{align*}
 t_i &= \text{Oracle}^{\text{std}}(c_i) \\
 c_{i+1} &= t_i(c_i)
\end{align*}
\]
Oracle_{std}

Input: gold arcs A^{gold}, non-terminal configuration $c = (\sigma, \beta, A)$

Output: transition $t \in T_{\text{std}}$ to apply on c

1. Return **SHIFT** if $|\sigma| = 1$.
2. Otherwise $\sigma = [...] i j]$ for some $i < j$:
 2.1 Return **LEFT**$_l$ if $(j, l, i) \in A^{\text{gold}}$.
 2.2 Return **RIGHT**$_l$ if $(i, l, j) \in A^{\text{gold}}$ and for all $l' \in L, j' \in N$,

 $$(j, l', j') \in A^{\text{gold}} \implies (j, l', j') \in A$$

 2.3 Return **SHIFT** otherwise.
Example Parse (Nivre 2013)

Transition	Configuration
$cs(x) = (0, [1, \ldots, 9], \emptyset)$
SHIFT $\rightarrow (0, [1, 2], 0)$
SHIFT $\rightarrow (0, [2, 3], 0)$
LEFT-ARC$_{ATT}$ $\rightarrow (0, [0, 2], 0)$
LEFT-ARC$_{SBJ}$ $\rightarrow (0, [3, 4], 0)$
SHIFT $\rightarrow (0, [3, 4], 0)$
SHIFT $\rightarrow (0, [5, 9], 0)$
LEFT-ARC$_{ATT}$ $\rightarrow (0, [3, 5], 0)$
LEFT-ARC$_{ATT}$ $\rightarrow (0, [6, 9], 0)$
LEFT-ARC$_{ATT}$ $\rightarrow (0, [3, 5], 0)$
RIGHT-ARC$_{PC}$ $\rightarrow (0, [2, 3], 0)$
RIGHT-ARC$_{ATT}$ $\rightarrow (0, [6, 9], 0)$
RIGHT-ARC$_{OBJ}$ $\rightarrow (0, [3], 0)$
SHIFT $\rightarrow (0, [3, 9], 0)$
RIGHT-ARC$_{PU}$ $\rightarrow (0, [3], 0)$
RIGHT-ARC$_{ROOT}$ $\rightarrow (0, [0], 0)$
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Definition

\[2 |L| + 2 \text{ possible transitions } \mathcal{T}^{\text{eag}} \]

SHIFT: \((\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A) \)

REDUCE: \((\sigma|i, \beta, A) \Rightarrow (\sigma, \beta, A) \)

LEFT \(_l^e \) for each \(l \in L \):

\[(\sigma|i, j|\beta, A) \Rightarrow (\sigma, j|\beta, A \cup \{(j, l, i)\}) \]

RIGHT \(_l^e \) for each \(l \in L \):

\[(\sigma|i, j|\beta, A) \Rightarrow (\sigma|i_j|\beta, A \cup \{(i, l, j)\}) \]

Terminal condition: \(c.\beta = [] \)

- Stop as soon as the buffer is empty.
Properties

- Makes **at most** $2m$ transitions to parse $x_1 \ldots x_m$. Why?

- **Partially top-down**: but a node must collect all its **left** children before right children. Why?

- **Not sound**: even if c is terminal, $c.A$ may form unconnected projective trees ("dependency forest").
 - But can be manually corrected by connecting to the root.

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4
\end{array}
\Rightarrow
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4
\end{array}
\]

- **Complete**: every valid projective tree A can be produced from c_0 by some sequence of transitions $t_0 \ldots t_{T-1} \in \mathcal{T}^{eag}$.

\[
t_i = \text{Oracle}^{eag}(c_i) \\
c_{i+1} = t_i(c_i)
\]
Input: gold arcs A^{gold}, non-terminal configuration

$$c = (\sigma = [\ldots i], \beta = [j \ldots], A)$$

Output: transition $t \in T^{\text{eag}}$ to apply on c

1. Return LEFT_i^e if $(j, l, i) \in A^{\text{gold}}$.
2. Return RIGHT_i^e if $(i, l, j) \in A^{\text{gold}}$.
3. Return REDUCE if there is some $k < i$ such that $(k, l, j) \in A^{\text{gold}}$ or $(j, l, k) \in A^{\text{gold}}$ for some l.
4. Return SHIFT otherwise.
Example Parse (Nivre 2013)
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Getting Training Data

- **Treebank**: sentence-tree pairs \((x^{(1)}, A^{(1)}) \ldots (x^{(M)}, A^{(M)})\)
 - Assume all projective

- For each \(A^{(j)}\), use an oracle to extract
 \[
 (c_{0}^{(j)}, t_{0}^{(j)}) \ldots (c_{T-1}^{(j)}, t_{T-1}^{(j)})
 \]
 where \(t_{T-1}^{(j)}(c_{T-1}^{(j)}) A = A^{(j)}\).

- We can now use this to train a **classifier**
 \[
 (x^{(j)}, C_{i}^{(j)}) \mapsto t_{i}^{(j)}
 \]
Linear Classifier

- Parameters: \(w_t \in \mathbb{R}^d \) for each \(t \in T \)

- Each \(c \in C \) for sentence \(x \) is “featurized” as \(\phi^x(c) \in \mathbb{R}^d \).
 - Classical approach: **binary features** providing useful signals
 - Assumes we have access to POS tags of \(x_1 \ldots x_m \).

\[
\begin{align*}
\phi_{20134}^x(c) & := \begin{cases}
1 & \text{if } x_{c,\sigma[0]}\text{.POS} = \text{NN} \text{ and } x_{c,\beta[0]}\text{.POS} = \text{VBD} \\
0 & \text{otherwise}
\end{cases} \\
\phi_{1988}^x(c) & := \begin{cases}
1 & \text{if } x_{c,\sigma[0]}\text{.POS} = \text{VBD} \text{ with leftmost arc } \text{SUBJ} \\
0 & \text{otherwise}
\end{cases} \\
\phi_{42}^x(c) & := \begin{cases}
1 & \text{if } x_{c,\beta[1]} = \text{cat} \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]
Linear Classifier (Continued)

- **Score** of $t \in \mathcal{T}$ at $c \in \mathcal{C}$ for x:

$$\text{score}_x(t \mid c) := w_t \cdot \phi^x(c)$$

$$= \sum_{i=1: \phi^x_i(c) = 1}^{d} [w_t]_i$$

- From here on, we assume $\{w_t\}_{t \in \mathcal{T}}$ trained from data.
Important Aside

Each c_i is computed from past decisions $t_0 \ldots t_{i-1}$.

$$c_i = t_{i-1}(t_{i-2}(\cdots t_0(c_0)))$$

So the score function on c_i is really a function of $t_0 \ldots t_{i-1}$.

$$\text{score}_x(t|c) = \text{score}_x(t|t_1 \ldots t_{i-1})$$

Will use c_i and $t_0 \ldots t_{i-1}$ interchangeably.
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Greedy

At each configuration c_i, pick

$$t_i \leftarrow \arg \max_{t \in \text{LEGAL}(c_i)} \text{score}_x(t | t_0 \ldots t_{i-1})$$
Parsing Algorithm

Input: \(\{w_t\}_{t \in \mathcal{T}} \), sentence \(x \) of length \(m \)

Output: arcs representing a dependency tree for \(x \)

1. \(c \leftarrow c_0 \)
2. While \(c.\beta \neq [\] \),

 2.1 Select

 \[\hat{t} \leftarrow \arg \max_{t \in \text{LEGAL}(c)} \text{score}_x(t|c) \]

 2.2 Make a transition: \(c \leftarrow \hat{t}(c) \).
3. Return \(c.A \).
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Beam Search

Approximate the optimal sequence of transitions:

\[t^*_0 \ldots t^*_T \] =

\[\text{arg max}_{t_0\ldots t_{T-1}:} \sum_{i=0}^{T-1} \text{score}_x(t_i|t_0 \ldots t_{i-1}) \]

subject to:

- \(t_i \in \text{LEGAL}(c_i) \)
- \(c_T, \beta = [\] \)
Parsing Algorithm

Input: \(\{w_t\}_{t \in \mathcal{T}} \), sentence \(x \) of length \(m \), beam width \(K \)

Beam: \(\langle c, s \rangle \in \mathcal{C} \times \mathbb{R} \) organized by second argument (score)

Output: arcs representing a dependency tree for \(x \)

1. \(\mathcal{B} \leftarrow \text{Beam}(\{\langle c_0, 0 \rangle\}, K) \)
2. While \(c.\beta \neq [\] \) for some \(\langle c, s \rangle \in \mathcal{B} \),

 2.1 \(\mathcal{B}' \leftarrow \text{Beam}(\{\ }\), K) \)

 2.2 For \(\langle c, s \rangle \in \mathcal{B} \), for \(t \in \text{LEGAL}(c) \),

 \[\mathcal{B}'.\text{push}\langle t(c), s + \text{score}_x(t|c) \rangle \]

 2.3 \(\mathcal{B} \leftarrow \mathcal{B}' \)
3. Return \(c^* . \mathcal{A} \) where \(c^* \leftarrow \mathcal{B}.\text{pop}() \).
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Unlabeled Attachment Score (UAS):

\[
\frac{\text{\# words with correct parent}}{\text{\# words}}
\]

Labeled Attachment Score (LAS):

\[
\frac{\text{\# words with correct parent and label}}{\text{\# words}}
\]

Current state-of-the-art: 93-95 UAS, 91-93 LAS!
Parting Remarks

- There are better ways to train model $\{w_t\}_{t \in T}$.
 - Online learning, “dynamic” oracles, etc.

- Today, state-of-the-art parsers are obtained by just replacing

 $$\text{score}_x(t|c) = \underbrace{w_t}_\text{linear} \cdot \underbrace{\phi^x(c)}_{\text{hand-engineered}}$$

 with a neural network (Kiperwasser and Goldberg, 2016).

- **Graph-based** dependency parsing (Eisner, 1996): similar to CKY in constituency parsing