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Dropout

» Form of regularization for RNNs (and any NN
in general)

> Idea: “Handicap” NN by removing hidden
units stochastically

» set each hidden unit in a layer to 0 with
probability p during training (p = 0.5
usually works well)

» scale outputs by 1/(1 — p)

» hidden units forced to learn more general
patterns

» Test time: Simply compute identity

(Slide credit Dangi Chen & Karthik Narasimhan)
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Unidirectional vs Bidirectional RNN
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Agenda

1. Backpropagation
2. Self-attention in NLP

3. Representation learning through language modeling
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Backpropagation: Input and Output

» A technique to automatically calculate V.J(#) for any
definition of scalar-valued loss function J(6) € R.

Input: loss function J(6) € R, parameter value
Output: VJ(6), the gradient of J(6) at 6 =0

» Calculates the gradient of an arbitrary differentiable function
of parameter 0

Including neural networks
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Notation

» For the most part, we will consider (differentiable) function
f: R — R with a single 1-dimensional parameter x € R.

> The gradient of f with respect to x is a function of z

of (z) .
W.RHR

» The gradient of f with respect to x evaluated at x = a is
written as
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Chain Rule

» Given any differentiable functions f, g from R to R,

ox
_9(@) — Of)
f(x) ox

easy to calculate

» “Proof”: Linearization of linearization of g(z) around f(x)
around a

9(f(@)) = g(f(a)) + ¢'(f(a)) f'(a)(x — a)

99(f(=))
ox

Tr=a
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Exercises

At x = 42,

» What is the value of the gradient of f(x

» What is the value of the gradient of f(x

T

) :
) :
) :
z):
):
) :

» What is the value of the gradient of f
» What is the value of the gradient of f

» What is the value of the gradient of f
» What is the value of the gradient of f

X

( )?
p(223 +10)?

7
2z
2z + 999997
3
ex
ex
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X

» What is the value of the gradient of

f(z) := log(exp(2z> + 10))
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Chain Rule for a Function of Multiple Input Variables

> Let fi...f,, denote any differentiable functions from R to R.

» If g : R™ — R is a differentiable function from R™ to R,

Ag(fi(x), -, fm(z))

ox
= 99(fi(@), o, (@) of(x)
"2 0fi(x) - Oz

——
easy to calculate

=1

» Calculate the gradient of = + 22 4 yx with respect to x using
the chain rule.
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DAG

A directed acylic graph (DAG) is a directed graph G = (V, A)
with a topological ordering: a sequence 7w of V such that for
every arc (i,7) € A, i comes before j in 7.

o @ T oo

For backpropagation: usually assume have many roots and 1 leaf

Karl Stratos CS 533: Natural Language Processing 10/52



Notation

o @ 0 oo

V ={1,2,3,4,5,6}

Vi ={1,2}
Vn ={3,4,5,6}
A={(1,3),(1,5),(2,4),(3,4),(4,6),(5,6)}
pa(4) ={2,3}
ch(1) = {3,5}

e ={(1,2,3,4,5,6), (2,1,3,4,5,6)}
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Computation Graph

» DAG G = (V, E) with a single output node w € V.

» Every node i € V is equipped with a value z! € R:

1. For input node i € V7, we assume x* = a’ is given.
2. For non-input node ¢ € Vi, we assume a differentiable
function f7: R/P2()l 5 R and compute

zt = fi((‘rj)jépa(i))

> Thus G represents a function: it receives multiple values
z' = a' for i € V7 and calculates a scalar % € R.

» We can calculate z“ by a forward pass.
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Forward Pass

Input: computation graph G = (V, A) with output node w € V
Result: populates z* = a* for every t € V

1. Pick some topological ordering m of V.

2. For ¢ in order of m, if i € Vv is a non-input node, set

z' < a’ =f (( )]Gpa(z))

Why do we need a topological ordering?
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Exercise

Construct the computation graph associated with the function

flx,y) = (z + y)zy®

Compute its output value at x =1 and y = 2 by performing a
forward pass.
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For Notational Convenience. ..

» Collectively refer to all input slots by ; = (z%)cv,.

» Collectively refer to all input values by a; = (a%);cy;.

> AtieV:
Refer to its parental slots by 2 = (27) ;cpa(i)-
Refer to its parental values by a); = (a’) jcpa(i)-

Two equally valid ways of viewing any a’ € R as a function:

> A “global” function of x; evaluated at aj.

» A “local” function of 2 evaluated at a’.

Karl Stratos CS 533: Natural Language Processing
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Computation Graph: Gradients

> Now for every node ¢ € V, we introduce an additional slot
z" € R defined as

ox”
ox!

2=

rr=ag

» The goal of backpropagation is to calculate 2 for every
1eV.

» Why are we done if we achieve this goal?
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Key ldeas of Backpropagation

» Chain rule on the DAG structure

;,  0x¥
S

T Oat

Trr=ay
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Key ldeas of Backpropagation

» Chain rule on the DAG structure

X ——
oxt

rr=ayg

=00 -y

TI=AI jech(i)

J_J
Tr=ay
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Key ldeas of Backpropagation

» Chain rule on the DAG structure
e~ -
T, —a, seahti x

Z Z] ()fj(‘fj)

jech(q)

Ox?
X —
YA

al' 27

rr=ayg

Ilf(l'][
N———
easy to calculate
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Key ldeas of Backpropagation

» Chain rule on the DAG structure

ox7
X —
ox’

I

=00 -y

TI=ar jech(i)

S = 0f (x1)
O A P
N———
easy to calculate

rr=a zh=a}

jéech(i)

> If we compute 2 in a reverse topological ordering, then we
will have already computed 2z’ for all j € ch(i).
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Key ldeas of Backpropagation

» Chain rule on the DAG structure

ox7
X —
ox’

I

=00 -y

TI=ar jech(i)

S = 0f (x1)
O A P
N———
easy to calculate

rr=a zh=a}

jéech(i)

> If we compute 2 in a reverse topological ordering, then we
will have already computed 2z’ for all j € ch(i).

» What's the base case 27
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Backpropagation

Input: computation graph G = (V, A) with output node w € V
whose value slots 2° = a’ are already populated for every i € V
Result: populates z* for every i € V

1. Set z¥ «+ 1.
2. Pick some topological ordering 7 of V.
3. For i in reverse order of 7, set

afi(xh)
J
z<—Zz =

Y
jech(i) Tr=ay
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Exercise

Calculate the gradient of

flz,y) = (x +y)zy’

with respect to x at x = 1 and y = 2 by performing
backpropagation. That is, calculate the scalar

Of (x,y)

ox

(2,y)=(1,2)
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Answer
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Implementation

» Each type of function f creates a child node from parent
nodes and initializes its gradient to zero.

» "Add" function creates a child node ¢ with two parents (a, b)
and sets c.z < 0.

» Each node has an associated forward function.

» Calling forward at ¢ populates c.z = a.xz + b.x (assumes
parents have their values).

» Each node also has an associated backward function.

» Calling backward at ¢ "broadcasts” its gradient c.z (assumes
it's already calculated) to its parents

a.z < a.z +c.z

bz+bz+ecz
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Implementation (Cont.)

» Express your loss Jp(6) on minibatch B at =6 as a
computation graph.

» Forward pass. For each node a in a topological ordering,

a.forward()

» Backward pass. For each node a in a reverse topological
ordering,

a.backward()

» The gradient of Jp(6) at @ = 6 is stored in the input nodes of
the computation graph.
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General Backpropagation

» Computation graph in which input values that are vectors

2t e RY VieV

But the output value ¥ € R is always a scalar!
» The corresponding gradients are also vectors of the same size

2 e RY VieV

» Backpropagation has exactly the same structure using the

generalized chain rule

i Z al’w % 890]
z = -_— -
7 7 . .
jean(s) 0% lor=a; 07 |aial
- e — |
1xdJ dJ xd?

where second term is Jacobian of f7 wrt z* evaluated at a;
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Agenda

1. Backpropagation
2. Self-attention in NLP

3. Representation learning through language modeling
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Recurrent vs Self-Attention

@
ox
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Attention: General Form

Input
» Q € RYT: T query vectors of the “asker”
» K € RT': T’ key vectors of the “answerer”
» V e RT": T’ value vectors of the “answerer”
Output
» A e R™T: T answer vectors of the “asker” after asking

A = Vsoftmax (K TQ)
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Example: Attention-Based Seq2Seq

Input
» (Q =Y target LSTM encodings
» K = X: source LSTM encodings
» V = X: source LSTM encodings
Output
» A = Attention(Y, X, X): new target encodings

A = Xsoftmax (XTY)

Karl Stratos CS 533: Natural Language Processing
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Scaled Attention

Useful when d is large

KQ
v

Exercise: k,q € R? elementwise independent, mean 0, variance 1
> var (kTq)?

> var (k:Tq/\/ﬁ) ?

A = Vsoftmax
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Multi-Head Attention

Same input

Parameters

» WS e RUW/H)*d for j — 1. .. H: query projectors
» WK e RU@WH)Xd for j = 1... H: key projectors
» WY € RUE/H)xd for j = 1... H: value projectors

v

Karl Stratos

W € Rdxd

Attention (Wf?Q, WE K, WY v) ]

Attention (WHQ, WEK, WiV
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Multi-Head Attention with Residual (or Skip) Connection

Plus regularization: dropout, layer normalization (Ba et al., 2016)

A = MultiHeadAttention(Q, K, V)
A" = LayerNorm (Drop (A) + Q)

Henceforth ResMHA (Q, K, V)
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Transformer Encoder (vaswani et al., 2017)

Using H =8 heads, [ =0...5

X — ResMHA (X(l), x0. X“))
X+ — ResFF ()A(;(l)>

X = Dropy,(E +1II)
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Transformer Decoder (vaswani et al., 2017)

Using H =8 heads, [ =0...5

~

v — ResMHA (Y©, vy O, YU))

V0 — ResMHA (57“), X, X<6>)
)
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Translation Performance (vaswani et al., 2017)

Training Cost (FLOPs)

BLEU

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-10° 1.4.10%
ConvS2S [9] 25.16  40.46 9.6-10'% 1.5.10%
MoE [32] 26.03 40.56 2.0-10Y 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 2636  41.29 7.7-10°  1.2-10%
Transformer (base model) 27.3 38.1 3.3.108
Transformer (big) 284 41.8 2.3.10%

Karl Stratos
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Self-Attention Visualization (Vaswani et al., 2017)

Layer 5 and 6, one of the “heads”

The The
Law. Law
will will
never never
be be
perfect perfect
but— ——but
its its
application icati i i
should should should < should
be be be be
just just Just e just
this this this this
is is is s
what what What === what
we we we we
are are are are
missing missing Missing = missing
. , . -
in in i —in
- . my——
opinion opinion opinion ~— opinion
<EOS> .<EOS> <EOS> — —<EO0S>
<pad> <pad> <pad> = <pad>

Different heads learn different weights
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Agenda

1. Backpropagation
2. Self-attention in NLP

3. Representation learning through language modeling
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Text Representations Through Neural Language Modeling

66‘“ “e,%s\\%éo\ (5% \9} Y\'?'\e“
o

e ()
DA @\-&\ Ay ,\," 286
Qoq get% \Si‘ b=
LRSS ’x\)&\e’“ Ve
AN £ 2

1. Language models can be trained on a lot of text (e.g., the web)

2. They yield text representations generally useful for downstream tasks
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Example Downstream Tasks

Sentence classification

» Binary sentiment classification

0.05
0.95

This film doesn't care about intelligent humor — |:

or multi-class (e.g., 5 stars)

» Example datasets: SST-2, IMBb, Yelp Review, SemEval,
CoLA

» Sentiment analysis results: http:
//nlpprogress.com/english/sentiment_analysis.html

» Other types of classification: grammatical vs ungrammatical
(CoLA)
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Example Downstream Tasks

Sentence pair classification, or natural language inference (NLI)

0.05

(I am a lacto-vegetarian, | enjoy eating cheese) — 003

0.92

Example dataset: MNLI (Williams et al., 2018)

Met my first girlfriend that way.

FACE-TO-FACE

I didn’t meet my first girlfriend until later.

contradiction
CCNC
8 million in relief in the form of emergency housing. GOVERNMENT  The 8 million dollars for emergency hous-
neutral ing was still not enough to solve the prob-
NNNN lem.
Now, as children tend their gardens, they have anew ap-  LETTERS All of the children love working in their
preciation of their relationship to the land, their cultural  neutral gardens.
heritage, and their community. NNNN
At 8:34, the Boston Center controller received a third 9/11 The Boston Center controller got a third
transmission from American 11 entailment transmission from American 11.
EEEE
I am a lacto-vegetarian. SLATE I enjoy eating cheese too much to abstain
neutral from dairy.
NNEN
someone else noticed it and i said well i guess that’strue  TELEPHONE No one noticed and it wasn’t funny at all.
and it was somewhat melodious in other words it wasn’t  contradiction
just you know it was really funny cccce
Karl Stratos CS 533: Natural Language Processing
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Example Downstream Tasks

SQuAD-style question answering (Rajpurkar et al., 2016)

Example dataset: SQUAD (Rajpurkar et al., 2016)

Can be framed as predicting start/end index of the passage

Karl Stratos

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called “showers”.

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?
graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud

CS 533: Natural Language Processing
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Setting

» Each such downstream task provides only a limited amount of
labeled data

» Can we transfer a large-scale pretrained language model to
improve performance in all these tasks simultaneously?

» Popular benchmarks (Wang et al, 2018):

» GLUE: https://gluebenchmark.com/leaderboard
» SuperGLUE:
https://super.gluebenchmark.com/leaderboard
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ELMo (Peters et al., 2018)

Trained 10 epochs on 1B Word Benchmark
https://arxiv.org/pdf/1802.05365.pdf

Forward Language Model Backward Language Model
LST™M — = . — ol
Layer #2
3y - Iyyy - | % Jum
LSTM T, r. T ¢ - 6 ¢
Layer #1 -w -w
Embedding [ = 1T [T 2] [TT 111

I |
T [

—_—

# words in the

—
sentence N

_)
> (logp(te | t1,.. ., tk-15Ou, © LsTM, O5)
k=1

+log p(t | trs1,-- - ;tN§@zygLSTM7@S) )

. softmax
input

Karl Stratos CS 533: Natural Language Processing 41/52


https://arxiv.org/pdf/1802.05365.pdf

ELMo (Peters et al., 2018)

SNLI

NER SQUAD Coref SRL SST-5 Parsi ng*

88.7
+5.8%

hededelede

%

L4 Previous SOTA mmE Baseline

*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

Karl Stratos
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ELMo in Practice

1. ELMo layer: new representation of i-th token in a sequence
ePMoif 1 =0

L
—?ELMo,l
ELMo;(v,s1...81) =7 Sy h . ’ .
; %iﬂLMo,l otherwise

(4

2. In your downstream task, concatenate ELMo; (7, s1...5) to
your i-th input embedding.

3. Train your original model AND ~, s; ... sy, while keeping
ELMo parameters fixed
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Using ELMo

https://allennlp.org/elmo

Pre-trained ELMo Models

# TM Hi #
Link(Weights/Options LSTM Hidden X
Model ia) Parameters  Size/Output Highway
(Miltions) size Layers>
Small weights options | 136 1024128 1
Medium | weights options | 280 2048/256 1
Original | weights options | 936 4096/512 2
Original .
weights options 93.6 4096/512 2
(5.58)

Karl Stratos

from allennlp.modules.elmo import Elmo, batch_to_ids

options_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x409
weight_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096,

# Compute two different representation for each token.
# Each representation is a linear weighted combination for the

# 3 layers in ELMo (i.e., charcnn, the outputs of the two BiLSTM))
elmo = Elmo(options_file, weight_file, 2, dropout=0)

# use batch_to_ids to convert sentences to character ids
sentences = [['First', 'sentence', '.'], ['Another', '.']]
character_ids = batch_to_ids(sentences)

enbeddings = elmo(character_ids)
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Recurrent vs Self-Attention Encoding

deeply bidirectional

not bidirectional until later

45/52
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Masked Language Modeling

» For the purposes of representation learning, we don't care
about defining a proper language model which only conditions
on previous history.

» We want a prediction problem which conditions on entire
context all the time, so that we can use deeply bidirectional
encoders

» Solution: mask out words at random

the man went to the [MASK] to buy a [MASK] of milk
> Need to be careful

» Too little masking: too expensive to train

» Too much masking: not enough context

» Test time: no [MASK] input, so training should also handle no
[MASK] input sometimes
Details: https://arxiv.org/pdf/1810.04805.pdf

v
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BERT (Deviin et al., 2019)

IsNext barked

S S N

R e A A B |

[CLS] the dog [MASK] [SEP] the cat [MASK] away [SEP]

Karl Stratos CS 533: Natural Language Processing 47/52



BERT (Devlin et al., 2019)

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 932 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERT3asE 84.6/83.4 71.2 90.5 93.5 521 85.8 889 66.4 79.6
BERTLarcE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
Number of parameters
» ELMo: 94 million
» BERT Base: 110 million
» BERT Large: 340 million
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RoBERTa (Liu et al., 2019)

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE|Average
392k 363k 108k 67k 85k 57k 3.5k 25k| -
Pre-OpenAI SOTA 80.6/80.1  66.1 823 932 350 810 860 61.7| 740
BiLSTM+ELMo+Atin ~ 76.4/76.1 648 799 904 360 733 849 568| 710
OpenAI GPT 82.1/81.4 703 881 913 454 800 823 560| 752
BERTpasE 84.6/83.4 712 90.1 935 521 858 889 664 796
BERTLARGE 86.7/859 721 9L1 949 605 865 893 70.1| 819
SQuAD
Model data bsz steps L12.0) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 953
+additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer  160GB 8K 500K  94.6/89.4 90.2 96.4
BERT arce
with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7
XLNet; arce
with BOOKS + WIKI 13GB 256 1M 94.0/87.8 884 9%4.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

RoBERTa = BERT + more careful training + more data

https://github.com/pytorch/fairseq/tree/master/
examples/roberta
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BERT Manual

Use the output of the
masked word’s position
to predict the masked word

BERT

Randomly mask

15% of tokens
cs) MASK)

Input

Pre-training

85% Spam

16% Not Spam

1

BERT

Fine-tuning

Critical difference from ELMo: all BERT weights are fine-tuned
for the target task (expensive but worth it)

Karl Stratos CS 533: Natural Language Processing
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BERT Applications

Karl Stratos

Class
Label

Tox o
T w

Sentence 1 Sentence 2 Single Sentence

(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:

MNLI, QQP, QNLI, STS-B, MRPC, SST-2, CoLA
RTE, SWAG

Start/End Span o B-PER

.

Question Paragraph

Single Sentence

(c) Question Answering Tasks:

(d) Single Sentence Tagging Tasks:
SQuAD v1.1

CoNLL-2003 NER
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Currently in NLP

Explosion of pretrained contextualized word embedding models

>

>

>

>

TagLM (Peters et, 2017)

CoVe (McCann et al. 2017)
ULMfit (Howard and Ruder, 2018)
ELMo (Peters et al, 2018)

OpenAl GPT (Radford et al, 2018)
BERT (Devlin et al, 2018)
OpenAl GPT-2 (Radford et al, 2019)
XLNet (Yang et al, 2019)
SpanBERT (Joshi et al, 2019)
RoBERTa (Liu et al, 2019)
AIBERT (Anonymous)

T5 (Raffel et al., 2019)

| S
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