Mutual Information Maximization for Simple and Accurate Part-Of-Speech Induction

Karl Stratos

Toyota Technological Institute at Chicago
Mutual Information for NLP and Speech

- Maximizing mutual information is a hugely successful approach to unsupervised learning.
 - Brown clustering (Brown et al., 1992)
 - Estimation of HMMs for speech recognition (Bahl et al., 1986)
 - The information bottleneck method (Tishby et al., 2000)
 - Deep representation learning: MINE (Belghazi et al., 2018), CPC (van den Oord et al., 2018), DIM (Hjelm et al., 2019)

- Mutual information is difficult to work with.
 - Theoretical problem: measurement is intractable (McAllester and Stratos, 2018).
 - Practical problem: optimization is difficult.
 - Past methods rely on problem-specific assumptions (e.g., the Brown clustering algorithm).
This Work

- Neural parameterizations of the mutual information objective
 1. A generalization of Brown clustering
 2. A variational approximation (McAllester, 2017)

- State-of-the-art results on part-of-speech induction
 - Simple architecture: no feature engineering or expensive structured computation
Maximal Mutual Information (MMI) Predictive Coding

Variational Approximation

Experiments
Conventional Approach to Representation Learning

- Unknown joint distribution \(p_{XY} \) over random variables \((X, Y)\)

 \[X = \text{“past” signal} \]

 \[Y = \text{“future” signal} \]

- We draw a sample \((x, y)\) by masking a part of observation

\[
x = (\text{had these } ? \text{ in my}) \quad y = \text{keys}
\]

- Conventional approach: **conditional density estimation**

 - Given \((x_1, y_1) \ldots (x_N, y_N) \sim p_{XY}\), estimate \(p_Y | X \).

 - Examples: word2vec, ELMo, BERT, GPT/GPT-2

 - Often **uninterpretable** (continuous vectors), **wasteful** (noise in raw signals)
Goal: learn interpretable representations without modeling noise.

1. Explicitly define appropriate **discrete** encodings

 \[Z' = \text{discrete encoding of "past" signal } X \]
 \[Z = \text{discrete encoding of "future" signal } Y \]

2. Directly estimate **distributions over** \(Z' \) **and** \(Z \)
 - Never estimate distributions over raw signals!
Mutual Information Between Random Variables

Strength of statistical dependencies between \((X,Y)\)

\[
I(X,Y) = \sum_{x,y} p_{XY}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)} \geq 0
\]

- \(I(X,Y) = 0\) iff \((X,Y)\) are independent
- Largest when one variable determines the other

Data processing inequality: for any \(p_{Z'|X}^{\phi}\) and \(p_{Z|Y}^{\psi}\)

\[
I(X,Y) \geq I_{\phi,\psi}(Z',Z)
\]
Maximal Mutual Information (MMI) Predictive Coding

\[
\begin{align*}
\{1 \ldots m'\} & \xrightarrow{p_{Z'|X}} X & p_{XY} & \xrightarrow{p_{Z|Y}} \{1 \ldots m\}
\end{align*}
\]

Data: \(N\) samples \((x_1, y_1) \ldots (x_N, y_N) \sim p_{XY}\)

Objective: find parameters \(\phi, \psi\) that maximize the empirical mutual information between discrete encodings

\[
\max_{\phi, \psi} \frac{1}{N} \sum_{i=1}^{N} \sum_{z', z} p_{Z'|X}(z'|x_i)p_{Z|Y}(z|y_i) \log \frac{N \sum_{i=1}^{N} p_{Z'|X}(z'|x_i)p_{Z|Y}(z|y_i)}{\sum_{i=1}^{N} p_{Z'|X}(z'|x_i) \sum_{i=1}^{N} p_{Z|Y}(z|y_i)}
\]

estimate of a lower bound on \(I(X, Y)\)
Outline

Maximal Mutual Information (MMI) Predictive Coding
Variational Approximation
Experiments
Problem with Stochastic Optimization

- The previous objective is not amenable to SGD
 - Nonlinear function of N samples
 - SGD is ineffective

- Empirical success with a simpler lower bound on mutual information
Variational Lower Bound on Mutual Information

\[I(X, Y) = \sum_{x,y} p_{XY}(x, y) \log \frac{p_{XY}(x, y)}{p_X(x)p_Y(y)} \]

Data processing inequality: for any \(p^\psi_{Z|Y} \)

\[I(X, Y) \geq I^\psi(X, Z) \]
\[= H^\psi(Z) - H^\psi(Z|X) \]
\[\geq H^\psi(Z) - H^+_{\psi,\phi}(Z|X) \quad \forall p^\phi_{Z|X} \]
Information Theoretic Co-Training (McAllester, 2017)

\[
\max_{\psi, \phi} \frac{1}{N} \sum_{i=1}^{N} \sum_{z} p_{Z|Y}(z|y_i) \log \frac{N p_{Z|X}(z|x_i)}{\sum_{j=1}^{N} p_{Z|Y}(z|y_j)}
\]

estimate of a lower bound on \(I(X, Y) \)
Outline

Maximal Mutual Information (MMI) Predictive Coding

Variational Approximation

Experiments
Evaluation: Part-Of-Speech (POS) Induction

Task: given unlabeled text, infer the POS tags of words

<table>
<thead>
<tr>
<th>DET</th>
<th>NOUN</th>
<th>VERB</th>
<th>ADJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>cat</td>
<td>run</td>
<td>hot</td>
</tr>
<tr>
<td>an</td>
<td>dog</td>
<td>walk</td>
<td>cold</td>
</tr>
<tr>
<td>this</td>
<td>car</td>
<td>do</td>
<td>new</td>
</tr>
<tr>
<td>that</td>
<td>book</td>
<td>eat</td>
<td>long</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation metric: many-to-one accuracy

- Number of labels m: always fixed to true number of POS tags

Baselines

- **HMM**: standard HMM trained with EM (Baum-Welch)
- **Brown**: Brown clusters (Brown et al., 1992)
- **A-HMM**: anchor HMM (Stratos et al., 2016)
- **F-HMM**: featurized HMM (Berg-Kirkpatrick et al., 2010)
- **CRF-AUTO**: CRF autoencoder (Ammar et al., 2014)
$x = \text{(had these, in my)}$

$y = \text{keys}$

I had these keys in my pocket.
Result on Penn Treebank ($m = 45$ Tags)

Averaged over 10 random restarts

- HMM: 62.6
- Brown: 65.6
- A-HMM: 67.7
- F-HMM: 74.9
- Ours: 78.1
Result on Universal Treebank \((m = 12\) Tags)

Tuned on Penn Treebank, averaged over 10 languages

<table>
<thead>
<tr>
<th>Model</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>54</td>
</tr>
<tr>
<td>Brown</td>
<td>61.9</td>
</tr>
<tr>
<td>F-HMM</td>
<td>63.2</td>
</tr>
<tr>
<td>A-HMM</td>
<td>66.7</td>
</tr>
<tr>
<td>Ours</td>
<td>71.4</td>
</tr>
</tbody>
</table>
Comparison with CRF Autoencoders

Same setup: 8 languages from CoNLL with 12 tags (Ammar et al., 2014), model tuned on Penn Treebank

- HMM: 44.7
- F-HMM: 62.3
- CRF-AUTO: 62.8
- Ours: 67.9
Summary

- We identified an effective neural parameterization of the mutual information objective for MMI predictive coding.
 - Excellent POS induction results with a very simple architecture

- Future work includes
 - Structured label induction
 - Extrinsic evaluation of the induced representations