
Variational and Information Theoretic Principles in
Neural Networks

Karl Stratos

1 Autoencoder

Assume a fixed input x ∈ Rd. We have an encoder Ψ which defines PΨ(z|x): a distribution

over hidden representations z ∈ Rd
′

conditioning on x. We also have a decoder Φ which defines
PΦ(x|z): a distribution over inputs x ∈ Rd conditioning on z.

Gaussian encoder. Define PΨ(z|x) := N (z|µ, diag(σ2)) where µ = tanh(Wx) and σ2 =

tanh(V x). The trainable parameters of Ψ are W,V ∈ Rd
′×d.

Bernoulli decoder. Assume x ∈ {0, 1}d. Define PΦ(x|z) :=
∏
i p
xi
i (1 − pi)1−xi where p =

(p1 . . . pd) = softmax(tanh(Wz)). The trainable parameter of Φ is W ∈ Rd×d
′
.

Let R be a regularization penalty on the encoder. The autoencoding objective is to minimize

J(Ψ,Φ) := E
z∼PΨ(·|x)

[− logPΦ(x|z)] +R(Ψ)

1.1 Basic Autoencoder

The encoder is deterministic and there is no regularization. Let Ψ : Rd → Rd
′

be a feedforward
and PΨ(Ψ(x)|x) := 1. Then

J(Ψ,Φ) = − logPΦ(x|Ψ(x))

Because there’s no randomness, it’s important to make d′ < d to avoid the trivial scenario
f(x) = x and PΦ(x|x) = 1.

1.2 Denoising Autoencoder

Assume the same setting in the basic autoencoder, but add a noise distribution E over Rd. Then

J(Ψ,Φ) = E
ε∼E

[− logPΦ(x|Ψ(x+ ε))]

This is equivalent to an autoencoder with dropout (at the input layer) if εi = −xi with probability
0.5 and zero otherwise. But the denoising autoencoder (Vincent et al., 2008) precedes dropout
(Srivastava et al., 2014).

1

1.3 Variational Autoencoder (VAE)

We no longer assume that the encoder deterministic. We also regularize the encoder. The choice
of encoder is PΨ(z|x) := N (z|µ, diag(σ2)) where µ, σ2 ∈ Rd

′
are functions of x (the Gaussian

encoder example above). The choice of regularization is its KL divergence from the standard
multivariate normal. The VAE objective is then given by

J(Ψ,Φ) = E
z∼PΨ(·|x)

[− logPΦ(x|z)] +DKL (PΨ(z|x)||N (z|0, Id′)) (1)

1.3.1 Optimization

Let’s first just think about how to train Φ and Ψ. By choice the regularization term is given in
closed form and differentiable:

DKL (PΨ(z|x)||N (z|0, Id′)) =
1

2

(
d∑
i=1

σ2
i + µ2

i − 1− log σ2
i

)
Now we need to express the first term as a differentiable function of µ and σ2 in order to train
Ψ. Actually sampling z ∼ N (z|µ, diag(σ2)) and using z to compute PΦ(x|z) will “sever” the
connection to µ and σ2 in the computation graph. But by reparameterizing1

N (z|µ,diag(σ2)) = µ+N (z|0, Id′)� σ2

the first term is equivalently written as

E
ε∼N (·|0,Id′)

[
− logPΦ(x|µ+ σ2 � ε)

]
In summary, training involves drawing ε ∼ N (·|0, Id′) and taking a gradient step on

− logPΦ(x|µ+ σ2 � ε) +
1

2

(
d∑
i=1

σ2
i + µ2

i − 1− log σ2
i

)

1.3.2 Justification

VAE is (almost) just a regularized autoencoder. By making the encoding look like the standard
normal, we put a spherical structure over the hidden representation. A catchy side effect is
that once the model is trained, we can generate random inputs by replacing the encoder step
with z ∼ N (·|0, Id′). Random MNIST digit images generated this way abound on the internet.
But VAE can also be viewed as EM: optimizing the ELBO on a certain generative model (see
Appendix A.3.1). The model is

PΦ(z, x) = N (z|0, Id′)PΦ(x|z)

This defines a marginalized likelihood

PΦ(x) =

∫
z∈Rd′

N (z|0, Id′)PΦ(x|z)dz (2)

Our goal is to compute the MLE

ΦMLE := arg max
Φ

logPΦ(x)

Assuming we want to avoid computing (2), we can do EM. Introduce an auxilliary distribution
PΨ(z|x) (encoder) and maximize ELBO

ELBO(Φ,Ψ) = E
z∼PΨ(z|x)

[logPΦ(x|z)]−DKL (PΨ(z|x)||N (z|0, Id′))

which is the (negative) VAE objective in (1).

1This trick, among other things, cannot accommodate discrete z.

2

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions

1.4 Variational RNN

It should be emphasized that the principle underlying VAE is EM (optimizing the ELBO lower
bound under an auxiliary posterior) where latent variables are required to be continuous to
enable the reparameterization trick. That means we can generally use it to introduce continuous
latent variables into a model. A neat example is the variational RNN of Chung et al. (2016).

Let h0 denote a constant initial hidden state. Given an input sequence x≤T := x1 . . . xT , a
standard RNN deterministically computes hidden state transition ht = τ(xt, ht−1). Each ht is a
function of x≤t and is used to define

p(x≤T) =

T∏
t=1

PΦ(xt|ht−1)

where PΦ(xt|ht−1) parametrizes p(xt|x<t). See the picture:

h1h0 h2 h3

x1 x2 x3

Φ

τ

Chung et al. propose to improve the model’s expressiveness by introducing variability also
in hidden state transition. This is achieved by introducing a continuous latent variable zt ∼
N (·|0, Id) at each time step. If inputs and latent variables are given, then hidden state transition
is again deterministic: ht = τ(zt, xt, ht−1). Each ht is a function of z≤t as well as x≤t and is
used to define the joint probability

p(z≤T , x≤T) =

T∏
t=1

p(zt, xt|z<t, x<t) =

T∏
t=1

N (zt|0, Id)PΦ(xt|ht−1, zt)

where PΦ(xt|ht−1, zt) parametrizes p(xt|z≤t, x<t). See the picture:

z1 z2 z3

h1h0 h2 h3

x1 x2 x3

Φ

τ

Because zt is unobserved, however, ht is no longer deterministic. Just like in VAE, our goal is
to find parameters τ and Φ that maximize the marginalized log likelihood:

log p(x≤T) = log

∫
z≤T

p(x≤T , z≤T) d(z≤T)

Instead of dealing with the integral over z≤T , we choose to maximize the ELBO lower bound
on ELBOτ (Φ,Ψ) ≤ log p(x≤T). An auxilliary distribution PΨ(zt|ht−1, xt) is introduced to
parametrize the posterior distribution:

p(z≤T |x≤T) =

T∏
t=1

p(zt|z<t, x≤T) =

T∏
t=1

PΨ(zt|ht−1, xt)

3

The auxilliary distribution again takes a Gaussian form to enable a closed-form expression of the
KL term. Specifically, PΨ(zt|ht−1, xt) = N (zt|µΨ,t,diag(σ2

Ψ,t)) where (µΨ,t, σ
2
Ψ,t) = Ψ(xt, ht−1).

The lower bound ELBOτ (Φ,Ψ) is then

E
z≤T∼PΨ(·|x≤T)

[logPΦ(x≤T |z≤T)]−DKL (PΨ(z≤T |x≤T)||p(z≤T))

= E
z≤T∼PΨ(·|x≤T)

[
T∑
t=1

logPΦ(xt|ht−1, zt)−DKL

(
N (zt|µΨ,t, diag(σ2

Ψ,t))||N (zt|0, Id)
)]

where the hidden states are computed by τ using the latent variables drawn from Ψ. In summary,
the training consists of the following steps. Given x≤T , for t = 1 . . . T ,

1. (Reparametrization trick) Draw zt ∼ PΨ(·|ht−1, xt) by computing (µΨ,t, σ
2
Ψ,t)← Ψ(xt, ht−1)

and then setting zt = µΨ,t + σ2
Ψ,t � εt where εt ∼ N (·|0, Id).

2. Set ht = τ(zt, xt, ht−1).

and take a gradient step on

T∑
t=1

1

2

(
d∑
i=1

[σ2
Ψ,t]i + [µΨ,t]

2
i − 1− log[σ2

Ψ,t]i

)
− logPΦ(xt|zt, ht−1)

1.4.1 Conditional Prior

The actual model of Chung et al. makes zt depend on ht−1, thereby making it a function of x<t
and z<t. See the picture:

z1 z2 z3

h1h0 h2 h3

x1 x2 x3

Φ

τ

In functional form, zt ∼ N (·|µΦ,t, diag(σ2
Φ,t)) where (µΦ,t, σ

2
Φ,t) = Φ(ht−1). This puts temporal

structure over latent variables, but it’s now not clear how to calculate

DKL (PΨ(z≤T |x≤T)||p(z≤T))

since we must marginalize p(z≤T , x≤T) over all possible x≤T to calculate p(z≤T). The paper
doesn’t resolve this issue: they simply condition the prior on the current input sequence x≤T
and calculate

DKL (PΨ(z≤T |x≤T)||p(z≤T |x≤T))

This lets the ELBO lower bound be expressed as

E
z≤T∼PΨ(·|x≤T)

[
T∑
t=1

logPΦ(xt|ht−1, zt)−DKL

(
PΨ(zt|ht−1, xt)||N (zt|µΦ,t, σ

2
Φ,t)
)]

where the position-wise KL divergence can again be calculated in closed form. This model is
shown to perform significantly better, but the calculation of ELBO is approximate.

4

2 Generative Adversarial Network (GAN)

2.1 As a Minimax Game

This is the motivation of the original GAN paper (Goodfellow et al., 2014). Let P(x) denote the
true input distribution over Rd. GAN learns P without any explicit parametrization of P by
an adversarial framework.

Some definitions:

• π(z) is a distribution over some noise space Z, for instance a uniform distribution over

a box [−1, 1]d
′

or a spherical Gaussian over a unit ball (recommended).

• G : Z → Rd is a deterministic generator that transfroms a noise into an input. This can
be a simple feedforward, a convolutional net, etc.

– We can now sample a random input as follows: draw z ∼ π(·) and then set x = G(z).
This defines PG(x, z) := p(z) [[x = G(z)]]. The fake input distribution PG(x) is
obtained by marginalizing over z.

• D : Rd → [0, 1] is a deterministic discriminiator that computes the probability of x
being from P (i.e., rather than PG). We will sometimes write PD(1|x) to denote D(x) and
PD(0|x) to denote 1−D(x).

GAN defines an objective function so that G and D compete with each other. In particular, the
task of fooling D provides the necessary gradient information to train G. The objective is

min
G

max
D

V (G,D)

where2

V (G,D) := E
x∼P(·)

[logD(x)] + E
x∼PG(·)

[log (1−D(x))] (3)

2.1.1 The Minimax Solution

For any fixed G,

V (G,D) =

∫
x∈Rd

P(x) logD(x) + PG(x) log (1−D(x)) dx

is maximized by

D(x) =
P(x)

P(x) + PG(x)

So we can write

max
D

V (G,D) =

∫
x∈Rd

P(x) log
P(x)

P(x) + PG(x)
+ PG(x) log

PG(x)

P(x) + PG(x)
dx

= DKL (P(x)||P(x) + PG(x)) +DKL (PG(x)||P(x) + PG(x))

= − log 4 +DKL

(
P(x)

∣∣∣∣∣∣∣∣P(x) + PG(x)

2

)
+DKL

(
PG(x)

∣∣∣∣∣∣∣∣P(x) + PG(x)

2

)
= − log 4 + 2 JSD (P(x)||PG(x))

≥0

(4)

2This objective, to be differentiable, doesn’t accommodate discrete x.

5

This means

min
G

max
D

V (G,D) = − log 4

where the minimizing G and maximizing D satisfy PG(x) = P(x) and D(x) = 1/2. Thus if
the models have enough capacity, when the generator wins (i.e., forces the discriminator predict
randomly), we have learned a fake distribution PG that is equal to the true distribution P.

2.2 As Variational Optimization of JSD

Forget the adversarial setup in the previous section. We now just want to model P(x) with
a distribution PG(x) parametrized by a network G. To this end, we propose to minimize the
Jensen-Shannon divergence (JSD) between P and PG:

J(G) := 2JSD (P(x)||PG(x))

It’s unclear how we can optimize this. But we see in (4) that

J(G) = max
D

V (G,D) + log 4

By plugging this in, we see that the solution is given by

arg min
G

J(G) = arg min
G

max
D

V (G,D)

which is the GAN objective.

But there’s some subtlety here. The GAN objective is a lower bound on J(G): for all D,

J(G) ≥ V (G,D) + log 4 (5)

But G is minimizing this lower bound! To be clear, the derivation is correct “in the limit”
(i.e., the minimax objective is always fully optimized, so that we can always swap J(G) with
maxD V (G,D)), but it becomes nonsensical when this full optimization is not realized because
the error is in the wrong direction. Some suspect this is a source of instability in training GANs.

2.3 As Variational Optimization of Mutual Information

By JSD’s relation to mutual information, we can write the JSD objective J(G) as IG(Y ;X)
where

• Y is a fair coin: y ∼ Ber(·| 1
2
).

• X1 is the true input: x1 ∼ P(·).
• X2 is the fake input: x2 ∼ PG(·).
• X is set to X1 if Y = 1; it is set to X2 if Y = 0.

Thus GAN can be viewed as solving

min
G

IG(Y ;X)

by (incorrectly) minimizing its lower bound V (G,D) as before. We can rederive the lower bound
from mutual information by observing that IG(X;Y) = H(Y)−HG(Y |X) and (Pr(X,Y) denotes

6

http://www.inference.vc/infogan-variational-bound-on-mutual-information-twice/
https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence#Relation_to_mutual_information

the joint probability under the model):

−HG(Y |X) = E
X

[
E
Y |X

[log Pr(Y = y|X = x)]

]
≥ E

X

[
E
Y |X

[logPD(Y = y|X = x)]

]
= E

Y

[
E
X|Y

[logPD(Y = y|X = x)]

]
=

1

2
E

x∼P(·)
[logD(x)] +

1

2
E

x∼PG(·)
[log (1−D(x))]

=
1

2
V (G,D)

2.4 Training

An idealized training session will look like this: for each true input x ∈ Rd in the data,

• Draw z ∼ π(·).
• Compute x̃ = G(z).

• Update the parameters of D by a gradient step on − logD(x)− log (1−D(x̃)).

• Update the parameters of G by a gradient step on log (1−D(G(z))).

• Update the parameters of G by a gradient step on − logD(G(z)). Fixed points are the
same, but it’s more numerically stable (esp. early in the training when G is poor and
D(G(z)) ≈ 1).

But in practice, training GAN is notoriously difficult. A few hacks include: normalizing the
input, updating D and G with separate batches, label smoothing for D, etc. See here for details.

2.5 Information Maximizing GAN (InfoGAN)

We solve (for some regularization parameter λ > 0)

min
G

IG(Y ;X)− λIG(Z;G(Z))

in hope that we make z ∈ Z a “latent code” that’s highly correlated with the output of the
generator. Maximizing IG(Z;G(Z)) is equivalent to maximizing

−H(Z|G(Z)) = E
z∼π(·)

[
E

z′∼PG(·|G(z))

[
logPG(z′|G(z))

]]
whose maximum is zero. But the posterior PG(z|x) = PG(x, z)/PG(x) is difficult to calculate and
difficult to sample from. To bypass this difficulty, we introduce a model Q that approximates
PG(z|x) with PQ(z|x) and observe

−H(Z|G(Z)) ≥ E
z∼π(·)

[
E

z′∼PG(·|G(z))

[
logPQ(z′|G(z))

]]

7

https://github.com/soumith/ganhacks

To get rid of the need to sample from PG(·|G(z)), define X := G(Z) and write

E
z∼π(·)

[
E

z′∼PG(·|G(z))

[
logPQ(z′|G(z))

]]
= E

Z

[
E
X|Z

[
E

Z′|X

[
logPQ(z′|x)

]]]
= E

X

[
E
Z|X

[
E

Z′|X

[
logPQ(z′|x)

]]]
= E

X

[
E
Z|X

[logPQ(z|x)]

]
= E

Z

[
E
X|Z

[logPQ(z|x)]

]
= E
z∼π(·)

[logPQ(z|G(z))]

In summary, InfoGAN uses an upper bound obtained by introducing Q,

−I(Z;G(Z)) ≤ E
z∼π(·)

[logPQ(z|G(z))]−H(Z) (6)

to optimize IG(Y ;X)− λIG(Z;G(Z)) as

min
G

max
D,Q

V (G,D) + λ E
z∼π(·)

[logPQ(z|G(z))]

Note that InfoGAN minimizes a lower bound on IG(X;Y) (wrong direction) and minimizes an
upper bound on −λIG(Z;G(Z)) (correct direction).

2.5.1 Training

Here’s again an idealized training session: for each true input x ∈ Rd in the data,

• Draw z ∼ π(·).
• Compute x̃ = G(z).

• Update the parameters of D by a gradient step on − logD(x)− log (1−D(x̃)).

• Update the parameters of G by a gradient step on − logD(G(z))− logPQ(z|G(z)).

• Update the parameters of Q by a gradient step on logPQ(z|x̃).

Q and D are both mappings from Rd and their base parameters are usually tied. For example,
if Z is discrete, Q maps x to a vector of length |Z| and then applies softmax. If Z is continuous,
Q maps x to a vector of Gaussian parameters.

3 The Information Bottleneck Method

Tishby et al. (2000) consider a compression problem: encode a signal x ∈ X into a “codeword”
z ∈ Z. The goal is to learn p(z|x) by optimizing some measure of compression quality. The first
measure is “information rate”, the number of bits needed to specify z. Thus minimizing I(Z;X)
is considered, but this has a trivial solution of making z unrelated to x.

Rather, they propose to introduce another variable y ∈ Y with joint distribution p(x, y) =
p(y)p(x|y). Now the second measure of compression quality is to make z a minimal sufficient
statistics of x with respect to y:

max
p(z|x)

I(Y ;Z)− I(X;Z)

8

where the first term makes z informative of y and the second term (the information rate) makes
z concise. Note that this is with respect to the joint distribution p(x, y, z) = p(y)p(x|y)p(z|x)
and the Markov chain Y → X → Z. As the authors remark, we squeeze the information that
X provides about Y through a “bottleneck” formed by a limited set of codewords Z. They also
characterize an optimal coding rule p(z|x) as a function of p(z) and the KL divergence between
p(y|x) and p(y|z).

Tishby and Zaslavsky (2015) apply this to deep learning as follows. Y is the the target label, X
is the input, and Z is the hidden state. Under this framework, the goal of deep learning is viewed
as transforming the input into a concise representation that’s maximally predictive of the output.
This is further motivated by the observation that the original input is usually inadequate for
correct classification under linear models (Appendix C) While the framework gives a nice way
to think about the generalization/compression quality of neural networks, a shortcoming of this
work is the lack of a practical algorithm for the compression problem. This is addressed by the
next section.

4 Information Theoretic Co-Training

This work can be motivated in multiple ways. (1) It’s in a similar spirit with the classical co-
training where we have two views (X,Y) and try to identify whatever Z they agree on. (2) It can
be seen as an effort to measure mutual information between arbitrary random variables (X,Y),
which is notoriously difficult. (3) It’s also a particular probabilistic formulation to compress the
joint information content of (X,Y).

Let’s use (2). We have random variables (X,Y) with some unknown joint density P(X,Y) (with
corresponding conditional/marginalized densities P(X), P(Y), P(Y |Z), etc.). Assuming that
all we can do is getting iid samples from P(X,Y), how can we measure the mutual information
I(Y ;X) = H(Y)−H(Y |X)? This is not computable since we can’t calculate P. One approach
is to introduce a model Ψ that approximates P(Y |X) as PΨ(Y |X), optimize the cross-entropy
loss HΨ with and without conditioning on X, and take I(Y ;X) ≈ HΨ(Y) −HΨ(Y |X). If Ψ is
expressive enough to achieve PΨ(Y |X) = P(Y |X), then given infinitely many samples we will
have I(Y ;X).

But an argument against this is that directly modeling Y this way is numerically unstable. Also,
it doesn’t result in any compression (3); assume we’re interested in this. Thus we consider the
following approach: we introduce a latent variable Z and model PΨ(Z|Y) instead (the choice of
Y is arbitrary). This defines a joint density over (X,Y, Z) as PΨ(X,Y, Z) = P(X,Y)PΨ(Z|Y).
We note that by data processing inequality

I(Y ;X) ≥ IΨ(Z;X)

Thus we now try to maximize IΨ(Z;X) = HΨ(Z) −HΨ(Z|X).3 In particular, it subsumes the
first approach if we set Z = Y .

Now we just need to be able to measure HΨ(Z) and HΨ(Z|X). For simplicity we assume z ∈ Z
is discrete. Given n iid samples (x1, y1) . . . (xn, yn) ∼ P(X,Y), an unbiased estimate of HΨ(Z)

3Note here that if we choose to maximize IΨ(Z;Y), the objective will “discard” X and reduce to
autoencoding on Y .

9

https://en.wikipedia.org/wiki/Data_processing_inequality

is given by

ĤΨ(Z) := −
∑
z∈Z

P̂Ψ(Z) log P̂Ψ(Z)

where

P̂Ψ(Z) :=
1

n

n∑
i=1

PΨ(z|yi)

The other term HΨ(Z|X) is more difficult because for a given value of x we need to integrate
over y to compute PΨ(z|x) = (

∫
y
PΨ(x, y, z))/(

∫
y

∑
z PΨ(x, y, z)). So we introduce a second

encoder Φ that encodes z from x (not y!), and approximate PΦ(z|x) ≈ PΨ(z|x). As usual in
variational optimization, since

HΨ(Z|X) := E
(x,y)∼P(·)
z∼PΨ(·|y)

[− logPΨ(z|x)]

= E
(x,y)∼P(·)
z∼PΨ(·|y)

[− logPΦ(z|x)]

HΨ,Φ(Z|X)

−DKL (PΨ(z|x)||PΦ(z|x))

≥0

we now maximize HΨ,Φ(Z|X) instead. This can be estimated from samples as

ĤΨ,Φ(Z|X) := − 1

n

n∑
i=1

∑
z∈Z

PΨ(z|yi) logPΦ(z|xi)

In summary, the objective is

max
Ψ,Φ

HΨ(Z)−HΨ,Φ(Z|X)

One way to interpret is that Ψ tries to predict Z from Y , Φ tries to predict Z from X, and they
collaborate until they agree. In particular, if Ψ∗ = arg maxΨ HΨ(Z) − minΦ HΨ,Φ(Z|X), then
an optimal Φ is obtained by just minimizing HΨ∗,Φ(Z|X) which is the usual cross-entropy loss
where supervision on Z is given by Ψ∗. The training algorithm is as follows.

10

InfoCotrain
Input: Sn = {(x1, y1) . . . (xn, yn)} drawn iid from P, latent (discrete) space Z, int E
Output: PΨ(z|y) and PΦ(z|x) that try to maximize a lower bound on I(Y ;X)

1. Initialize Ψ and Φ.

2. For e = 1 . . . E,

(a) For each z ∈ Z, estimate

P̂Ψ(z)← 1

n

n∑
i=1

PΨ(z|yi)

(b) Set

ĤΨ(Z)← −
∑
z∈Z

P̂Ψ(z) log P̂Ψ(z)

(c) Set

ĤΨ,Φ(Z|X)← − 1

n

n∑
i=1

∑
z∈Z

PΨ(z|yi) logPΦ(z|xi)

(d) Take gradient steps

Ψ← Ψ− ηe∇Ψ

{
ĤΨ,Φ(Z|X)− ĤΨ(Z)

}
Φ← Φ− ηe∇Φ

{
ĤΨ,Φ(Z|X)

}

References
• Extracting and Composing Robust Features with Denoising Autoencoders (Vincent et al., 2008)

• Dropout: A Simple Way to Prevent Neural Networks from Overfitting (Srivastava et al., 2014)

• Auto-Encoding Variational Bayes (Kingma and Welling, 2013)

• A Recurrent Latent Variable Model for Sequential Data (Chung et al., 2016)

• Generative Adversarial Nets (Goodfellow et al., 2014)

• The information bottleneck method (Tishby et al., 2000)

• Deep Learning and the Information Bottleneck Principle (Tishby and Zaslavsky, 2015)

• Information Theoretic Co-Training (McAllester, 2017)

11

A The Latent Variable Paradigm

The data consists of x ∈ X . We define a model Φ that computes PΦ(x, z) where z ∈ Z is
unobserved. We often assume model structure PΦ(x, z) := PΦ(z)PΦ(x|z). z makes the generative
story for x more natural, leading to a model that’s both better fit and more interpretable. X
and Z can be anything: discrete or continuous or a mix of both.

A.1 Example Models

Model X Z Φ PΦ(z) PΦ(x|z)
GMM Rd [m] π, {µz,Σz}mz=1 π(z) N (x|µz,Σz)
HMM [n]N [m]N t, o

∏
i t(zi|zi−1)

∏N
i=1 o(xi|zi)

PCFG [n]N tree t, o
∏
r∈z t(r)

∏N
i=1 o(xi|zπ(xi))

VAE {0, 1}d Rd
′

Rd
′
7→ [0, 1]d N (z|0, Id′)

∏d
i=1 Φi(z)

xi(1− Φi(z))
(1−xi)

A.2 Applications

unsupervised learning generation supervised learning

data x x (x, y)

goal understand x generate new x′ learn x 7→ y

model PΦ(x, z) p(z)PΦ(x|z) PΦ(x, y, z)

role of z description of x seed refinement on (x, y)

ex. x document face image speech frames
ex. y — — transcription of x
ex. z topics seed vector boundaries in x

inference arg maxz PΦ(z|x)
z ∼ p(·)

x′ ∼ PΦ(·|z)

arg maxy PΦ(y|x)
or

arg maxy maxz PΦ(y, z|x)

A.3 Learning

The best estimator is usually given by MLE. If we observe z, we can compute

ΦSUP := arg max
Φ

logPΦ(x, z) (7)

Since we don’t observe z, we have to compute

ΦMLE := arg max
Φ

logPΦ(x) (8)

This problem is (obviously) more difficult. The usual rhetoric is that 1. (7) is concave and has a
closed-form solution for a wide class of distributions PΦ(x, z) (e.g., exponential families) whereas
(8) is non-concave with no such nice solution, 2. we can do gradient ascent, but gradients are
complicated and we must suffer local optima. This line of argument is now questionable, because
progress in automatic differentiation and local search makes it totally possible for direct gradient
ascent on (8) to be effective; we can do this as long as we can estimate logPΦ(x) reasonably well.

But this is the motivation for EM.

12

A.3.1 Derivation of EM

Φ wants to maximize logPΦ(x), which is nontrivial in many cases. However, Φ can often trivially
maximize logPΦ(x, z).4 What if a friend Ψ told him what z should look like by PΨ(z|x)? Then
again Φ can trivially maximize the expected value of logPΦ(x, z) under Ψ. If the friend is an
oracle and gives him the best z (that is, best under ΦMLE), we are done!

Of course, Φ can’t expect an oracle friend. In fact, in the absence of any other information, the
best Ψ can do is based on what Φ knows, so he must propose PΨ(z|x) = PΦ(z|x). That’s okay,
because

Φ2 = arg max
Φ

E
z∼PΦ1

(z|x)
[logPΦ(x, z)]

is not necessarily the same as Φ1. If Φ changes, then the friend can make a new proposal based
on the changed Φ. In this way, Φ and Ψ continue to cooperate until they agree. This is the heart
of EM.

To make this argument formal, we rewrite logPΦ(x) as

logPΦ(x) = E
z∼PΨ(·|x)

[logPΦ(x)]

= E
z∼PΨ(·|x)

[
log

PΦ(z|x)PΦ(x)

PΦ(z|x)

]
= E
z∼PΨ(·|x)

[logPΦ(x, z)]− E
z∼PΨ(·|x)

[logPΦ(z|x)]

= E
z∼PΨ(·|x)

[logPΦ(x, z)]− E
z∼PΨ(·|x)

[logPΨ(z|x)]

ELBO(Φ,Ψ)

+DKL (PΨ(z|x)||PΦ(z|x))

≥0

where we assume PΦ(z|x) > 0 for all z ∈ Z for convenience in the second equality. Here, among
other things, ELBO(Φ,Ψ) is a lower bound on logPΦ(x). It’s tight iff PΨ(z|x) = PΦ(z|x). EM
is an alternating maximization of ELBO, that is:

Ψ(t+1) = arg max
Ψ

ELBO(Φ(t),Ψ)

Φ(t+1) = arg max
Φ

ELBO(Φ,Ψ(t+1))

This view makes the idea of cooperation between Φ and Ψ precise; the burden on one becomes
lighter given the other’s feedback. It’s easy to see that the solution is given by

Ψ(t+1) ∈ {Ψ : PΨ(z|x) = PΦ(t)(z|x)} (9)

Φ(t+1) = arg max
Φ

E
z∼P

Ψ(t+1) (·|x)
[logPΦ(x, z)] (10)

The upshot is that it’s easy to compute Φ(t+1). It’s also easy to see that this iteration always
increases the original objective logPΦ(x) unless we are at a stationary point of ELBO, since

• Step (9) not only increases ELBO but makes it tight:

ELBO(Φ(t),Ψ(t+1)) = logPΦ(t)(x)

4The usual motivation is that if PΦ(x, z) is an exponential family, MLE is given in closed-form by its
sufficient statistics (in the fully observed setting).

13

• Step (10), then, can only increase the original objective:

max
Φ

ELBO(Φ,Ψ(t+1)) ≥ ELBO(Φ(t),Ψ(t+1)) = logPΦ(t)(x)

In many scenarios, we don’t even bother explicitly introducing Ψ. Then EM is just

Φ(t+1) = arg max
Φ

E
z∼P

Φ(t) (·|x)
[logPΦ(x, z)]

This justifies the name of the technique: we iteratively maximize the expectation. This form
also most closely mirrors the mechanics of EM in many settings. For instance, to estimate an
HMM with EM, we (1) compute expected counts under the current parameter values (with the
forward-backward algorithm), and (2) maximize the expected logPΦ(x, z) (i.e., MLE on the
expected counts).

What makes ELBO so mysterious is that it can be expressed in multiple equivalent forms, and
each of these forms justifies a particular step in an algorithm.

• Lower bound on marginalized log likelihood.

ELBO(Φ,Ψ) = logPΦ(x)−DKL (PΨ(z|x)||PΦ(z|x))

This form was used to justify Step (9): with Φ held constant, it’s tightly maximized to
logPΦ(x) by Ψ satisfying PΨ(z|x) = PΦ(z|x).

• Expected log likelihood with entropy regularization on PΨ(z|x).

ELBO(Φ,Ψ) = E
z∼PΨ(z|x)

[logPΦ(x, z)]− E
z∼PΨ(z|x)

[logPΨ(z|x)]

This form was used to justify Step (10): with Ψ held constant, it’s maximized by Φ that
maximizes the first term (an easy problem).

• Autoencoder with KL regularization between PΨ(z|x) and PΦ(z).

ELBO(Φ,Ψ) = E
z∼PΨ(z|x)

[logPΦ(x|z)]−DKL (PΨ(z|x)||PΦ(z))

This form can be easily verified by manipulating the form immediately above. This is the
training objective of VAE.

B Fubini’s Theorem

Let X and Y be any spaces equipped with probability measures. Fubini’s theorem states that
for all functions f : X × Y → R satisfying

∫
X×Y |f(x, y)| d(x, y) <∞,∫

X×Y
f(x, y)d(x, y) =

∫
X

(∫
Y

f(x, y)dy

)
dx =

∫
Y

(∫
X

f(x, y)dx

)
dy

14

An important application of Fubini is changing the order of expectation:

E
X

[
E
Y |X

[f(x, y)]

]
=

∫
X

Pr(X = x)

(∫
Y

Pr(Y = y|X = x)f(x, y)dy

)
dx

=

∫
X

(∫
Y

Pr(X = x, Y = y)f(x, y)dy

)
dx

=

∫
X×Y

Pr(X = x, Y = y)f(x, y)d(x, y) (11)

=

∫
X×Y

Pr(Y = y) Pr(X = x|Y = y)f(x, y)d(x, y)

=

∫
Y

Pr(Y = y)

(∫
X

Pr(X = x|Y = y)f(x, y)dx

)
dy (12)

where steps (11) and (12) are by Fubini and give us

E
X×Y

[f(x, y)] = E
X

[
E
Y |X

[f(x, y)]

]
= E

Y

[
E
X|Y

[f(x, y)]

]

C Linear Model for Classification

An input is a feature vector X ∈ Rd and an output is Y ∈ {0, 1}. There is some true distribution
Pr(X,Y). Given x ∈ Rd, a logistic regressor models its log odd as

log
Pr(Y = 1|X = x)

Pr(Y = 0|X = x)
= log

Pr(X = x|Y = 1)

Pr(X = x|Y = 0)

w>x

+ log
Pr(Y = 1)

Pr(Y = 0)

b

where w ∈ Rd and b ∈ R are the parameters of the model. Thus the regressor can express the
distribution when the first term can be written as w>x. This is possible iff

1. Features x1 . . . xd ∈ R are conditionally independent given the label.

2. The log ratio of p(xi|1) and p(xi|0) is proportional to xi ∈ R.

Then

log
Pr(X = x|Y = 1)

Pr(X = x|Y = 0)
=

d∑
i=1

log
Pr(Xi = xi|Y = 1)

Pr(Xi = xi|Y = 0)
=

d∑
i=1

wixi

For instance, if Pr(Y = 1) = π and Pr(X = x|Y = y) = N (µy, diag(σ2)) for each y ∈ {0, 1},
both requirements are satisfied and the parameters are given in closed form. But in general, we
can’t expect the representation X to be “disentagled” in such an idealized way.

15

	Autoencoder
	Basic Autoencoder
	Denoising Autoencoder
	Variational Autoencoder (VAE)
	Optimization
	Justification

	Variational RNN
	Conditional Prior

	Generative Adversarial Network (GAN)
	As a Minimax Game
	The Minimax Solution

	As Variational Optimization of JSD
	As Variational Optimization of Mutual Information
	Training
	Information Maximizing GAN (InfoGAN)
	Training

	The Information Bottleneck Method
	Information Theoretic Co-Training
	The Latent Variable Paradigm
	Example Models
	Applications
	Learning
	Derivation of EM

	Fubini's Theorem
	Linear Model for Classification

