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1 Building Blocks

1.1 Convolution

Convθ

Input: image x ∈ RC×H×W , number of output channels C′, filter size F ≤ min(H,W ), stride S ≥ 1, padding P ≥ 0
Parameters: three-dimensional filter Wo ∈ RC×F×F and bias bo ∈ R for all output channels o ∈ {1 . . . C′}
Output: convolved y ∈ RC′×H′×W ′

where H ′ =
⌊
H+2P−F

S

⌋
+ 1 and W ′ =

⌊
W+2P−F

S

⌋
+ 1 (Lemma 1.1)

1. Pad the input x ∈ RC×H×W with P zeros on the edges to obtain x̃ ∈ RC×(H+2P )×(W+2P ).

2. For o = 1 . . . C′:

(a) Prepare to build a new matrix yo ← [].

(b) For row i = 1, S, 2S, . . . (moving down in stride S)

i. iend ← i+ F − 1

ii. If iend > H + 2P : continue

iii. Prepare to build a new row yo,i ← [].

iv. For column j = 1, S, 2S, . . . (moving right in stride S)

A. jend ← j + F − 1

B. If jend > W + 2P : continue

C. Compute the (i, j)-th Hadamard product for output channel o and append:

yo,i.append (Wo ⊙ x̃[:, i : iend, j : jend] + bo)

v. Append the finished row: yo.append(yo,i) where yo,i ∈ RW ′

3. Return y ← stack(y1 . . . yC′) ∈ RC′×H′×W ′
where yo ∈ RH′×W ′

for o = 1 . . . C′.

(Illustration by Dumoulin and Visin (2016))

Convθ(x ∈ R1×6×6, C ′ = 1, F = 3, S = 2, P = 1) ∈ R1×3×3

Lemma 1.1. Convolution on image shape (H,W ) using filter size F and stride S with padding P yields a new
image shape (H ′,W ′) where

H ′ =

⌊
H + 2P − F

S

⌋
+ 1 W ′ =

⌊
W + 2P − F

S

⌋
+ 1

Proof. Let Z denote either side after padding (i.e., Z = H + 2P or Z = W + 2P ). The quantity⌊
Z − F

S

⌋



counts the number of times we slide in stride S before we are left with F ≤ m < F +S values. (If Z−F is divisible
by S, then m = F ; otherwise F < m < F + S.) At this point, we apply the filter to the final possible patch of size
F , possibly neglecting the last few values. See the illustration with F = 4 and S = 2, comparing Z = 8 vs Z = 7:

𝐹

S S

𝐹

S

Thus the total number of output values is
⌊
Z−F
S

⌋
+ 1.

Fact 1.2. For any convolution on x ∈ RC×H×W with C ′ output channels, filter size F , stride S, and padding P ,
implying an output height H ′ and width W ′, there is a unique matrix V ∈ RC′H′W ′×CHW such that

Convθ(x,C ′, F, S, P ) = (V vec(x)).view(C ′, H ′,W ′) + b.view(C ′, 1, 1)

where we use the broadcasting syntax for bias.

Reason. This is true because a convolution is ultimately a sum of elementwise multiplications between weights and
inputs. For instance, assume single channels C = C ′ = 1, 3 × 3 input, kernel size F = 2, stride S = 1, and no
padding. Let x = [[x1, x2, x3]; [x4, x5, x6]; [x7, x8, x9]] be any 3× 3 input. The output of the convolution is a 2× 2
matrix given by

Convθ(x, 1, 2, 1, 0) =

W1 ⊙
(
x1 x2

x4 x5

)
+ b1 W1 ⊙

(
x2 x3

x5 x6

)
+ b1

W1 ⊙
(
x4 x5

x7 x8

)
+ b1 W1 ⊙

(
x5 x6

x8 x9

)
+ b1

 (1)

where W1 = [[w1, w2]; [w3, w4]] ∈ R2×2 is the filter and b1 ∈ R is the bias (for the single output channel o = 1).
Now consider the 4× 9 matrix

V =


w1 w2 0 w3 w4 0 0 0 0
0 w1 w2 0 w3 w4 0 0 0
0 0 0 w1 w2 0 w3 w4 0
0 0 0 0 w1 w2 0 w3 w4

 (2)

We see that

V vec(x) =


w1 w2 0 w3 w4 0 0 0 0
0 w1 w2 0 w3 w4 0 0 0
0 0 0 w1 w2 0 w3 w4 0
0 0 0 0 w1 w2 0 w3 w4





x1

x2

x3

x4

x5

x6

x7

x8

x9


=


w1x1 + w2x2 + w3x4 + w4x5

w1x2 + w2x3 + w3x5 + w4x6

w1x4 + w2x5 + w3x7 + w4x8

w1x5 + w2x6 + w3x8 + w4x9



Thus (V vec(x)).view(1, 2, 2) + b1 equals (1).

https://numpy.org/doc/stable/user/basics.broadcasting.html


1.2 Transposed Convolution

TransConvθ

Input: image x ∈ RC×H×W , number of output channels C′, filter size F ≥ 1, implicit stride S ≥ 1 (enlargement
factor), implicit padding P ≤ F − 1
Parameters: three-dimensional filter Wo ∈ RC×F×F and bias bo ∈ R for all output channels o ∈ {1 . . . C′}
Output: larger image y ∈ RC′×H′×W ′

where H ′ = (H − 1)S + F − 2P and W ′ = (W − 1)S + F − 2P (Lemma 1.3)

1. Pad the input x ∈ RC×H×W with

• S − 1 zeros in between the pixels

• F − 1− P zeros on the edges

to obtain x̃ ∈ RC×f(H)×f(W ) where f(t) = t+ (t− 1)(S − 1) + 2(F − 1− P ).

2. Apply a stride-1 padding-0 convolution on x̃ using ĎWo ∈ RC×F×F where [ĎWo]c,i,j = [Wo]c,F−i+1,F−j+1 as
kernels:

y ← Conv{ĎWo,bo}C
′

o=1
(x̃, C′, F, 1, 0)

(Illustration by Dumoulin and Visin (2016))

TransConvθ(x ∈ R1×3×3, C ′ = 1, F = 3, S = 2, P = 1) ∈ R5×5

Lemma 1.3. Transposed convolution on image shape (H,W ) using filter size F with implicit stride S and padding
P yields a new image shape (H ′,W ′) where

H ′ = (H − 1)S + F − 2P W ′ = (W − 1)S + F − 2P

Proof. After padding, the input has shape C × f(H)× f(W ) where f(t) = t + (t− 1)(S − 1) + 2(F − 1− P ). We
apply a stride-1 padding-0 convolution with filter size F (it does not matter if the filters are flipped for the purpose
of computing the shape). The convolution output has height H ′ = f(H) − F + 1 (Lemma 1.1 with unit stride),
which evaluates to H ′ = (H − 1)S + F − 2P . The width is similar.

We note several oddities in transposed convolution:

• The “padding” P is used to reduce the padding size (additively).

• The “stride” S is used to increase the padding size (multiplicatively).

• After padding, the performed convolution is always stride-1 and padding-0, disregarding the given P and S.

• The kernel values are flipped (both horizontally and vertically).

Fact 1.4 states that this is equivalent to (1) identifying an implicit stride-S padding-P convolution that reshapes
a higher-resolution image to the current image shape, and (2) taking the transpose of the matrix-form of that
convolution to recover the original shape. Note that it is not taking the inverse of the convolution (which is
impossible), so it is incorrect to view it as undoing any convolution. It is also called a “fractionally-strided”
convolution since it takes more than one stride to cover a single patch in the original image if S > 1.



Fact 1.4. Consider a transposed convolution

TransConvθ(·, C ′, F, S, P ) : RC×H×W → RC′×H′×W ′

with filter weights Wo ∈ RC×F×F for o ∈ {1 . . . C ′} and bias b ∈ RC′
. We may define a convolution

Conv{Uc,bc=0}C
c=1

(·, C, F, S, P ) : RC′×H′×W ′
→ RC×H×W

where Uc ∈ RC′×F×F for c ∈ {1 . . . C} is given by [Uc]o,i,j = [Wo]c,i,j . If V ∈ RCHW×C′H′W ′
is the unique matrix

associated with the convolution (Fact 1.2), the following relationship holds:

TransConvθ(x,C ′, F, S, P ) = (V ⊤vec(x)).view(C ′, H ′,W ′) + b.view(C ′, 1, 1) (3)

Reason. We first check that the convolution matches the shape. The new height is, by Lemma 1.1 and 1.3,⌊
H ′ + 2P − F

S

⌋
+ 1 =

⌊
(H − 1)S + F − 2P + 2P − F

S

⌋
+ 1 = H

The width is similar. What is mysterious is that the transposed matrix corresponds to an enlarged convolution.
We illustrate the phenomenon with single-channel padding-0 examples. A transposed convolution on a 2× 2 input
x = [[x1, x2] [x3, x4]] using a 2× 2 filter W1 = [[w1, w2]; [w3, w4]] (no bias) with stride 1 computes

[
w4 w3

w2 w1

]
(2 × 2 flipped kernel)

stride-1
padding-0→


0 0 0 0
0 x1 x2 0
0 x3 x4 0
0 0 0 0


(4 × 4 padded input)

=⇒

 w1x1 w2x1 + w1x2 w2x2

w3x1 + w1x3 w4x1 + w3x2 + w2x3 + w1x4 w4x2 + w2x3

w3x3 w4x3 + w3x4 w4x4


(3 × 3 output)

(4)

Consider a convolution on a 3× 3 input using the filter W1 ∈ R2×2 with stride 1. The matrix V ∈ R4×9 associated
with this convolution is given in (2). Multiplying by the transpose of the matrix gives

V ⊤vec(x) =



w1 0 0 0
w2 w1 0 0
0 w2 0 0
w3 0 w1 0
w4 w3 w2 w1

0 w4 0 w2

0 0 w3 0
0 0 w4 w3

0 0 0 w4




x1

x2

x3

x4

 =



w1x1

w2x1 + w1x2

w2x2

w3x1 + w1x3

w4x1 + w3x2 + w2x3 + w1x4

w4x2 + w2x3

w3x3

w4x3 + w3x4

w4x4


which upon reshaping equals the output in (4). This phenomenon generalizes to stride S > 1. A transposed
convolution using a 1× 1 filter w ∈ R with stride 2 computes

[
w
]

(1 × 1 flipped kernel)

stride-1
padding-0→

x1 0 x2

0 0 0
x3 0 x4


(3 × 3 padded input)

=⇒

wx1 0 wx3

0 0 0
wx3 0 wx4


(3 × 3 output)

(5)

Consider a convolution on a 3 × 3 input using the filter w ∈ R with stride 2. The output shape is 2 × 2. The
associated matrix V ∈ R4×9 and the transposed product is

V =


w 0 0 0 0 0 0 0 0
0 0 w 0 0 0 0 0 0
0 0 0 0 0 0 w 0 0
0 0 0 0 0 0 0 0 w

 V ⊤vec(x) =



w 0 0 0
0 0 0 0
0 w 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 w 0
0 0 0 0
0 0 0 w




x1

x2

x3

x4

 =



wx1

0
wx2

0
0
0

wx3

0
wx4


which upon reshaping equals the output in (5).



1.3 Multi-Head Self-Attention

We can apply the same multi-head self-attention in transformers (Appendix B.3) by flattening an image x ∈
RC×H×W into a sequence of HW “word embeddings” with dimension C.

Attnθ

Input: image x ∈ RC×H×W , number of heads K, head dimension d
Parameters: parameters of the submodules
Output: pixel-level attended y ∈ RC×H×W

xtxt ← x.view(C,HW )⊤ ∈ RHW×C

ytxt ← AttnOriginalθ(xtxt,K, d)

y ← (y⊤
txt).view(C,H,W ) ∈ RC×H×W

2 Front-End Modules

Some kind of normalization layer is almost always necessary (Appendix A).1 Some kind of “residual connection” is
also necessary when we stack many convolution layers together. It broadly refers to the operation fres(x) = f(x)+x
where f is a nonlinear transformation. If the shape of x is different from the shape of f(x), a shape-correcting
convolution is applied before addition.

2.1 ResNet-50

ResNet-50 computes a vector representation of an image by applying a sequence of channel-increasing and resolution-
decreasing residual stacks. Each residual stack is a sequence of B residual blocks. Each residual block goes through
a channel bottleneck. See Appendix B.1 for the submodules.

ResNet50θ

Input: image x ∈ R3×32×32

Parameters: parameters of the submodules
Output: vector representation of the image y ∈ R2048

z ← ReLU(BatchNormθ(Convθ(x,C
′ = 64, F = 3, S = 1, P = 1))) (64× 32× 32)

z1 ← ResStackθ(z,B = 3, C′ = 64, S′ = 1) (256× 32× 32)

z2 ← ResStackθ(z1, B = 4, C′ = 128, S′ = 2) (512× 16× 16)

z3 ← ResStackθ(z2, B = 6, C′ = 256, S′ = 2) (1024× 8× 8)

z4 ← ResStackθ(z3, B = 3, C′ = 512, S′ = 2) (2048× 4× 4)

y ← AvgPool(z4) (2048× 1× 1)

2.2 U-Net

The U-Net architecture described here is based on labml.ai.2 It consists of a descent and an ascent phase. During
descent, the image is repeatedly transformed into a higher-channel, lower-resolution version by convolution. The
convolutions are interleaved with a stack of residual blocks. During ascent, the image is repeatedly transformed
into a lower-channel, higher-resolution version by transposed convolution. The transposed convolutions are again
interleaved with a stack of residual blocks. Importantly, during ascent, each residual block concatenates the input
with the corresponding intermediate image from descent, forming a “horizontal” residual connection. During both
descent and ascent, the residual block is additionally followed by self-attention for lower-resolution images. A context
embedding is incorporated additively in every residual block through a linear transformation. See Appendix B.2
for the submodules.

1Batch normalization does not make sense for a single input; assume that a real implementation is batched.
2It uses the swish function swish(x) = xσ(x) for nonlinearity, which is essentially GeLU.

https://nn.labml.ai/diffusion/ddpm/unet.html


UNetθ
Input: image x ∈ R3×32×32, context embedding u ∈ Rd

Parameters: parameters of the submodules
Output: same-shape transformation y ∈ R3×32×32

(zi)
12
i=1 ← Descendθ(x, u) (intermediate images)

y1 ← Ascendθ((zi)
12
i=1, u, s) (64× 32× 32)

y ← Convθ(swish(GroupNormθ(y1)), C
′ = 3, F = 3, S = 1, P = 1) (3× 32× 32)

2.3 Vision Transformer

A vision transformer (aka. ViT) (Dosovitskiy et al., 2020) just applies the transformer encoder (Appendix B.3) to
an image x ∈ RC×H×W after representing it as a sequence of D-dimensional embeddings. Each embedding is a
linear transformation of a flattened C × p× p patch of the image, plus a position embedding. The output of ViT is
a sequence of vectors, which can be used for classification (e.g., by using the first vector corresponding to a special
classification token) or as a submodule of an encoder-decoder model (e.g., image-encoder-text-decoder). Even
though a transformer does not have any vision-specific inductive bias like translation invariance in convolution, it
is shown to be more performant and robust than a convolutional model if sufficiently large and trained on sufficient
data (Radford et al., 2021).

ViTθ

Input: image x ∈ RC×H×W , patch size p that divides H and W , embedding dimension D, number of layers L,
number of heads K, head dimension d, hidden dimension H ≫ D
Additional variables: new height H ′ = H/p, new width W ′ = W/p

Parameters: parameters of the submodules; linear layer U ∈ RCp2×D, b ∈ RD

Output: sequence transformation of the image y ∈ RH′W ′×D

xchopped ← x.reshape(C,H ′, p,W ′, p).permute(2, 4, 1, 3, 5) (H ′ ×W ′ × C × p× p)

xtxt ← xchopped.flatten([1-2, 2-3]) (H ′W ′ × Cp2)

ztxt ← xtxtU + b (H ′W ′ ×D)

z̄txt ← LayerNormθ(ztxt + π) (π ∈ RH′W ′×D: sinusoidal position embeddings)

y ← TransformerEncoderθ(z̄txt, L,K, d,H)

Using a fixed patch size p yields different sequence lengths for different image sizes. A standard practice is to scale
the input image so that a desired sequence length is achieved. For example, Lee et al. (2022) scale the image up or
down (while preserving the ratio) so that the maximal number of p × p patches that fit within the given squence
length can be extracted.
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A Normalization

Given a tensor X representing a batch of inputs to some layer (which may themselves be the output of some
previous layer) and groups of its indices S, a normalization layer computes sX where for each group S ∈ S, the
corresponding values of sX have zero mean and unit variance (however, not independent of each other):

∑
i∈S

sXi = 0
∑
i∈S

 sXi −
1

|S|
∑
j∈S

sXj

2

= 1

This can be achieved by differentiable operations (elementwise subtraction and division). Intuitively, using sX
instead of X makes the layer’s weight update more stable. In the simple case where X = (x1 . . . xN ) ∈ RN×d

(i.e., each input is “length 1” or “shape (1, 1)”) and the layer is single-neuron and fully connected with parameter
w ∈ Rd, the gradient step on w is w′ ← w − ηX⊤u for some u ∈ RN . The resulting w′ may drastically change in
size and direction, which may be difficult to recover from in later batches. If we first normalize each row (“layer
normalization”), the resulting w′ satisfies ||w′||1 = ||w||1. This still allows the direction to change significantly,
but it will be easy to recover from. On the other hand, if we normalize each column (“batch normalization”),
then updates across batches will be similar ( sX⊤u ≈ ( sX ′)⊤u′) and each weight wi can expect similar updates from
different batches.

The fundamental assumption that a normalization layer makes about the input tensor is that each group makes
“similar contributions” (Ba et al., 2016). Given S, the values Xi ∈ R may differ wildly for i ∈ S, but it does
not matter since we will exercise our assumption and force them to have a similar magnitude (yet preserving
their relative behavior since we do not make them independent). When the assumption does not hold, forced
normalization will interfere with the model’s ability to extract patterns and may not be as effective. A visual
summary for some popular normalization methods for X ∈ RN×d (i.e., each row is an input vector, each column is
values of a particular feature over inputs) is given below:

N

d

N

d

N

d

Batch normalization Layer normalization Group normalization

Batch normalization assumes that all inputs make similar contributions. This is a reasonable assumption if the
batch size is large, but not so much otherwise. Layer normalization removes the batch size sensitivity by assuming
that all features make similar contribution for each input. This is a reasonable assumption for fully connected layers,
but not so much for convolutional layers where the values at the “edge of an image” are clearly less important than
the values at the center. Group normalization addresses this issue by further subgrouping features.

A.1 Normalization Template

As formulated by Wu and He (2018), all normalization methods share the following template. We assume a batch
of images which can be seen as the most general case subsuming single-vector and sequence inputs as special cases.
Let [n] = {1 . . . n} denote the set of indices from 1 to n. Let N denote the number of examples in a batch, C the
number of channels (equivalent to features), H the height, and W the width. Let I = [N ]× [C]× [H]× [W ] denote
the set of all NCHW index quadruples.



Learnable parameters: γ, β ∈ RC

Input: batch X ∈ RN×C×H×W , mapping select(k, c, i, j) ⊂ I, smoothing parameter ϵ = 0.00001
Output: normalized batch Y ∈ RN×C×H×W

1. For each (k, c, i, j) ∈ I, estimate the mean and standard deviation over the selected elements:

µ(k, c, i, j) =
1

|select(k, c, i, j)|
∑

(k′,c′,i′,j′)∈select(k,c,i,j)

Xk′,c′,i′,j′

σ(k, c, i, j) =

√
1

|select(k, c, i, j)|
∑

(k′,c′,i′,j′)∈select(k,c,i,j)

(Xk′,c′,i′,j′ − µ(k, c, i, j))2 + ϵ

2. Make each “region” in the tensor have zero mean and unit variance:

sX =
X − µ

σ

3. For each feature c ∈ [C], apply the same affine scaling to all examples k and locations (i, j):

Yk,c,i,j = γc sXk,c,i,j + βc

By varying the choice of select, we can choose which regions will be zero-mean and unit-variance.

select(k, c, i, j) =


{(k′, c′, i′, j′) ∈ I : c′ = c} (batch norm)

{(k′, c′, i′, j′) ∈ I : k′ = k} (layer norm)

{(k′, c′, i′, j′) ∈ I : k′ = k, c′ = c} (instance norm){
(k′, c′, i′, j′) ∈ I : k′ = k, c′ ∈ Cg(c)

}
(group norm)

where g(c) ∈ [G] is the group that c belongs to. Some method-specific details:

• Batch normalization estimates a moving average of the mean and variance during training and use them to
whiten batches at test time. Thus no sample estimates are computed at test time.

• Group norm assumes a sequential partition of features into G groups where G is a hyperparameter (we will

assume G = 32 in this note) in which case this condition can be checked as
⌊

c′

C/G

⌋
=

⌊
c

C/G

⌋
.

B Submodules

B.1 Submodules for ResNet-50

ResStackθ

Input: image x ∈ RC×H×W , number of residual blocks B, number of intermediate output channels C′, one-time
stride S′ ≥ 1
Parameters: parameters of the submodules

Output: y ∈ R4C′× H
S′ ×W

S′

1. Apply an initial residual block (size-reducing if S′ > 1):

z1 ← ResBlockRes
θ (x,C′, S′) (C ×H ×W )→

(
4C′ × H

S′ ×
W

S′

)
2. For i = 2 . . . B, apply a channel-bottleneck residual block:

zi ← ResBlockRes
θ (zi−1, C

′, 1)

(
4C′ × H

S′ ×
W

S′

)
→

(
4C′ × H

S′ ×
W

S′

)
3. Return y ← zB .



ResBlockRes
θ

Input: image x ∈ RC×H×W , number of intermediate output channels C′, one-time stride S′ ≥ 1
Parameters: parameters of the submodules

Output: y ∈ R4C′× H
S′ ×W

S′

z1 ← BatchNormθ(Convθ(x,C
′, F = 1, S = 1, P = 0))

(
C′ ×H ×W

)
z2 ← BatchNormθ(Convθ(ReLU(z1), C

′, F = 3, S = S′, P = 1))

(
C′ × H

S′ ×
W

S′

)
z3 ← BatchNormθ(Convθ(ReLU(z2), 4C

′, F = 1, S = 1, P = 0)))

(
4C′ × H

S′ ×
W

S′

)
x′ ←

{
x if (C,H,W ) =

(
4C′, H

S′ ,
W
S′

)
BatchNormθ(Convθ(x, 4C

′, F = 1, S = S′, P = 0)) otherwise

y ← ReLU(z3 + x′)

B.2 Submodules for U-Net

Descendθ

Input: image x ∈ R3×32×32, context embedding u ∈ R256

Parameters: parameters of the submodules
Output: increasingly higher-channel lower-resolution images (z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12)

z1 ← Convθ(x,C
′ = 64, F = 3, S = 1, P = 1) (64× 32× 32)

For i = 2, 3: zi ← ResBlockU
θ (zi−1, u, C

′ = 64) (64× 32× 32)

z4 ← Convθ(z3, C
′ = 64, F = 3, S = 2, P = 1) (64× 16× 16)

For i = 5, 6: zi ← ResBlockU
θ (zi−1, u, C

′ = 128) (128× 16× 16)

z7 ← Convθ(z6, C
′ = 128, F = 3, S = 2, P = 1) (128× 8× 8)

For i = 8, 9: zi ← Attnθ(ResBlockU
θ (zi−1, u, C

′ = 256)) (256× 8× 8)

z10 ← Convθ(z9, C
′ = 256, F = 3, S = 2, P = 1) (256× 4× 4)

For i = 11, 12: zi ← Attnθ(ResBlockU
θ (zi−1, u, C

′ = 1024)) (1024× 4× 4)

Ascendθ

Input: intermediate images (z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12) from Descendθ, context embedding u ∈ R256

Parameters: parameters of the submodules
Output: original-shape image y1 ∈ R3×32×32

Notation: channel-wise concatenation z ⊕ z′ ∈ R2C×H×W

y13 ← ResBlockU
θ (Attnθ(ResBlockU

θ (z12, u, 1024)), u, 1024) (1024× 4× 4)

For i = 12, 11: yi ← Attnθ(ResBlockU
θ (yi+1 ⊕ zi, u, 1024)) (1024× 4× 4)

ȳ10 ← Attnθ(ResBlockU
θ (y11 ⊕ z10, u, 256)) (256× 4× 4)

y10 ← TransConvθ(ȳ10, 256, F = 4, S = 2, P = 1) (256× 8× 8)

For i = 9, 8: yi ← Attnθ(ResBlockU
θ (yi+1 ⊕ zi, u, 256)) (256× 8× 8)

ȳ7 ← Attnθ(ResBlockU
θ (y8 ⊕ z7, u, 128)) (128× 8× 8)

y7 ← TransConvθ(ȳ7, 128, F = 4, S = 2, P = 1) (128× 16× 16)

For i = 6, 5: yi ← ResBlockU
θ (yi+1 ⊕ zi, u, 128) (128× 16× 16)

ȳ4 ← ResBlockU
θ (y5 ⊕ z4, u, 64) (64× 16× 16)

y4 ← TransConvθ(ȳ4, 64, F = 4, S = 2, P = 1) (64× 32× 32)

For i = 3, 2, 1: yi ← ResBlockU
θ (yi+1 ⊕ zi, u, 64) (64× 32× 32)



ResBlockU
θ

Input: image x ∈ RC×H×W , context embedding u ∈ Rd, number of output channels C′

Parameters: parameters of the submodules; linear layer U ∈ RC′×d, b ∈ RC′

Output: y ∈ RC′×H×W

z1 ← Convθ(swish(GroupNormθ(x)), C
′, F = 3, S = 1, P = 1) (C′, H,W )

z2 ← z1 + (Uswish(u) + b).view(C′, 1, 1)

z3 ← Convθ(Drop0.1(swish(GroupNormθ(z2))), C
′, F = 3, S = 1, P = 1)

x′ ←

{
x if C′ = C

Convθ(x,C
′, F = 1, S = 1, P = 0) otherwise

y ← z3 + x′

B.3 Submodules from Transformer (Vaswani et al., 2017)

AttnOriginalθ
Input: embedding sequence x ∈ RT×D, number of heads K, head dimension d
Parameters: linear layer Uz,h ∈ RD×d, bz,h ∈ Rd for all z ∈ {query, key, value} and h ∈ {1 . . .K}; linear layer
V ∈ RKd×D, b ∈ RD

Output: attended y ∈ RT×D

1. For each head h = 1 . . .K compute head-specific query/key/value embeddings of each pixel by

q(h) ← xUquery,h + bquery (T × d)

k(h) ← xUkey,h + bkey (T × d)

v(h) ← xUvalue,h + bvalue (T × d)

2. For each head h = 1 . . .K, compute self-attention over the sequence by scaled dot product, row-wise softmax,
attention dropout, and per-position linear combination of value embeddings:

a(h) ← Drop0.1

(
softmax

(
q(h)(k(h))⊤√

d

))
︸ ︷︷ ︸

T×T

v(h)︸︷︷︸
T×d

(T × d)

3. Dombine the K heads and recover the original dimension D through linear transformation:

y ← [a(1) . . . a(K)]︸ ︷︷ ︸
T×Kd

V︸︷︷︸
Kd×D

+b (T ×D)

TransformerEncoderθ
Input: sequence x ∈ RT×D, number of layers L, number of heads K, head dimension d, hidden dimension H ≫ D
Parameters: parameters of the submodules
Output: output sequence yL ∈ RT×D

1. y0 ← x

2. For l = 1 . . . L:

yl ← TransformerEncoderBlockθ(yl−1,K, d,H)

TransformerEncoderBlockθ

Input: sequence x ∈ RT×D, number of heads K, head dimension d, hidden dimension H ≫ D
Parameters: parameters of the submodules; (U, a), (V, b) where U ∈ RD×H , a ∈ RH , V ∈ RH×D, b ∈ RD

Output: output sequence y ∈ RT×D

z ← x+AttnOriginalθ(LayerNormθ(x),K, d)

u← Drop0.1(LayerNormθ(z))U + a (T ×H)

y ← x+GeLU(Drop0.1(u))V + b (T ×D)
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