CS 533: Natural Language Processing

Conditional Neural Language Models

Karl Stratos

Rutgers University

Language Models Considered So Far

$$p_{Y|X}(\mathbf{y}|x_{1:100})$$

- ► Classical trigram models: $q_{Y|X}(y|x_{99}, x_{100})$
 - Training: closed-form solution
- ▶ Log-linear models: softmax_v($[w^{\top}\phi((x_{99}, x_{100}), y')]_{y'})$
 - Training: gradient descent on convex loss
- Neural models
 - ▶ Feedforward: softmax_y(FF([$E_{x_{99}}, E_{x_{100}}]$))
 - Recurrent: softmax_y(FF($h(x_{1:99}), E_{x_{100}}$))
 - ► Training: gradient descent on nonconvex loss

Conditional Language Models

Machine translation

And the programme has been implemented \Rightarrow Le programme a été mis en application

Summarization

russian defense minister ivanov called sunday for the creation of a joint front for combating global terrorism \Rightarrow russia calls for joint front against terrorism

Data-to-text generation

WIN TEAM		LOSS	P	TS	FG_PC1	RB	AS
Heat	11	12	103		49	47	27
Hawks	7	15 95		43	33	20	
	_	AS	RB	PT	FG	FGA	CITY
PLAYER							
Tyler Johnson		5	2	27	8	16	Miami
Dwight Howard		4	17	23	9	11	Atlanta
Paul Millsap		2	9	21	8	12	Atlanta
Goran Dragic		4	2	21	8	17	Miami
Wayne Ellington		2	3	19	7	15	Miami
Dennis Schroder		7	4	17	8	15	Atlanta
Rodney McGruder		5	5	11	3	8	Miami
Thabo Sefolosha		5	5	10	5	11	Atlanta
Kyle Korver		5	3	9	3	9	Atlanta

The Atlanta Hawks defeated the Miami Heat , 103 - 95 , at Philips Arena on Wednesday Atlanta was in desperate need of a win and they were able to take care of a shorthanded Miami team here . Defense was key for the Hawks, as they held the Heat to 42 percent shooting and forced them to commi 16 turnovers . Atlanta also dominated in the paint, winning the rebounding battle, 47 - 34 , and outscoring them in the paint 58 - 26. The Hawks shot 49 percent from the field and assisted on 27 of their 43 made baskets . This was a near wire - to - wire win for the Hawks , as Miami held just one lead in the first five minutes . Miami (7 -15) are as beat - up as arryone right now and it 's taking a toll on the heavily used starters . Hassan Whiteside really struggled in this game, as he amassed eight points 12 rebounds and one blocks on 4 - of - 12

shooting ...

(Wiseman et al., 2017)

Image captioning

 \Rightarrow the dog saw the cat

Encoder-Decoder Models

Much of machine learning is learning $x\mapsto y$ where x,y are some complicated structures

Encoder-decoder models are **conditional** models that handle this wide class of problems in two steps:

- 1. **Encode** the given input x using some architecture.
- 2. **Decode** output y.

Training: again minimize cross entropy

$$\min_{\theta \text{ (input,output)} \sim p_{Y|X}} \left[-\ln q_{Y|X}^{\theta} (\text{output}|\text{input}) \right]$$

Agenda

- 1. MT
- 2. Attention in detail
- 3. Beam Search

Machine Translation (MT)

- Goal: Translate text from one language to another.
- ▶ One of the oldest problems in artificial intelligence.

Some History

- ► Early '90s: Rise of statistical MT (SMT)
- ► Exploit **parallel text**.

And the programme has been implemented

Le programme a été mis en application

▶ Infer word alignment ("IBM" models, Brown et al., 1993)

SMT: Huge Pipeline

- 1. Use IBM models to extract word alignment, phrase alignment (Koehn et al., 2003).
- 2. Use syntactic analyzers (e.g., parser) to extract features and manipulate text (e.g., phrase re-ordering).
- 3. Use a separate language model to enforce fluency.
- 4. ...

Multiple independently trained models patched together

▶ Really complicated, prone to error propogation

Rise of Neural MT

Started taking off around 2014

- ► Replaced the entire pipeline with a **single** model
- ► Called "end-to-end" training/prediction

Input: Le programme a été mis en application
Output: And the programme has been implemented

- Revolution in MT
 - ▶ Better performance, way simpler system
 - A hallmark of the recent neural domination in NLP
 - ► Key: attention mechanism

Recap: Recurrent Neural Network (RNN)

Always think of an RNN as a mapping $\phi: \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d'}$ Input: an input vector $x \in \mathbb{R}^d$, a state vector $h \in \mathbb{R}^{d'}$ Output: a new state vector $h' \in \mathbb{R}^{d'}$

Left-to-right RNN processes input sequence $x_1 \dots x_m \in \mathbb{R}^d$ as

$$h_i = \phi\left(x_i, h_{i-1}\right)$$

where h_0 is an initial state vector.

▶ Idea: h_i is a representation of x_i that has incorporated all inputs to the left.

$$h_i = \phi(x_i, \phi(x_{i-1}, \phi(x_{i-2}, \cdots \phi(x_1, h_0) \cdots)))$$

Variety 1: "Simple" RNN

▶ Parameters $U \in \mathbb{R}^{d' \times d}$ and $V \in \mathbb{R}^{d' \times d'}$

$$h_i = \tanh\left(Ux_i + Vh_{i-1}\right)$$

Picture

Stacked Simple RNN

▶ Parameters $U^{(1)} \dots U^{(L)} \in \mathbb{R}^{d' \times d}$ and $V^{(1)} \dots V^{(L)} \in \mathbb{R}^{d' \times d'}$

$$h_{i}^{(1)} = \tanh \left(U^{(1)} x_{i} + V^{(1)} h_{i-1}^{(1)} \right)$$

$$h_{i}^{(2)} = \tanh \left(U^{(2)} h_{i}^{(1)} + V^{(2)} h_{i-1}^{(2)} \right)$$

$$\vdots$$

$$h_{i}^{(L)} = \tanh \left(U^{(L)} h_{i}^{(L-1)} + V^{(L)} h_{i-1}^{(L)} \right)$$

▶ Think of it as mapping $\phi : \mathbb{R}^d \times \mathbb{R}^{Ld'} \to \mathbb{R}^{Ld'}$.

$$x_{i} \quad \begin{bmatrix} h_{i-1}^{(1)} \\ \vdots \\ h_{i-1}^{(L)} \end{bmatrix} \quad \mapsto \quad \begin{bmatrix} h_{i}^{(1)} \\ \vdots \\ h_{i}^{(L)} \end{bmatrix}$$

Variety 2: Long Short-Term Memory (LSTM)

▶ Parameters $U^q, U^c, U^o \in \mathbb{R}^{d' \times d}$, $V^q, V^c, V^o, W^q, W^o \in \mathbb{R}^{d' \times d'}$

$$q_{i} = \sigma \left(U^{q} x_{i} + V^{q} h_{i-1} + W^{q} c_{i-1} \right)$$

$$c_{i} = \left(1 - q_{i} \right) \odot c_{i-1} + q_{i} \odot \tanh \left(U^{c} x_{i} + V^{c} h_{i-1} \right)$$

$$o_{i} = \sigma \left(U^{o} x_{i} + V^{o} h_{i-1} + W^{o} c_{i} \right)$$

$$h_{i} = o_{i} \odot \tanh \left(c_{i} \right)$$

- ▶ Idea: "Memory cells" c_i can carry long-range information.
 - What happens if q_i is close to zero?
- Can be stacked as in simple RNN.

Translation Problem

lacktriangle Vocabulary of the source language $V^{
m src}$

$$V^{\mathsf{src}} = \left\{ \; extstyle \, extstyle$$

ightharpoonup Vocabulary of the **target** language V^{trg}

$$V^{ ext{trg}} = \left\{ ext{ the, dog, cat, 2021, May, } \ldots
ight\}$$

▶ **Task.** Given any sentence $x_1 ... x_m \in V^{\text{src}}$, produce a corresponding translation $y_1 ... y_n \in V^{\text{trg}}$.

개가 짖었다 ⇒ the dog barked

Evaluating Machine Translation

- ▶ T: human-translated sentences
- $ightharpoonup \widehat{T}$: machine-translated sentences
- ▶ p_n : precision of n-grams in \widehat{T} against n-grams in T (sentence-wise)
- ► BLEU: Controversial but popular scheme to automatically evaluate translation quality

$$\mathsf{BLEU} = \min\left(1, \frac{\left|\widehat{T}\right|}{|T|}\right) \times \left(\prod_{n=1}^{4} p_n\right)^{\frac{1}{4}}$$

Translation Model: Conditional Language Model

A **translation model** defines a probability distribution $p(y_1 \dots y_n | x_1 \dots x_m)$ over all sentences $y_1 \dots y_n \in V^{\text{trg}}$ conditioning on any sentence $x_1 \dots x_m \in V^{\text{src}}$.

Goal: Design a good translation model

$$p({\it the dog barked}|{\it info})>p({\it the cat barked}|{\it info})$$
 $>p({\it dog the barked}|{\it info})$ $>p({\it odg the barked}|{\it info})$ $>p({\it odg shgwqw#w 1g0}|{\it info})$ $>p({\it odg shgwqw#w 1g0}|{\it info})$ $>p({\it odg shgwqw#w 1g0}|{\it info})$

How can we use an RNN to build a translation model?

Basic Encoder-Decoder Framework

Model parameters

- $lackbox{ Vector } e_x \in \mathbb{R}^d \ ext{for every } x \in V^{ ext{\tiny src}}$
- $lackbox{ Vector } e_y \in \mathbb{R}^d ext{ for every } y \in V^{\operatorname{trg}} \cup \{*\}$
- ▶ Encoder RNN $\psi : \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d'}$ for V^{src}
- ▶ Decoder RNN $\phi : \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d'}$ for V^{trg}
- ▶ Feedforward $f: \mathbb{R}^{d'} \to \mathbb{R}^{|V^{\text{trg}}|+1}$

Basic idea

- 1. Transform $x_1 \dots x_m \in V^{\mathsf{src}}$ with ψ into some representation ξ .
- 2. Build a language model ϕ over V^{trg} conditioning on ξ .

Encoder

For $i = 1 \dots m$,

$$h_i^{\psi} = \psi\left(e_{x_i}, h_{i-1}^{\psi}\right)$$

$$h_{m}^{\psi} = \psi\left(e_{x_{m}}, \psi\left(e_{x_{m-1}}, \psi\left(e_{x_{m-2}}, \cdots \psi\left(e_{x_{1}}, h_{0}^{\psi}\right) \cdots\right)\right)\right)$$

Decoder

Initialize $h_0^{\phi} = h_m^{\psi}$ and $y_0 = *$.

For $i=1,2,\ldots$, the decoder defines a probability distribution over $V^{\mathrm{trg}} \cup \{\mathtt{STOP}\}$ as

$$h_i^{\phi} = \phi\left(e_{y_{i-1}}, \ h_{i-1}^{\phi}\right)$$

$$p_{\Theta}(y|x_1 \dots x_m, \ y_0 \dots y_{i-1}) = \operatorname{softmax}_y(f(h_i^{\phi}))$$

Probability of translation $y_1 \dots y_n$ given $x_1 \dots x_m$:

$$p_{\Theta}(y_1 \dots y_n | x_1 \dots x_m) = \prod_{i=1}^n p_{\Theta}(y_i | x_1 \dots x_m, \ y_0 \dots y_{i-1}) \times p_{\Theta}(\mathsf{STOP}|x_1 \dots x_m, \ y_0 \dots y_n)$$

Encoder

Sentence: This cat is cute

Encoder

Sentence: This cat is cute

Encoder

Sentence: This cat is cute

Encoder

Decoder

Decoder

Decoder

Decoder

· A conditioned language model

Training

Given parallel text of N sentence-translation pairs $(x^{(1)},y^{(1)})\dots(x^{(N)},y^{(N)})$, find parameters Θ^* that maximize the log likelihood of the data:

$$\Theta^* \approx \underset{\Theta}{\operatorname{arg\,min}} - \sum_{i=1}^{N} \log p_{\Theta}(y^{(i)}|x^{(i)})$$
 loss

In PyTorch

Training not trivial due to exploting/vanishing gradients

Sequence-to-Sequence (Seq2Seq) Learning (Sutskever et al., 2014)

Problems?

Decoder with Attention

► Instead of using 1 fixed vector to encode all x₁...x_m, decoder decides which words to pay attention to, at every step.

▶ For i = 0, 1, ...,

$$p_{\Theta}(y|x_1 \dots x_m, \ y_0 \dots y_i)$$

$$= \operatorname{softmax}_y \left(\operatorname{FF} \left(\sum_{j=1}^m \alpha_{i,j} h_j^{\psi} \right) \right)$$

Attention Weights

$$\sum_{j=1}^{m} \alpha_{i,j} h_j^{\psi}$$

- $ightharpoonup lpha_{i,j}$: Importance of x_j for predicting i-th translation
- Various options

$$\beta_{i,j} = u^{\top} \tanh \left(W h_i^{\phi} + V h_j^{\psi} \right)$$
$$\beta_{i,j} = \left(h_i^{\phi} \right)^{\top} B h_j^{\psi}$$

Typically take softmax to make them probabilities:

$$(\alpha_{i,1} \dots \alpha_{i,m}) = \operatorname{softmax} (\beta_{i,1} \dots \beta_{i,m})$$

Input-Feeding Approach (Luong et al., 2015)

Explicit alignment information. Very large computation graph. Parallel computation during training no longer possible.

Matrix Form of Input-Feeding Attention

Bank $X \in \mathbb{R}^{d \times T}$, hidden state $h_{t-1} \in \mathbb{R}^d$, current word $y_t \in V$ (Board)

Greedy Decoding

Given sentence x: for $t = 1 \dots T_{\text{max}}$

$$y_t \leftarrow \underset{y \in V \cup \{\mathtt{STOP}\}}{\arg\max} \ \log q(y|y_{< t}, x)$$

stop if y = STOP.

Is this what we want?

$$y^* = \underset{y \in V^+: |y| \le T_{\text{max}}}{\arg \max} \log q(y|x)$$

Beam Search: Idea

Instead of enumerating $|V|^{T_{\max}}$ candidates, keep K (called beam size) highest scoring partial structures at every step.

Only an approximation

- ► Applicable to any decomposable score function
- Score function in seg2seg:

$$score(y_1 ... y_t) = \log q(y_1 ... y_t | x) = \sum_{i=1}^t \log q(y_i | y_{< i}, x)$$
$$= score(y_1 ... y_{t-1}) + \log q(y_t | y_{< t}, x)$$

▶ Runtime: $O(|V|T_{\max}K^2\log K)$

Beam Search

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t \log P_{\mathrm{LM}}(y_i|y_1, \dots, y_{i-1}, x)$$

(slide credit: Abigail See)

Beam Search

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t \log P_{\mathrm{LM}}(y_i|y_1, \dots, y_{i-1}, x)$$

(slide credit: Abigail See)

Beam Search

$$\mathsf{Beam}\,\mathsf{size} = \mathsf{k} = \mathsf{2}.\,\,\mathsf{Blue}\,\,\mathsf{numbers} = \,\mathsf{score}(y_1,\ldots,y_t) = \sum_{i=1}^t \log P_{\mathsf{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$

(slide credit: Abigail See)

Beam Search: Backtrack

struck

-3.8

got

-1.8

(slide credit: Abigail See)

tart

-5.3

-0.9

Beam Search: More Details

- ▶ Different hypotheses may stop at different time steps (place them aside)
- Continue beam search until
 - ▶ All *K* hypotheses stop
 - lacktriangle We hit max length limit T
- Select top hypotheses using the normalized likelihood score

$$\frac{1}{M} \sum_{i=1}^{M} \log q(y_i|y_{< i}, x)$$

Otherwise hypotheses get higher scores for just being shorter

Copy Mechanism

$$q(y_t|y_{< t}, x) = \sum_{z \in \{0,1\}} q(y_t, z|y_{< t}, x)$$

Picture (Credit: See et al., 2017)

