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1 Fundamental Notions

Let Zµ ∼ N (µ, 1) with unknown µ. Our “alternative” hypothesis is

H1 : µ 6= 0

We want to decide if we should accept H1 based on a single sample zµ of Zµ. Since we don’t care about the
exact nonzero value of µ that makes H1 true, we may consider a proof by contradiction. A null hypothesis is a
statement that is false iff H1 is true, in this case

H0 : µ = 0

Now we need to decide if we should reject H0 based on zµ. There are two possible errors.

• Type I error: We accept a false H1 (i.e., reject a true H0).

• Type II error: We reject a true H1 (i.e., accept a false H0).

We want to especially avoid a type I error. To this end, we introduce a hyperparameter α ∈ (0, 1) called a
significance level. We will define RejectNullα : R → {0, 1} that maps zµ to 1 iff it rejects H0 such that the
associated type I error probability is α. Formally,

α = Pr(RejectNullα(Zµ) = 1|H0 is true) (1)

where the probability is over Zµ ∼ N (µ, 1). This justifies rejecting H0 (i.e., accepting H1) if RejectNullα(zµ) = 1
and α is sufficiently small since then the chance of rejecting a true H0 is small. In constrast, we do not directly
control the probability of making a type II error

β = Pr(RejectNullα(Zµ) = 0|H0 is false)

which is a complicated function of α. Thus we do not accept H0 (i.e., reject H1) if RejectNullα(zµ) = 0: we simply
say there is not enough evidence to accept either H0 or H1.

Statistical power. A related quantity is the probability of rejecting a false H0 (i.e., accepting a true H1) called
the statistical power of the test

1− β = Pr(RejectNullα(Zµ) = 1|H0 is false)

If a test is statistically weak, it has a high chance of not accepting a true H1. As an illustration, a conservative test
that never rejects H0 has the statistical power of 0.

Critical region. There are many valid rejection rules that satisfy (1). Specifically, RejectNullα(zµ) = [[zµ ∈ κα]]
where κα ⊂ R is any subset whose probability mass is α under N (0, 1). Below we show two possible choices of κα
at α = 0.05 (image credit: standard normal mass calculator by David Lane).

κ0.05 (−0.0626, 0.0626) (−∞,−1.96) ∪ (1.96,∞)
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(One can imagine other crazy probability mass allocations.) While both are valid, the second is more intuitive
because it consists of points that “most violate” H0 (i.e., µ = 0). Henceforth we will only consider this unique
choice of κα and call it the critical region. In this case, it is given by κα = (−∞,−cα)∪ (cα,∞) with cα (so-called
critical value) satisfying

1− Φ(cα) = Φ(−cα) =
α

2

where Φ(z) = Pr(Z0 ≤ z) is the CDF of N (0, 1). Note that we divide α by 2 because N (0, 1) is symmetric and the
most violating points are evenly split across two extremes. We reject H0 iff the sample falls in the critical region.
This is equivalent to rejecting H0 iff 0 is not trapped in a confidence interval for the mean of Zµ with confidence
1− α (Appendix B).

p-value. The particular choice of κα as the critical region is also useful because it allows us to consider a sample-
dependent quantity called the p-value. Specifically, p is the probability of sampling a point that violates H0 more
than the given observation. In this case,

p = Pr(|Zµ| > zµ|H0 is true) = Pr(Zµ > zµ|H0 is true) + Pr(Zµ < −zµ|H0 is true) = 2Φ(−zµ)

Since p ≤ α iff zµ ∈ κα, we can use p ≤ α as an alternative rejection rule. If we reject H0, the p-value tells us how
strongly we reject it (the smaller p is, the stronger the rejection). If zµ = 2.03, we reject H0 at a p-value of 0.04. If
zµ = −3.7, we reject H0 at a p-value of 0.0001.

1.1 One-Tailed Tests

Our hypothesis may be “one-tailed”. Instead of claiming µ 6= 0, we may claim H1 : µ > 0 (upper-tailed). The
corresponding null hypothesis is H0 : µ ≤ 0. The notion of “most violating” H0 changes to being furthest away to
the right, so the critical region is given by κα = (cα,∞) for a critical value cα > 0. For any µ ≤ 0 the probability
of a type I error is

Pr(Zµ > cα|µ ≤ 0) ≤ Pr(Zµ > cα|µ = 0) = Φ(−cα)

Hence we can use a critical region (cα,∞) satisfying Φ(−cα) = α and upper bound the probability by α. Similarly,
for any µ ≤ 0 the probability of sampling a point that violates H0 more than zµ ∼ N (µ, 0) is

Pr(Zµ > zµ|µ ≤ 0) ≤ Pr(Zµ > zµ|µ = 0) = Φ(−zµ)

So p = Φ(−zµ) upper bounds the probability. In short, we can simply compute the critical region and the p-value
assuming µ = 0 because doing so will only make our conclusion more conservative. In a lower-tailed test, we claim
that H1 : µ < 0.

1.2 Example

Let α = 0.05 be our significance level which ensures that the chance of accepting a false hypothesis is at most 5%.
We get a sample zµ ∼ N (µ, 1) and find that zµ = 2.03. Since the value is rather large, we have every reason to
hypothesize that µ > 0 or µ 6= 0, but probably not µ < 0. Below are our test results.

zµ = 2.03
α = 0.05

H1 H0 κα Conclusion p
µ > 0 (upper-tailed) µ ≤ 0 (1.645,∞) reject H0 0.02
µ < 0 (lower-tailed) µ ≥ 0 (∞,−1.645) do not reject H0 0.98
µ 6= 0 (two-tailed) µ = 0 (−∞,−1.96) ∪ (1.96,∞) reject H0 0.04

Note that the two-tailed test is statistically weaker than one-tailed tests. Had we sampled zµ = 1.87, we can
accept µ > 0 but not µ = 0. Even so, one-tailed tests are rarely appropriate because they fail to check if the other
direction is true which might be vital information (e.g., the new drug is actually less effective, not more). Reporting
a one-tailed p-value after rejecting the null hypothesis with a two-tailed test to make the result more significant
would be dishonest. Thus we always consider a two-tailed test except in test types in which only a one-tailed test
is meaningful (e.g., F -test).

2



1.3 Test Statistic

One way to categorize significance tests is by the distribution type of the test statistic, defined as whatever
quantity derived from the sample that we use to accept or reject the hypothesis. In this toy test, the test statistic
is the sample zµ ∼ N (µ, 1). In general, the test statistic is a nontrivial function of the sample.

2 Z-Test

This is the simplest non-identity test statistic. Let X1 . . . XN
iid∼ N (µ, σ2) where we know the value of σ2. Our

hypothesis is

H1 : µ 6= µ̃

for some µ̃ ∈ R. The corresponding null hypothesis is H0 : µ = µ̃. Under the null hypothesis, sXN = 1
N

∑N
i=1Xi ∼

N (µ̃, σ2/N), therefore

sXN − µ̃
σ/
√
N
∼ N (0, 1) (2)

so we can again use the standard normal distribution to calculate critical values and the p-value. For instance, if
the test statistic is 1.7, the two-tailed p-value is 0.0891 corresponding to the shaded area under N (0, 1) and we fail
to reject H0 at α = 0.05.1

The toy test in Section 1 is a special case with µ̃ = 0, σ2 = 1, and N = 1. Note that this is specifically
designed to take advantage of the central limit theorem (CLT): even if the sample distribution is not normal,
sXN

approx.∼ N (µ̃, σ2/N) as N →∞ so that (2) holds approximately. However, since we rarely assume that we know
the true variance this is rarely used.

3 T -Test

3.1 One-Sample T -Test

Let X1 . . . XN
iid∼ N (µ, σ2) where N ≥ 2. Our hypothesis is again

H1 : µ 6= µ̃

for some µ̃ ∈ R. The corresponding null hypothesis is H0 : µ = µ̃. Under the null hypothesis, sXN = 1
N

∑N
i=1Xi

and sS2
N = 1

N−1
∑N
i=1(Xi − sXN )2 satisfy (Lemma H.2)

sXN − µ̃
sSN/
√
N
∼ τ(N − 1) (3)

where τ(ν) is the t-distribution with ν degrees of freedom, which we can use calculate critical values and the p-value
(Appendix H.2). For instance, if N = 5 and the test statistic is -1.533, the two-tailed p-value is 0.2 corresponding
to the shaded area under τ(4)

1In a lower-tailed z-test, the p-value would be a half 0.0446 and we reject H0. But as discussed earlier we should not consider
one-tailed tests when a two-tailed test is meaningful.
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As N → ∞ (3) becomes equivalent to (2) since
ĎXN−µ̃

sSN/
√
N

converges to
ĎXN−µ̃
σ/
√
N

by Slutsky’s theorem (Theorem C.1)

and τ(N − 1) converges to N (0, 1) (Appendix H.2). This makes the t-test applicable on non-normal samples if N
is sufficiently large.

3.2 Paired Two-Sample T -Test

This test compares the means of two arbitrarily dependent (i.e., paired) normal variables. We can reduce it to the

one-sample t-test as follows. Let (X1, Y1) . . . (XN , YN )
iid∼ N (µ,Σ) where µ = (µX , µY ) ∈ R2 and Σ ∈ R2×2

�0 . Our
hypothesis is

H1 : µX 6= µY

The corresponding null hypothesis is H0 : µX = µY . Under the null hypothesis, Xi − Yi ∼ N (0, σ2) with σ2 =
Σ11 + Σ22 + 2Σ12 so that

1
N

∑N
i=1(Xi − Yi)
sSN/
√
N

∼ τ(N − 1)

where sS2
N is the sample estimator of σ2. Again, even if the samples are not normal, the test is asymptotically exact

as N →∞ by the CLT.

3.3 Independent Two-Sample T -Test

An alternative two-sample test can be derived if the variables are independent. Let X1 . . . XN
iid∼ N (µX , σ

2) and

Y1 . . . YN
iid∼ N (µY , σ

2). We assume equal variance σ2 and sample size N ≥ 2 for simplicity. Our hypothesis is

H1 : µX 6= µY

The corresponding null hypothesis is H0 : µX = µY . Under the null hypothesis, we have (Lemma H.3)

sXN − sYN

sSpooled

√
2
N

∼ τ(2N − 2) (4)

where sS2
pooled = ( sS2

X+ sS2
Y )/2 is the pooled estimator of σ2 (37). The denominator sSpooled

√
2
N is called the standard

error of the difference between two means.

3.4 Regression Slope T -Test

Let X ∈ RN×d denote any full-rank matrix with d ≥ 2 and first column 1N (i.e., bias dimension) and let y ∼
N (Xwtrue, σ

2IN×N ). Pick any j ∈ {1 . . . d}. Our hypothesis is

H1 : [wtrue]j 6= 0

That is, we hypothesize that the response variable is correlated with the j-th feature. The corresponding null
hypothesis is H0 : [wtrue]j = 0. Under the null hypothesis, we have (Corollary D.18)

[ŵ]j√
(X>X)−1

j,j

N−d ||ε̂||
∼ τ(N − d)

where ŵ = arg minw∈Rd ||y −Xw||2 denote the LSE parameter with residuals ε̂ = y −Xŵ. The denominator√
(X>X)−1

j,j

N−d ||ε̂|| is called the standard error of the slope coefficient.
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4 F -Test

In a single-comparison test like z-test or t-test, the null hypothesis is of the form a = b which can be violated
as either a > b or a < b. In contrast, many F -tests are multiple-comparison (“omnibus”) tests in which the null
hypothesis is of the form a1 = a2 = · · · = aK for K ≥ 2 where it does not make sense to make a two-way distinction.
Instead, the test stastistic is designed in such a way that the more violated the null hypothesis is, the bigger the
statistic is. Thus multiple-comparison F -tests are always upper-tailed. A single-comparison F -test (e.g., comparing
two variances) remains two-tailed.

4.1 One-Way ANOVA

For k = 1 . . .K ≥ 2, let Yk,1 . . . Yk,Nk
iid∼ N (µk, σ

2) where Nk ≥ 2 and let sYk and sS2
k denote the sample mean and

variance. Denote the total number of samples by N =
∑K
k=1Nk and the “grand mean” by sY = 1

N

∑K
k=1

∑Nk
i=1 Yk,i.

We may define an unbiased and a biased estimator of σ2 called the pooled variance (37) and the between-group
variance (41) (Appendix F):

sS2
pooled =

1

N −K

K∑
k=1

Nk∑
i=1

(Yk,i − sYk)2 E
[

sS2
pooled

]
= σ2

sS2
between =

1

K − 1

K∑
k=1

Nk(sYk − sY )2 E
[

sS2
between

]
= σ2 +

1

K − 1

K∑
k=1

(µk − µ)2 (5)

Our hypothesis is

H1 : µi 6= µj for some i 6= j

The corresponding null hypothesis is H0 : µ1 = · · · = µK . Under the null hypothesis, we have (Corollary F.6)

sS2
between
sS2
pooled

∼ F (K − 1, N −K) (6)

where F (d1, d2) is the F -distribution with (d1, d2) degrees of freedom (Appendix H.3). The statistic is always
positive. Importantly, the bigger it is, the more H0 is violated (5), so the test is upper-tailed. For instance, if K = 5
and N = 20, and the test statistic is 3.29, the upper-tailed p-value is 0.04 corresponding to the shaded area under
F (4, 15)

When K = 2. For simplicity assume the same sample size M = N1 = N2. In this case sS2
between = (M/2)(sY1− sY2)2

(Lemma K.2) and, using the fact that F (1, d) = τ2(d),

sS2
between
sS2
pooled

∼ F (1, 2M − 2) ⇔
sY1 − sY2

sSpooled

√
2
M

∼ τ(2M − 2)

Thus when K = 2, the one-way ANOVA (6) equivalent to the independent two-sample t-test (4).
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4.2 Equality of Two Variances

Let X1 . . . XN
iid∼ N (µX , σ

2
X) and Y1 . . . YM

iid∼ N (µY , σ
2
Y ) where N,M ≥ 2. Our hypothesis is

H1 : σ2
X 6= σ2

Y

The corresponding null hypothesis is H0 : σ2
X = σ2

Y . Under the null hypothesis, we have (Corollary H.5)

sS2
X

sS2
Y

∼ F (N − 1,M − 1)

where sS2
X and sS2

Y are sample variances. Since H0 can be violated in either direction σ2
X > σ2

Y or σ2
X < σ2

Y , the
test should be two-tailed. For instance, if N = M = 5 and the test statiatic is 0.18, the two-tailed p-value is 0.2
corresponding to the shaded area under F (4, 4)

4.3 Regression F -Test

Let X ∈ RN×d denote any full-rank matrix with d ≥ 2 and first column 1N and y ∼ N (Xwtrue, σ
2IN×N ). Pick

any Q ⊂ {1 . . . d}. Our hypothesis is

H1 : There exists some j 6∈ Q such that [wtrue]j 6= 0.

This can be seen as an omnibus version of the regression slope t-test (Section 3.4) where we hypothesize that the
response variable is correlated with some feature outside Q. The corresponding null hypothesis is

H0 : [wtrue]j = 0 for all j 6∈ Q.

Let ŷ = XX+y denote the least-squares prediction by the “full” model. For any subset S ⊆ {1 . . . d}, we will write
ŷS = XSX

+
Sy to denote the prediction by a “partial” model using only the columns of X indexed by S. Under

the null hypothesis, we have (Theorem D.15)∣∣∣∣ŷP − ŷQ∣∣∣∣2 /(|P | − |Q|)
||y − ŷ||2 /(N − d)

∼ F (|P | − |Q| , N − d) ∀P ⊃ Q (7)

Since this holds for any P ⊃ Q, we can devise multiple tests for the same hypothesis by varying P . Intuitively, (7)
measures the predictive gain when features in P\Q are added while considering the performance of the full model

(e.g., the gain is meaningless if ||y − ŷ||2 is huge). The regression F -test is upper-tailed since the bigger the statistic
is, the more violated H0 is. For instance, if N = 100, d = 58, |P | = 30, and |Q| = 10, and the test statistic is 1.596,
the upper-tailed p-value is 0.1 corresponding to the shaded area under F (20, 42)

A popular application of (7) is “ablating” discrete variables in regression. This is because encoding A ∈ {1 . . .K}
requires K − 1 dimensions (Appendix G), so asking “Does A matter?” requires an omnibus test “Does any of the
K − 1 features generated by A matter?”.
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4.3.1 One-way ANOVA (revisited)

Let A ∈ {1 . . .K}. Our hypothesis is that A is correlated with Y . The full regression model is

Y = wtrue

[
1

CA(A)

]
+ Zσ2 Zσ2 ∼ N (0, σ2)

where CA(A) ∈ RK−1 is an encoding of A. Under the null hypothesis (there is no correlation between A and Y ),
(7) holds with Q = {1} and P = {1 . . .K}. Note that the test distribution F (K − 1, N −K) is the same as in the
one-way ANOVA. In fact, (7) and (6) are equivalent under dummy coding (Appendix F.3.1).

4.3.2 Multi-way ANOVA.

The regression view of the one-way ANOVA naturally leads to a multivariate generalization. For instance, let
A ∈ {1 . . .K} and B ∈ {1 . . . L} (i.e., two-way ANOVA). Our hypothesis considers A, B, or their interaction
A:B ∈ {1 . . .KL}, and claims that it is correlated with Y . The full regression model is

Y = wtrue


1

CA(A)
CB(B)

CA(A)⊗ CB(B)

+ Zσ2 Zσ2 ∼ N (0, σ2)

where CA(A) ∈ RK−1 and CB(B) ∈ RL−1 are encodings of A,B and CA(A) ⊗ CB(B) ∈ R(K−1)(L−1) is their
kronecker product. Let IA, IB , IA:B denote subsets of dimensions corresponding to A, B, A:B. We can apply (7)
to ablate the impact of A, B, or A:B under the full model. But this requires choosing appropriate subsets Q ⊂ P .
For instance, to test the impact of A, we need to select Q,P such that P\Q = IA. There are three standard
“types”.

Ablated variable Type I Type II Type III
A ∈ {1 . . .K} Q = {1} Q = {1} ∪ IB Q = {1} ∪ IB ∪ IA:B

P = {1} ∪ IA P = {1} ∪ IA ∪ IB P = {1} ∪ IA ∪ IB ∪ IA:B

B ∈ {1 . . . L} Q = {1} ∪ IA Q = {1} ∪ IA Q = {1} ∪ IA ∪ IA:B

P = {1} ∪ IA ∪ IB P = {1} ∪ IA ∪ IB P = {1} ∪ IA ∪ IB ∪ IA:B

A:B ∈ {1 . . .KL} Q = {1} ∪ IA ∪ IB Q = {1} ∪ IA ∪ IB Q = {1} ∪ IA ∪ IB
P = {1} ∪ IA ∪ IB ∪ IA:B P = {1} ∪ IA ∪ IB ∪ IA:B P = {1} ∪ IA ∪ IB ∪ IA:B

Type I is “sequential” and requires an ordering of variables (here, A→ B → A:B). Type II and III are “simultane-
ous” (i.e., no ordering necessary) but differ in that Type II only uses terms of the same or lower interaction order
while Type III always sets P to be the full model including higher-order interactions. Caution: Type III requires a
mean-centered encoding of discrete variable (e.g., sum coding when data is balanced, see Appendix G.2.2).2

Balanced data. The good news is that when the data is balanced (i.e., the number of samples for each configu-
ration of discrete variables is the same, see Appendix G.1), type I/II/III produce the same result. Intuitively, this
is because it removes collinearity: knowing about the value of one variable tells nothing about the value of other
variable, so how we define the nested models is irrelevant.

5 Studentized Range Test

For k = 1 . . .K ≥ 2, let Yk,1 . . . Yk,M
iid∼ N (µk, σ

2) where M ≥ 2 and let sYk and sS2
k denote the sample mean and

variance. Our hypothesis is

H1 : µi 6= µj for some i 6= j

2To see why, let Z,Z′ be two independent scalar variables. The covariance between Z and ZZ′ is

Cov
(
Z,ZZ′

)
= E

[
Z2Z′

]
−E [Z]E

[
ZZ′

]
= E

[
Z2
]
E
[
Z′
]
−E [Z]2 E

[
Z′
]

= E
[
Z′
]

Var (Z)

So even if variables are independent, the covariance between a variable and a higher-order interaction term involving that variable is
nonzero unless the variable has zero mean. Because model Q in Type III uses higher-order interaction terms, it is not a true “subset”
of model P if the encoding is not mean-centered.
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The corresponding null hypothesis is H0 : µ1 = · · · = µK . Under the null hypothesis, we have

maxKk=1
sYk −minKk=1

sYk

sSpooled

√
2
N

∼ srange(K,MK −K) (8)

where sS2
pooled = (1/K)

∑K
k=1

sS2
k is the pooled estimator of σ2 (37) and srange(K, ν) is the studentized range

distribution with K groups and ν degrees of freedom (Appendix H.4). The test is upper tailed since the statistic
is bigger when H0 is more violated. Note that the statistic reduces to (4) in the independent two-sample t-test if
K = 2 (with the difference that we consider the absolute difference between the means).

Tukey’s range test. A notable aspect of (8) is that the numerator considers the absolute difference between a
pair of means, even though the test itself is an omnibus test. This allows for a pairwise comparison test known as
Tukey’s range test in which we compute

sYl − sYk

sSpooled

√
2
N

∀1 ≤ k < l ≤ K (9)

where WLOG we assume sY1 ≤ · · · ≤ sYK . We reject that sYl = sYk if (9) is larger than the critical value at a given
significance level α, where the critical value is computed using (8). This trick allows us to test multiple hypotheses

(namely H
(k,l)
1 : µk 6= µl for k < l) without increasing the familiy-wise error rate (Appendix A). In constrast with

the Bonferroni correction which divides α by the number of hypotheses, Tukey’s range test uses the same α, so it
is more statistically powerful when the number of hypotheses is large (as is the case in all pairwise comparisons).

6 TODO: Chi-Square Tests

7 Non-Parametric Tests

Most of the tests assume normality. While we can invoke the CLT to argue that this assumption is benign when
the sample size is nontrivial, it is possible to devise non-parameteric tests that make no assumption on the type
of the data distribution.

7.1 Wilcoxon Signed-Rank Test

This is a non-parametric version of the paired two-sample t-test (Section 3.2). Let (X1, Y1) . . . (XN , YN ) ∈ R2 be
N iid pairs of random variable such that Xi − Yi ∼ Sym(µ) where Sym(µ) is some symmetric distribution over R
centered at µ. Our hypothesis is

H1 : µ 6= 0

The corresponding null hypothesis is H0 : µ = 0. Let N ′ ≤ N denote the number of samples such that Xi 6= Yi.
Under the null hypothesis, we have

W =

N∑
i=1: Xi 6=Yi

sign(Xi − Yi)Ri ∼Wilcoxon(N ′)

where sign : R → {±1} is the sign function, Ri ∈ N is the rank of |Xi − Yi| from smallest to largest, and
Wilcoxon(ν) is some complex distribution with parameter ν (centered at zero). Since H0 can be violated by either
µ > 0 or µ < 0, the test is two-tailed. For instance, with N ′ = 10, the lower and upper critical values at α = 0.05
are 8 and 47, so we reject H0 if W ≤ 8 or W ≥ 47. When N ′ ≥ 20, W is approximately normally distributed by the
CLT, so we may standardize it and use the standard normal distribution instead. While the Wilcoxon signed-rank
test doesn’t require normality, it is statistically weaker than the paired t-test.

8 Discussions

8.1 Practical Issues

Significance level. The significance level is almost always fixed to be α = 0.05. That is, we are usually content
with a 5% chance of accepting a false H1.
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Software. In practice we never compute these statistics by hand. Instead we use software like R or statsmodels
(for Python). We design an alternative hypothesis a priori (and never change it after the test a posteriori !), choose
an appropriate test, then feed our data to a function that executes the test.

Single hypothesis. If we compare a single pair of means, we can use the paired t-test. We can also use the
Wilcoxon signed-rank test if we want to be conservative.

Multiple hypotheses. If we have multiple pairwise comparisons, we want to correct for the FWER to avoid
accepting some false hypothesis. We can use either the paired t-test with the Bonferroni correction (i.e., divide α
by the number of hypotheses, then conduct each test separately) or the Tukey’s range test. The latter is preferred
if we are doing all-pair comparisons among many distributions since the Bonferroni correction becomes statistically
weak with too many hypotheses.

Omnibus tests followed by post-hoc tests. We can consider a two-stage test procedure in which we first
show that there exists a pair of means that differ under multiple populations through ANOVA, then follow up with
the Tukey’s range test as a post-hoc test to identify which means differ. The benefit of doing this instead of just
applying Tukey immediately is that we can specify a more detailed model in ANOVA which may also have more
statistical power (but this seems a bit controversial). For instance, Ehud Reiter proposes to first check if there’s
any difference between systems for text generation by a three-way ANOVA where the full model is, in the formula
language for specifying a regression model,

Likert ∼ Subject ∗ Scenario ∗ System

Here, Likert ∈ R is the Likert score assigned on the text from System ∈ {1 . . .K} by Subject ∈ {1 . . . L} (i.e.,
human annotator) in a certain Scenario ∈ {1 . . . G}, and * denotes full interactions (so there will be 3 second-
order interaction variables and 1 third-order interaction variable) under some discrete-variable encoding. We may
start with all-way interactions and gradually remove higher order interactions that are not significant according to
ANOVA to arrive at a final model that only retains significant interactions, for instance

Likert ∼ Subject + Scenario + System + System:Subject

where System:Subject ∈ {1 . . .KL} denotes a pairwise interaction. If the means of System differ according to the
final model, then we use Tukey to make all K(K − 1)/2 pairwise comparisons to find which systems differ.

Useful resources.

• Tutorial by Python for Data Science: This shows how to conduct a multi-way ANOVA test and a post-hoc
test in Python.

• Blog post by Mattan S. Ben-Shachar: This gives more details of the different types of ANOVA and how to
replicate them by hand.
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A Multiple Hypotheses

Often we need to test multiple hypotheses simultaneously. For instance, for i = 1 . . .m we may claim

H
(i)
1 : µ(i) 6= ν(i)

for some parameters µ(i), ν(i) based on samples from their distributions. We test each hypothesis with significance
level α(i). The family-wise error rate (FWER) is defined as the probability of incorrectly accepting some false
hypothesis. As m increases, the FWER increases.3 Thus we need to control for FWER if we wish to avoid accepting
some false hypothesis. A simplest approach is called the Bonferroni correction which upper bounds the FWER
by the union bound:

FWER = Pr(∃i ∈ {1 . . .m} : H
(i)
0 is falsely rejected) ≤

m∑
i=1

Pr(H
(i)
0 is falsely rejected) =

m∑
i=1

α(i)

This means that to ensure FWER ≤ α, we can set α(i) = α/m. However, the union bound can be loose and the

test is statistically weak if m is large (i.e., we may fail to reject many false H
(i)
0 ).

B Hypothesis Tests and Confidence Intervals

We can express a hypothesis test as an equivalent statement about a confidence interval (CI). A CI for the parameter
θ (mostly the mean) of a distribution with confidence γ is a random interval Iγθ that traps θ with probability γ.
For instance, a CI for the mean of Zµ ∼ N (µ, 0) with γ = 0.95 is I0.95µ = [Zµ ± 1.96] since

Pr(−1.96 ≤ Z0 ≤ 1.96) = 1− 2Φ(−1.96) = 0.95 ⇔ Pr(Zµ − 1.96 ≤ µ ≤ Zµ + 1.96) = 0.95

where we use the fact that Zµ = µ+ Z0. Note that other choices are possible (e.g., assymetric or segmented), but
this is the most “natural” choice of CI for trapping the mean of a symmetric distribution. Each sample zµ of Zµ
yields a sample i0.95µ = [zµ ± 1.96] of I0.95µ . For any µ̃ ∈ R, we reject the hypothesis µ = µ̃ iff µ̃ 6∈ i0.95µ . A sample
yields a range of hypotheses to reject. For instance, if zµ = 2.03, we have i0.95µ = [0.07, 3.99] and reject µ = µ̃ for
all µ̃ ≤ 0.07 and µ̃ ≥ 3.99. The criterion for rejecting µ = 0 can be written as

0 6∈ i0.95µ ⇔ 0 6∈ [zµ ± 1.96]

⇔ zµ ∈ (−∞,−1.96) ∪ (1.96,∞)

⇔ zµ ∈ κ0.05

The last expression is exactly the rejection rule for the null hypothesis µ = 0 with significance level α = 0.05. More
generally, the correspondence between the two-tailed test in Section 1 and a CI is

reject µ = 0 iff zµ ∈ κα ⇔ reject µ = 0 iff 0 6∈ i1−αµ

B.1 Common Symmetric Form

A common situation is we have N iid random variables X1 . . . XN ∈ R from an unknown distribution with mean µ,
and for some scaled standard deviation estimate S > 0 we have

sXN − µ
S

∼ Sym

where sXN = (1/N)
∑N
i=1Xi and Sym is a known symmetric distribution centered at 0. In this case

Pr

(
−F−1Sym

(
1− α

2

)
≤

sXN − µ
S

≤ F−1Sym

(
1− α

2

))
= 1− α

3For instance, if each hypothesis is independent then

FWER = 1− (1− α(i))m

where (1− α(i))m is the probability of making no error in m tests.
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where F−1Sym(γ) is the quantile function of Sym.4 Note that F−1Sym(1 − α
2 ) is the upper critical value for Sym at

significance level α. (We could also use −F−1Sym(α/2) by the symmetry of the distribution.) Thus a (1− α)-CI for
µ is given by

Pr

(
µ ∈

[
sXN ± F−1Sym

(
1− α

2

) σ√
N

])
= 1− α (10)

For instance, if X1 . . . XN ∼ N (µ, σ2), then sXN ∼ N (µ, σ2/N) and thus
ĎXN−µ
σ/
√
N
∼ N (0, 1). In this case

Pr

(
µ ∈

[
sXN ± F−1N (0,1)

(
1− α

2

) σ√
N

])
= 1− α (11)

where we can get the value of F−1N (0,1)(γ) from the z-table. Similarly, we also know that
ĎXN−µ

sSN/
√
N
∼ τ(N − 1) where

sSN is the sample standard deviation (Lemma H.2), thus

Pr

(
µ ∈

[
sXN ± F−1τ(N−1)

(
1− α

2

)
sSN√
N

])
= 1− α (12)

where we can get the value of F−1τ(N−1)(γ) from the t-table.

B.1.1 Estimation

Given iid samples X1 . . . XN from an unknown distribution Unk(µ, σ2) with mean µ and variance σ2, how we
estimate I1−αµ depends on what assumptions we make.

• Normal, known variance. If Unk(µ, σ2) = N (µ, σ2) and we know σ2, we can calculate the exact [ sXN ±
F−1N (0,1)

(
1− α

2

)
σ√
N

] in (11).

• Normal, unknown variance. If Unk(µ, σ2) = N (µ, σ2) and we don’t know σ2, we can calculate the exact

[ sXN ± F−1τ(N−1)
(
1− α

2

)
sSN√
N

] in (12).

• Known variance. If we know σ2 and N is large enough, we can use [ sXN ± F−1N (0,1)

(
1− α

2

)
σ√
N

] in (11) as

an approximation. By the CLT, sXN is approximately distributed as N (µ, σ
2

N ) as N →∞ no matter what the

underlying distribution of Xi is, so
ĎXN−µ
σ/
√
N

is approximately distributed as N (0, 1).

• Unknown variance. If we don’t know σ2, we can get the sample estimate sSN and use [ sXN±F−1p

(
1− α

2

)
sSN√
N

].

Should p be N (0, 1) or τ(N − 1)? If N is large it doesn’t matter. Since sSN
p→ σ by the law of large numbers

and sXN
d→ Z

µ,σ
2

N

∼ N (µ, σ
2

N ) by the CLT, by Slutsky’s theorem (Theorem C.1)

sXN − µ
sSN/
√
N

d→
Z
µ,σ

2

N

− µ

σ/
√
N

∼ N (0, 1)

so we can use p = N (0, 1). But τ(N−1) converges to N (0, 1) as N →∞ so we could also just use p = τ(N−1).
But a typical choice is p = τ(N − 1) (especially for small N) since it has the benefit of incorporating the
uncertainty due to finite sample size.

• Unknown variance (bootstrap). If we don’t know σ2, there is another way of constructing a CI called
bootstraipping that doesn’t appealing to the CLT and is more flexible (e.g., it can handle statistics other than

the mean like the median more easily). The idea is to “pretend sXN is µ” and draw B samples X̃1
N . . . X̃

B
N of

sXN from the empirical distribution.5 This way we have the ability to simulate the distribution of X̃N − sXN ≈
sXN − µ, and this information is all we need to estimate a CI.

4 Recall that for any distribution p, the quantile function F−1
p is the mapping γ 7→ xγ such that Prx∼p(x ≤ xγ) = γ.

5 More specifically, each X̃i
N is computed by drawing N iid samples from Unif(X1 . . . XN ) with replacement and averaging them. It

is important that we use the same sample size N to preserve the variance of the statistic.
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We can also use non-asymptotic bounds to establish “loose” CIs. If Unk(µ, σ2) is almost surely bounded in [a, b]
(i.e., Pr(Xi ∈ [a, b]) = 1) Hoeffding’s inequality gives us

Pr
(∣∣ sXN − µ

∣∣ > ε
)
≤ 2 exp

(
−2Nε2

b− a

)
⇔ Pr

(
µ ∈

[
sXN ± ε

])
≥ 1− 2 exp

(
−2Nε2

b− a

)
︸ ︷︷ ︸

α

⇔ Pr

µ ∈
 sXN ±

√
(b− a) log 2

α

2N

 ≥ 1− α

While this generally applies to any (a.s. bounded) distribution without appealing to the CLT, it can be loose (note
the inequality instead of equality).6

C Convergence of Random Variables

Let YN , Y ∈ Rd denote random vectors. Here Y can be constant (i.e., follows a point-mass distribution). We say
YN converges to Y as N →∞ if any of the following is true.

• Convergence in distribution. YN
d→ Y means limN→∞ CDFYN (y) = CDFY (y) for all continuity points

y ∈ Rd of CDFY . In this note, we also write YN
approx.∼ PDFY as N →∞.

• Convergence in probability. YN
p→ Y means limN→∞ Pr(||YN − Y || > ε) = 0 for all ε > 0.

• Almost sure convergence. YN
a.s.→ Y means Pr(limN→∞ YN = Y ) = 1. We also say “YN converges to Y

with probability 1”. This is the strongest form of convergence.

For instance, let X1 . . . XN ∈ Rd denote iid random vectors with mean µ ∈ Rd and covariance Σ ∈ Rd×d�0 . Define
sXN = 1

N

∑N
i=1Xi and YN =

√
NΣ−1/2( sXN − µ). Let Y ∈ Rd be distributed as N (0d, Id×d). We have7

YN
d→ Y (CLT)

sXN
p→ µ (weak law of large numbers)

sXN
a.s.→ µ (strong law of large numbers)

We also have sXN
d→ µ since sXN

approx.∼ N (µ, 1
NΣ) as N →∞. In general,

YN
p→ Y ⇒ YN

d→ Y

YN
a.s.→ Y ⇒ YN

p→ Y

Some properties of convergence we will use are as follows:

• Continuous mapping theorem. A continuous function f : Rd → Rd′ preserves convergence of any type.
More generally, if f has discontinuity points S ⊂ Rd satisfying Pr(Y ∈ S) = 0

YN → Y ⇒ f(YN )→ f(Y ) (13)

• If Y ′N ∈ Rd′ is an additional random variable and y′ ∈ Rd′ is a constant vector

YN
d→ Y, Y ′N

d→ y′ ⇒ (YN , Y
′
N )

d→ (Y, y′) (14)
6Even for an unbounded distribution we can derive a similar bound by using the knowledge of the distribution and variance. For

instance, if Unk(µ, σ2) = N (µ, σ2) and σ2 is known we can use the fact that Pr(
∣∣ sXN − µ

∣∣ > ε) ≤ 2 exp(−Nε2/(2σ2)) (see Section 1.2
of this note) and have

Pr

(
µ ∈

[
sXN ±

√
2 log

2

α

σ
√
N

])
≥ 1− α

which is the same as the true CI in (11) except that we replace F−1
N (0,1)

(
1− α

2

)
with

√
2 log 2

α
(hence loose).

7The distinction between the weak vs large law of large numbers is mostly theoretical. The weak law considers the limit of a
probability and is an immediate consequence of Hoeffding’s inequality. The strong law considers the probability of a limit and requires
tools of measure theory to prove it.

12

https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf


• If Y ′N ∈ Rd′ is an additional random variable,

YN
p→ Y, Y ′N

p→ Y ′ ⇒ (YN , Y
′
N )

p→ (Y, Y ′) (15)

The limiting properties can be unintuitive and require great care (see here for a list). For instance, if Y ′ is a random
variable with nonzero variance, in general

YN
d→ Y, Y ′N

d→ Y ′ 6⇒ (YN , Y
′
N )

d→ (Y, Y ′)

whereas a similar statement (15) holds when the convergence is in probability. Note that there is no restriction on
Y or Y ′ to be non-constant. In particular, (15) implies that for constants y ∈ Rd and y′ ∈ Rd′ ,

YN
p→ Y, Y ′N

p→ y′ ⇒ (YN , Y
′
N )

p→ (Y, y′) (16)

YN
p→ y, Y ′N

p→ Y ′ ⇒ (YN , Y
′
N )

p→ (y, Y ′) (17)

YN
p→ y, Y ′N

p→ y′ ⇒ (YN , Y
′
N )

p→ (y, y′) (18)

Theorem C.1 (Slutsky’s theorem). Let YN , Y
′
N , Y ∈ R be random variables satisfying YN

d→ Y and Y ′N
p→ y′ for

some constant y′ ∈ R. Then

YN + Y ′N
d→ Y + y′ YNY

′
N

d→ y′Y

If y′ 6= 0, we also have YN/Y
′
N

d→ Y/y′.

Proof. By the premise and (14) we have (YN , Y
′
N )

d→ (Y, y′). Since (y, y′) 7→ y + y′, (y, y′) 7→ y × y′, (y, y′) 7→ y/y′

are continuous mappings the theorem follows from (13).

Theorem C.2 (Slutsky’s theorem, convergence in probability). Let YN , Y
′
N , Y ∈ R be random variables satisfying

YN
p→ Y and Y ′N

p→ y′ for some constant y′ ∈ R. Then

YN + Y ′N
p→ Y + y′ YNY

′
N

p→ y′Y

If y′ 6= 0, we also have YN/Y
′
N

p→ Y/y′.

Proof. By the premise and (16) we have (YN , Y
′
N )

p→ (Y, y′). Since (y, y′) 7→ y + y′, (y, y′) 7→ y × y′, (y, y′) 7→ y/y′

are continuous mappings the theorem follows from (13).

D Error Decomposition

Error decomposition refers to expressing a loss function in smaller pieces to shed insight on what it takes to minimize
it. It typically involves a squared error (so regression) and a trick to use the Pythagorean theorem to simplify the
expression. For instance, if θs is the parameter estimate using data s and θ̄ = Es∼datS [θs], the expected squared
norm of the difference between the “best” parameter θ∗ and θs can be written as

E
s∼datS

[
||θ∗ − θs||2

]
=

∣∣∣∣θ∗ − θ̄∣∣∣∣2︸ ︷︷ ︸
bias/approximation error

+ E
s∼datS

[∣∣∣∣θ̄ − θs∣∣∣∣2]︸ ︷︷ ︸
variance/estimation error

This is useful because it tells us that for the estimator θs to be successful in recovering θ∗ (in squared norm of
the difference), it has to have both of the two properties: (1) θs ≈ θ∗ if given enough data, and (2) the estimate
shouldn’t fluctuate wildly. Error decomposition is studied in specific contexts and it can feel a bit all over the place,
so here’s a compilation of some well-known results.
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D.1 Bias-Variance Tradeoff for the Mean Squared Error

Let popXY denote a joint distribution over (x, y) ∈ Rd × R. The mean squared error (MSE) of a regressor
f : Rd → R is defined as

MSE(f) := E
(x,y)∼popXY

[
(y − f(x))2

]
(19)

Lemma D.1. The unique minimizer of MSE (19) is given by

f∗(x) := E
y∼popY |X(·|x)

[y] ∀x ∈ Rd

Proof. Define J : R→ R by

J(z) := E
y∼popY |X(·|x)

[
(y − z)2

]
We have J ′(z) = −2(f∗(x)−z) and J ′′(z) = 2 > 0, so it is uniquely minimized by z = f∗(x). The statement follows
from the observsation MSE(f) = Ex∼popX [J(f(x))].

Denote the smallest achievable MSE by8

εmin := E
(x,y)∼popXY

[
(y − f∗(x))2

]
Let A denote a learning algorithm that yields a regressor fAs : Rd → R given a (finite) training dataset s. Let
fA : Rd → R denote an average regressor from A with respect to some distribution datS over training datasets,
that is

fA(x) := E
s∼datS

[
fAs (x)

]
∀x ∈ Rd

Theorem D.2.

E
s∼datS

[
MSE(fAs )

]
= εmin︸︷︷︸

irreducible error

+ E
x∼popX

(f∗(x)− fA(x))2︸ ︷︷ ︸
squared bias

+ Var
s∼datS

(
fAs (x)

)
︸ ︷︷ ︸

variance


Proof. By Lemma K.1, we can write

E
s∼datS

[
MSE(fAs )

]
= E

(x,y)∼popXY

[
(y − f∗(x))2

]
+ E

s∼datS
x∼popX

[
(f∗(x)− fAs (x))2

]
where the first term is εmin. We further break down the second term as follows:

E
s∼datS
x∼popX

[
(f∗(x)− fAs (x))2

]
= E
x∼popX

[
(f∗(x)− fA(x))2

]
+ E

s∼datS
x∼popX

[
(fA(x)− fAs (x))2

]
where the cross product term disappears since

E
s∼datS

[
(f∗(x)− fA(x))(fA(x)− fAs (x))

]
= (f∗(x)− fA(x)) E

s∼datS

[
(fA(x)− fAs (x))

]
= 0

If A is a consistent estimator of the optimal regressor, the bias term vanishes and we have a simpler decomposition
consisting of only the estimation error (plus εmin):

E
s∼datS

[
MSE(fAs )

]
= εmin + E

x∼popX

[
Var

s∼datS

(
fAs (x)

)]
(20)

8A common assumption in regression is that y = g(x)+z where g : Rd → R is the ground-truth mapping and z ∼ ν is a random noise
with mean zero (“white”) and variance σ2. Under this assumption we have εmin = σ2 and f∗ = g (since f∗(x) = Ez∼ν [g(x)+z] = g(x)).
But we don’t need this assumption for the following result.

14



D.2 MSE decomposition for linear regression

Consider MSE (19) for linear regression. Let

MSElin(w) := E
(x,y)∼popXY

[
(y − w>x)2

]
(21)

For simplicity, assume that the second moment of x ∼ popX is positive definite.

Lemma D.3. The unique minimizer of MSElin (21) is given by

w∗ := E
x∼popX

[
xx>

]−1
E

(x,y)∼popXY

[yx]

Proof. Denoting the RHS of (21) as a function J : Rd → R of w, we have

∇J(w) = −2 E
(x,y)∼popXY

[
yx− xx>w

]
∇2J(w) = 2 E

x∼popX

[
xx>

]
� 0

where the Hessian is positive definite by premise. Thus the unique minimizer is the stationary point w∗ satisfying
∇J(w∗) = 0 which is

w∗ = E
x∼popX

[
xx>

]−1
E

(x,y)∼popXY

[yx]

Lemma D.4. For any A ∈ Rm×d,

E
(x,y)∼popXY

[
(y − (w∗)>x)Ax

]
= 0m

Proof.

E
(x,y)∼popXY

[
(y − (w∗)>x)Ax

]
= E

(x,y)∼popXY

[
Axy −Axx> E

x∼popX

[
xx>

]−1
E

(x,y)∼popXY

[yx]

]
= A E

(x,y)∼popXY

[xy]−A E
x∼popX

[
xx>

]
E

x∼popX

[
xx>

]−1
E

(x,y)∼popXY

[yx]

= 0m

Corollary D.5. If x1 = 1 for all x ∼ popX , then E(x,y)∼popXY
[y − (w∗)>x] = 0. In particular, 〈w∗, µX〉 = µY

where µX ∈ Rd and µY ∈ R are the population means of input and label.

Proof. The statement follows from Lemma D.4 with A = [1, 0, . . . , 0] ∈ R1×d.

Corollary D.6. If x1 = 1 for all x ∼ popX , then for any A ∈ Rm×d,

Cor
(x,y)∼popXY

(
y − (w∗)>x, [Ax]j

)
= 0 ∀j ∈ {1 . . .m}

Proof. Since Cor (X,Y ) = Cov (X,Y ) /σX/σY , it is sufficient to show Cov
(
y − (w∗)>x, [Ax]j

)
= 0.

Cov
(x,y)∼popXY

(
y − (w∗)>x, [Ax]j

)
= E

(x,y)∼popXY

[
(y − (w∗)>x)[Ax]j

]
− E

(x,y)∼popXY

[
y − (w∗)>x

]
E

x∼popX
[[Ax]j ]

= E
(x,y)∼popXY

[
(y − (w∗)>x)[Ax]j

]
(Corollary D.5)

= 0 (Lemma D.4)
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Remark. Corollary D.6 says the error of the optimal linear regressor w∗ is uncorrelated with (every dimension of)
any linear transformation of the input. For instance, if we draw many samples (x, y) ∼ popXY and plot the errors
of w∗, we will see no linear dependence between the input values and the error values. However, this does not mean
that the errors are independent of the input values.

Theorem D.7. For any w ∈ Rd,

MSElin(w) = MSElin(w∗) + E
x∼popX

[
((w∗)>x− w>x)2

]
(22)

Proof.

MSElin(w) = E
(x,y)∼popXY

[
(y − w>x)2

]
= E

(x,y)∼popXY

[
(y − (w∗)>x)2

]
+ E
x∼popX

[
((w∗)>x− w>x)2

]
+ 2 E

(x,y)∼popXY

[
(y − (w∗)>x)((w∗)>x− w>x)

]

The first term is MSElin(w∗). The last term is zero by Lemma D.4.

Let ws ∈ Rd denotes the parameter trained on a (finite) dataset s ∼ datS . Using ws in (22) and taking an
expectation over s, we have

E
s∼datS

[MSElin(ws)] = MSElin(w∗)︸ ︷︷ ︸
approximation error

+ E
s∼datS
x∼popX

[
((w∗)>x− w>s x)2

]
︸ ︷︷ ︸

estimation error

(23)

which shows the tradeoff between how much we lose by restricting ourselves to linear models (approximation) and
how easy it is to estimate the best one (estimation). We can further break down the estimation error into bias and
variance

E
s∼datS
x∼popX

[
((w∗)>x− w>s x)2

]
= E
x∼popX

[
((w∗)>x− w̄>x)2 + Var

s∼datS

(
w>s x

)]
where w̄ = Es∼datS [ws]. Thus (23) can be seen as a special case of Theorem D.2 for linear regression with the
irreducible error εmin = MSElin(w∗).

D.3 Sum of Squared Errors for Least-Squares Linear Regression

A linear regressor with parameter w ∈ Rd defines a mapping Rd 7→ R by

fw(x) = w>x = w1 +

d∑
i=2

wixi

where we adopt the convention that x1 = 1 so that we don’t have to introduce a separate bias parameter. Let
X ∈ RN×d denote N inputs as rows and y ∈ RN their corresponding targets.9 For any subset P ⊆ {1 . . . d} we will
write XP ∈ RN×|P | to denote the corresponding columns of X. The least squares estimation (LSE) of w is

ŵN = arg min
w∈Rd

||y −Xw||2 = X+y (24)

where X+ ∈ Rd×N is a pseudo-inverse of X. The last term is the unique solution of the optimization problem, so
we will equate ŵN = X+y. Let ŷ = XŵN and ε̂ = y− ŷ denote the predictions and errors (aka. residuals) of LSE
on the N inputs. A characterizing property of LSE is that for any A ∈ Rm×d

(XA>)>ε̂ = AX>(y −XX+y)

= AX>(IN×N −XX+)y

= 0m (25)

9We use boldface to denote vectors/matrices of sample size, to prevent confusion with random variables and scalars like X and y in
other sections.
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because IN×N −XX+ is the orthogonal projection onto null(X>). Thus the LSE residuals are uncorrelated with
any linear transformation of the training data (Lemma D.4 gives an infinite-sample version of this statement). In
particular,

• For any P ⊆ {1 . . . d} with |P | = p

X>P ε̂ = 0p

Using P = {1} gives the well-known property of LSE that the errors are uncorrelated with the input: 1>N ε̂ = 0.

• If y(1),y(2) ∈ RN are any predictions by linear regressors on X

(y(1) − y(2))>ε̂ = 0 (26)

Let ŷP ∈ RN denote LSE predictions using only XP (aka. partial LSE). Applying (26) we have

||y − ŷP ||
2︸ ︷︷ ︸

total sum of squares (TSS)

= ||ε̂||2︸︷︷︸
residual sum of squares (RSS)

+ ||ŷ − ŷP ||
2︸ ︷︷ ︸

explained sum of squares (ESS)

(27)

which expresses the variation between y and ŷP (TSS) as the sum of the variation between y and ŷ (RSS) and the
variation between ŷ and ŷP (ESS). A well-known special case is given with P = {1}

||y − ȳ||2 = ||y − ŷ||2 + ||ŷ − ȳ||2 (28)

where ȳi = (1/N)
∑N
i=1 yi is the average target value. RSS, ESS, and TSS play a central role in regression analysis.

The following technical lemma will be useful.

Lemma D.8. Let X ∈ RN×d be a full-rank matrix with the first column of 1N . Let Q ⊆ P ⊆ {1 . . . d} with
|Q| = q and |P | = p. Then

IN×N =
(
IN×N −XX+

)︸ ︷︷ ︸
AX

+
(
XX+ −XPX

+
P

)︸ ︷︷ ︸
BPX

+
(
XPX

+
P −XQX

+
Q

)
︸ ︷︷ ︸

CP,QX

+XQX
+
Q

is a subspace decomposition of RN (Lemma J.3) where AX , BPX , CP,QX , and XQX
+
Q are orthogonal projections

with rank N − d, d − p, p − q, and q. Furthermore, given targets y ∈ RN , if ŷ denotes the LSE predictions using
all columns of X with residuals ε̂ = y − ŷ and ŷP denotes the LSE predictions using only the columns P of X
(similarly for Q), then

||ε̂||2 = y>AXy (RSS) (29)

||ŷ − ŷP ||
2

= y>BPXy (ESS) (30)

||y − ŷP ||
2

= y>
(
IN×N −XPX

+
P

)
y (TSS) (31)∣∣∣∣ŷP − ŷQ∣∣∣∣2 = y>CP,QX y (32)

In the lemma we have introduced Q ⊆ P for generality. We may choose Q = ∅ and have IN×N = AX+BPX+XPX
+
P

with ranks N − d, d− p, and p. Also note that BPX = C
IN×N ,P
X .
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D.3.1 Distributional Properties of LSE

Assumption D.1. Let X ∼ popX denote a d-dimensional random vector where d ≥ 2 and X1 = 1. Assume the
second moment E

[
XX>

]
∈ Rd×d is invertible.10 Let wtrue ∈ Rd, Zσ2 ∼ N (0, σ2), and

Y = w>trueX + Zσ2

= [wtrue]1 + [wtrue]2X2 + · · ·+ [wtrue]dXd + Zσ2

Let (x1, y1) . . . (xN , yN ) ∈ Rd × R denote iid samples of (X,Y ) where N > d. Let X = (x>1 . . . x
>
N ) ∈ RN×d and

y = (y1 . . . yN ) ∈ RN . For simplicity we assume X is full-rank.11 We denote the LSE parameter by ŵN = X+y,
the residual by ε̂ = y −XŵN , and the error vector by ε = y −Xwtrue.

Lemma D.9. Under Assumption D.1, ŵN ∈ Rd is independent of ε̂ ∈ RN .

Proof. Since y ∼ N (Xwtrue, σ
2IN×N ), ŵN = X+y, ε̂ = (IN×N −XX+)y, and

(X+)(σ2IN×N )(IN×N −XX+)> = σ2(X+ −X+XX+) = 0d×N

ŵN and ε̂ are independent by Lemma I.3.

Lemma D.10. Under Assumption D.1,

ε̂ ∼ N
(
0N , σ

2AX
)

Proof. Since AX is the orthogonal projection onto range (X)
⊥

,

ε̂ = AXy ∼ N (AXXwtrue, σ
2AXA

>
X) = N (0N , σ

2AX)

Lemma D.11. Under Assumption D.1,

||ε̂||2

σ2
∼ χ2(N − d)

Proof. By the quadratic form of the RSS (29),

||ε̂||2

σ2
=
y>AXy

σ2
=

(Xwtrue)
>AX(Xwtrue)

σ2
+
ε>AXε

σ2

AX is the orthogonal projection onto range (X)
⊥

with rank N − d. Thus the first term is zero and the second term
is distributed as χ2(N − d) since ε ∼ N (0N , σ

2IN×N ) (Lemma J.4).

Corollary D.12. Under Assumption D.1, σ2 = E
[
||ε̂||2

]
/(N − d).

Lemma D.13. Under Assumption D.1, if Q ⊂ P ⊆ {1 . . . d} are any nested subsets with sizes q < p,∣∣∣∣ŷP − ŷQ∣∣∣∣2
σ2

∼ χ2

(
p− q,

w>trueX
>CP,QX Xwtrue

σ2

)

10This is equivalent to assuming that the d× d matrix

E
[
XX>

]
=


1 E [X2] . . . E [Xd]

E [X2] E
[
X2

2

]
. . . E [X2Xd]

...
...

. . .
...

E [Xd] E [X2Xd] . . . E
[
X2
d

]


has full rank. This is satisfied if features are not redundant. In particular, this is not the same as assuming an invertible covariance
matrix CXX = E

[
XX>

]
−E [X]E [X]> which would be impossible (since the first column/row is zero).

11This is always possible for a sufficiently large N , otherwise rank
(
E
[
XX>

])
< d.
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Proof. By the quadratic form (32), ∣∣∣∣ŷP − ŷQ∣∣∣∣2
σ2

=
y>CP,QX y

σ2

Since y ∼ N
(
Xwtrue, σ

2IN×N
)

and (CP,QX /σ2)(σ2IN×N ) = CP,QX is idempotent with rank p− q (Lemma D.8), by
Lemma H.1 we have the statement.

Assumption D.2. Assume the same setting in Assumption D.1 where we have the ground-truth model Y =
w>trueX + Zσ2 . Let Q ⊂ P ⊆ {1 . . . d} with sizes q < p, and assume that

[wtrue]i = 0 ∀i 6∈ Q

(In particular, if Q = {1} then Y is independent of X.)

Corollary D.14. Under Assumption D.2, ∣∣∣∣ŷP − ŷQ∣∣∣∣2
σ2

∼ χ2(p− q)

Proof. We only need to show that w>trueX
>CP,QX Xwtrue = 0 (Lemma D.13). Since [wtrue]i = 0 for i 6∈ Q and

Q ⊂ P , we have

CP,QX Xwtrue = CP,QX XQw
Q
true =

(
XPX

+
P −XQX

+
Q

)
XQw

Q
true = XQw

Q
true −XQw

Q
true = 0N

where wQtrue ∈ Rq is a subvector of wtrue ∈ Rd indexed by Q.

Theorem D.15. Under Assumption D.2,∣∣∣∣ŷP − ŷQ∣∣∣∣2 /(p− q)
||ε̂||2 /(N − d)

∼ F (p− q,N − d)

Proof. We have ∣∣∣∣ŷP − ŷQ∣∣∣∣2 /(p− q)
||ε̂||2 /(N − d)

=

||ŷP−ŷQ||2
σ2 /(p− q)
||ε̂||2
σ2 /(N − d)

where
||ŷP−ŷQ||2

σ2 is distributed as χ2(p− q) (Corollary D.14) and ||ε̂||
2

σ2 is distributed as χ2(N − d) (Lemma D.11).
It remains to show that they are independent. With the quadratic forms (29) and (32), this is equivalent to showing

that y>AXy and y>CP,QX y are independent where y ∼ N
(
Xwtrue, σ

2IN×N
)
. This follows from Craig’s theorem

(Theorem I.2) since AX
(
σ2IN×N

)
CP,QX = σ2AXC

P,Q
X = 0N×N (Lemma D.8).

Lemma D.16. Under Assumption D.1, conditioning on any X,

ŵN ∼ N
(
wtrue, σ

2
(
X>X

)−1)

Proof. Since ε ∼ N (0N , σ
2IN×N ),

ŵN = X+y = X+Xwtrue +X+ε = wtrue +X+ε ∼ N (wtrue, σ
2X+(X+)>) (33)

where X+(X+)> = (X>X)−1X>X(X>X)−1 = (X>X)−1.

Lemma D.17. Under Assumption D.1, as N →∞

ŵN
approx.∼ N

(
wtrue,

σ2

N
E
[
XX>

]−1)

19



Corollary D.18. Under Assumption D.1, conditioning on any X we have

[ŵN ]j − [wtrue]j
sj

∼ τ(N − d) sj :=

√
(X>X)−1j,j
N − d

||ε̂|| (34)

for each j = 1 . . . d (sj is known as the standard error of [ŵN ]j).

Proof. Rewrite

[ŵN ]j − [wtrue]j
sj

=
[ŵN ]j − [wtrue]j

σ
√

(X>X)−1j,j

×
σ
√

(X>X)−1j,j

sj

where
[ŵN ]j−[wtrue]j

σ
√

(X>X)−1
j,j

∼ N (0, 1) by Lemma D.17. The second term is rewritten as

σ
√

(X>X)−1j,j

sj
=

√√√√σ2(X>X)−1j,j
s2j

=

√√√√ N − d
s2j

N−d
σ2(X>X)−1

j,j

=

√
N − d
||ε̂||2 /σ2

where ||ε̂||2 /σ2 ∼ χ2(N − d) (Lemma D.11). This is independent of
[ŵN ]j−[wtrue]j

σ
√

(X>X)−1
j,j

conditioning on X since ε̂ and

ŵN are independent (Lemma D.9). Thus
[ŵN ]j−[wtrue]j

sj
∼ τ(T − d) (46).

One use of Corollary D.18 is establishing confidence intervals. By (10), we have with probability 1 − p (assuming
large enough N)

[wtrue]j ∈
[
[ŵN ]j ± F−1τ(N−d)

(
1− p

2

)
sj

]
E Simple Linear Regression

In simple linear regression, we consider Assumption D.1 with d = 2 but with an explicit bias parameter rather
than assuming a constant feature dimension. Specifically, the model assumes Zσ2 ∼ N (0, σ2) for some constant
σ2 > 0 and defines

Y = α+ βX + Zσ2

where X ∼ popX is a scalar random variable with Var (X) > 0.12 Let (x1, y1) . . . (xN , yN ) ∈ R × R denote iid
samples of (X,Y ). The least-squares estimator is

(α̂N , β̂N ) = arg min
(α,β)∈R2

N∑
i=1

(yi − α− βxi)2 (35)

Of course this is a special case of (24) so the solution can be obtained by taking the pseudo-inverse of the data
matrix augmented with a constant dimension. But the utility of considering simple linear regression is that we can
derive a very explicit analytical solution. Denote the sample mean, the sample variance, and the sample correlation
coefficient between X and Y by

x̄N =
1

N

N∑
i=1

xi σ̂2
X,N =

1

N − 1

N∑
i=1

(xi − x̄N )2 r̂XY,N =

∑N
i=1(yi − ȳN )(xi − x̄N )√∑N

i=1(xi − x̄N )
√∑N

i=1(yi − ȳN )

ȳN =
1

N

N∑
i=1

yi σ̂2
Y,N =

1

N − 1

N∑
i=1

(yi − ȳN )2

12The condition that Var (X) > 0 follows from the condition that the second moment of (1, X) is invertible in Assumption D.1.
Otherwise, E

[
X2
]

= E [X]2 and

E

[[
1
X

] [
1 X

]]
=

[
1 E [X]

E [X] E
[
X2
]] =

[
1 E [X]

E [X] E [X]2

]
is not invertible.
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Lemma E.1.

β̂N =

∑N
i=1(yi − ȳN )(xi − x̄N )∑N

i=1(xi − x̄N )2
α̂N = ȳN − β̂N x̄N

Note that β̂N = r̂XY,N (σ̂Y,N/σ̂X,N ). Thus the least-squares slope is proportional to the correlation coefficient and
the ratio of standard deviations. If Y varies more than X, the slope becomes steeper to account for the uncertainty.13

Lemma E.2. In simple linear regression, as N →∞

β̂N
approx.∼ N

(
β,

σ2

NVar (X)

)
α̂N

approx.∼ N

(
α,
σ2E

[
X2
]

NVar (X)

)

Proof. By Lemma D.17, as N →∞[
α̂N
β̂N

]
approx.∼ N

([
α
β

]
,
σ2

N

[
1 E [X]

E [X] E
[
X2
]]−1)

The matrix inverse is

[
1 E [X]

E [X] E
[
X2
]]−1 =

1

E [X2]−E [X]
2

[
E
[
X2
]
−E [X]

−E [X] 1

]
=

 E[X2]
Var(X) − E[X]

Var(X)

− E[X]
Var(X)

1
Var(X)



F Multiple Populations With Equal Variance

Let pop1(µ1, σ
2) . . .popK(µK , σ

2) denote distributions with means µ1 . . . µK ∈ R and equal variance σ2 ∈ R. For
each k = 1 . . .K, assuming Nk ≥ 2 define14

Yk,1 . . . Yk,Nk
iid∼ popk(µk, σ

2) (Nk iid samples) (36)

sYk =
1

Nk

Nk∑
i=1

Yk,i (sample mean of the k-th population)

sS2
k =

1

Nk − 1

Nk∑
i=1

(Yk,i − sYk)2 (sample variance of the k-th population)

The mean and variance of each sYk are given by

E
[

sYk
]

=
1

Nk

Nk∑
i=1

µk = µk

Var
(

sYk
)

= Var

(
1

Nk

Nk∑
i=1

Yk,i

)
=

1

N2
k

Var

(
Nk∑
i=1

Yk,i

)
=

1

N2
k

Nk∑
i=1

Var (Yk,i) =
σ2

Nk

13In fact, r̂XY,N is precisely the slope of the line through the origin that relates whitened X to whitened predictions by the LSE. For

any x ∈ R, let ŷ = α̂N + β̂Nx denote the LSE prediction. Then

ŷ − ȳN
σ̂Y,N

= r̂XY,N ×
x− x̄N
σ̂X,N

14We name our random variables as Y ’s here for a connection to regression later.
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F.1 Pooled Variance Estimator

The pooled variance is an unbiased estimator of σ2 defined as

sS2
pooled =

∑K
k=1(Nk − 1) sS2

k

N −K
=

∑K
k=1

∑Nk
i=1(Yk,i − sYk)2

N −K
(37)

where N =
∑K
k=1Nk. Check that sS2

pooled = (1/K)
∑K
k=1

sS2
k is just the average if the sample sizes are the same.

Lemma F.1. sS2
pooled an (1) unbiased and (2) minimum-variance estimator of σ2.

F.2 Total, Within-Group, and Between-Group Sum of Squares

We may define the grand mean of all N :=
∑K
k=1Nk samples:

sY =
1

N

K∑
k=1

Nk∑
i=1

Yk,i =

K∑
k=1

Nk
N

sYk

The mean and variance of the grand mean are given by

E
[

sY
]

=

K∑
k=1

Nk
N
µk =: µ

Var
(

sY
)

= Var

(
K∑
k=1

Nk
N

sYk

)
=

K∑
k=1

N2
k

N2

σ2

Nk
=

K∑
k=1

Nkσ
2

N2
=
σ2

N

Lemma F.2.

K∑
k=1

Nk∑
i=1

(Yk,i − sY )2︸ ︷︷ ︸
Qtotal

=

K∑
k=1

Nk∑
i=1

(Yk,i − sYk)2︸ ︷︷ ︸
Qwithin

+

K∑
k=1

Nk(sYk − sY )2︸ ︷︷ ︸
Qbetween

Lemma F.3.

E [Qtotal] = (N − 1)σ2 +

K∑
k=1

(µk − µ)2 (38)

E [Qwithin] = (N −K)σ2 (39)

E [Qbetween] = (K − 1)σ2 +

K∑
k=1

(µk − µ)2 (40)

This yields an interesting variance estimator that we call between-group variance, defined as

sS2
between =

Qbetween

K − 1
=

1

K − 1

K∑
k=1

Nk(sYk − sY )2 (41)

Note that E
[

sS2
between

]
= σ2 + 1

K−1
∑K
k=1(µk − µ)2 ≥ σ2 by (40), thus sS2

between is an unbiased estimator of σ2 only
if µ1 = · · · = µK .

F.3 Emergence of the F -Statistic

The current setting, multiple populations popk(µk, σ
2) with equal variance, induces random variables suitable for

hypothesis testing under additional assumptions.

Assumption F.1 (Normality). popk(µk, σ
2) = N (µk, σ

2)
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Assumption F.2 (Equal mean). µ1 = · · · = µK = µ

Lemma F.4. Under Assumption F.1

N −K
σ2

sS2
pooled =

1

σ2

K∑
k=1

Nk∑
i=1

(Yk,i − sYk)2 ∼ χ2(N −K)

Proof. Under normality, this is a sum of K independent Wk = 1
σ2

∑Nk
i=1(Yk,i − sYk)2 ∼ χ2(Nk − 1) (45). By the

additivity of chi-square (43),
∑K
k=1Wk ∼ χ2(N −K).

Lemma F.5. Under Assumptions F.1 and F.2,

K − 1

σ2
sS2
between =

1

σ2

K∑
k=1

Nk(sYk − sY )2 ∼ χ2(K − 1)

Proof. From Lemma F.2

1

σ2

K∑
k=1

Nk∑
i=1

(Yk,i − sY )2 =
1

σ2

K∑
k=1

Nk∑
i=1

(Yk,i − sYk)2 +
1

σ2

K∑
k=1

Nk(sYk − sY )2

Since the means are the same, the LHS is distributed as χ2(N − 1). By Lemma F.4 the first term on the RHS is
distributed as χ2(N −K). Finally, we claim that the two terms on the RHS are independent as follows. The first
term consists of the (scaled) sample variance sS2

k of each group k = 1 . . .K. sS2
k is independent of sYl for l 6= k by

premise, and also of sYk under normality (Theorem I.1). It follows that sS2
k is independent of sY which is a linear

combination of sY1 . . . sYK . By the subtractivity of the chi-square distribution (44), we conclude that the second term
on the RHS is distributed as χ2(K − 1).

Corollary F.6. Under Assumptions F.1 and F.2,

sS2
between
sS2
pooled

∼ F (K − 1, N −K)

Proof.

sS2
between
sS2
pooled

=
K−1
σ2

sS2
between/(K − 1)

N−K
σ2

sS2
pooled/(N −K)

By Lemma F.5 and F.4, we have K−1
σ2

sS2
between ∼ χ2(K−1) and N−K

σ2
sS2
pooled ∼ χ2(N−K). The proof of Lemma F.5

shows that sS2
k is independent of sYl for all l and sY , thus independent of sS2

between = (1/(K − 1))
∑l
l=1Nl(

sYl − sY )2.

Since this holds for all k, sS2
pooled = (1/(N −K))

∑K
k=1(Nk − 1) sS2

k is independent of sS2
between. The statement now

follows from the definition of the F -statistic (48).

F.3.1 As Regression

Let pop{1...K} denote any full-support distribution over “levels” {1 . . .K} and A ∼ pop{1...K} be a “factor”. Let

Y = α+ β>CdA(A) + Zσ2 Zσ2 ∼ N (0, σ2)

where CdA(A) ∈ {0, 1}K−1 denotes the dummy coding of A ∈ {1 . . .K} with A = 1 as the reference level (Ap-
pendix G). Let Y1 . . . YN denote iid samples of Y associated with A1 . . . AN ∼ pop{1...K}. We may equivalently
express these samples as Yk,i which indicates the i-th sample in group k. Then

Y1,1 . . . Y1,N1

iid∼ N (α, σ2)

Yk,1 . . . Yk,Nk
iid∼ N (α+ βk, σ

2) ∀k ∈ {2 . . .K}
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where we use the indexing β = (β2 . . . βK) for convenience. Thus the generative story coincides with multiple pop-
ulations with equal variance in (36) under normality (Assumption F.1). Furthermore, the equal-mean assumption
(Assumption F.2) corresponds to assuming βk = 0 for all k = 2 . . .K (i.e., Y is independent of A). Then we may
apply Theorem D.15 with P = {1} and have that

||ŷ − ȳ||2 /(K − 1)

||y − ŷ||2 /(N −K)
∼ F (K − 1, N −K)

where yj = Yj and ŷ, ȳ ∈ RN are least-squares predictions using [1] ⊕ CdA(A) ∈ RK and [1] ∈ R as independent

variables. This means ŷj = sYAj by the property of dummy coding (Lemma G.1) and ȳj = sY . So the above term
can be written as

||ŷ − ȳ||2 /(K − 1)

||y − ŷ||2 /(N −K)
=

∑N
j=1(ŷj − ȳj)2/(K − 1)∑N
j=1(yj − ŷj)2/(N −K)

=

∑K
k=1

∑Nk
i=1(sYk − sY )2/(K − 1)∑K

k=1

∑Nk
i=1(Yi,k − sYk)2/(N −K)

=
sS2
between
sS2
pooled

In summary,

• Ratio of between-group and pooled variance in N samples from K populations over Y ∈ R that are: (1)
equal-variance, (2) normal, and (3) equal-mean

• Ratio of ESS and RSS (scaled by degrees of freedom) when regressing to Y ∈ R from the dummy coding of
A ∈ {1 . . .K} with N samples where A and Y are independent

are exactly the same F -statistic distributed as F (K − 1, N −K).

G Regression with Discrete Input

G.1 Statistics Jargon

In regression, each discrete input variable is called a factor and the different values it takes are called levels. The
combinations of levels of different factors are called treatments. For example, we may regress to Y ∈ R using two
factors A ∈ {1, 2} (2 levels) and B ∈ {1, 2, 3} (3 levels), associated with 6 treatments. If the number of samples is
the same for each treatment, the data is called balanced. Otherwise, the data is called unbalanced. Below, the
first table is balanced data since each of 6 treatments has 2 samples. The second table is unbalanced.

(balanced data) (unbalanced data)
A B Y
1 1 3.2
1 1 3.5
1 2 5.7
1 2 4.9
1 3 -1.7
1 3 -0.1
2 1 10.7
2 1 10.8
2 2 1.3
2 2 1.3
2 3 4.4
2 3 6.1

A B Y
1 1 3.2
1 2 5.6
1 2 5.7
1 3 -1.7
2 1 10.9
2 1 10.7
2 1 10.8
2 2 1.3
2 2 5.1
2 3 4.4

A desirable property of balanced data is the lack of any linear association between factors (called collinearity).
Knowing the level of one factor doesn’t tell us anything about the level of another factor because all levels are still
equally likely. Intuitively, zero collinearity makes it easier to assess the impact of one factor on Y while controlling
for the others.

G.2 Coding Schemes

A naive way to encode A ∈ {1 . . .K} is to use the one-hot encoding one-hot(A) ∈ {0, 1}K where one-hotk(A) = 1
iff A = k. This has an unfortunate consequence that the data matrix X ∈ RN×(K+1) where the first column
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is 1N (bias dimension) is never full-rank. This is because the encoding implies the constraint one-hotk(A) =
1−

∑
k′ 6=k one-hotk′(A), so that the sum of columns 2 . . .K + 1 always equals 1N (the first column). For instance,

if we have N = 4 samples of A ∈ {1, 2} taking values 1, 1, 2, 2, the data matrix is given by

X =


1 1 0
1 1 0
1 0 1
1 0 1


which is not full-rank even though all values of A have been observed. While we don’t need the full-rank condition
for least-squares linear regression, it’s inconvenient for analysis and can be easily fixed.

G.2.1 Dummy coding

A simplest fix is to designate one level as a reference level and eliminate it in the one-hot encoding. This still
indicates when the factor takes the reference level because only that level has all zeros in non-bias dimensions. This
is known as dummy coding. WLOG we always assume k = 1 is the reference level and write CdA(a) ∈ RK−1 to
indicate the dummy coding of A = a ∈ {1 . . .K}. The dummy coding of A ∈ {1, 2} and B ∈ {1, 2, 3} is

CdA(1) = 0 CdB(1) = (0, 0)

CdA(2) = 1 CdB(2) = (1, 0)

CdB(3) = (0, 1)

Note that the data matrix associated with the example above (samples 1, 1, 2, 2 of A ∈ {1, 2}) under dummy coding
is now full-rank:

X =


1 0
1 0
1 1
1 1


Lemma G.1. Let (a1, y1) . . . (aN , yN ) denote N samples of (A, Y ) ∈ {1 . . .K} × R. Denote the least-squares
regressor under dummy coding CdA(a) ∈ RK−1 by

(α∗, β∗) = arg min
α∈R, β∈RK−1

N∑
i=1

(
yi − α− β>CdA(ai)

)2
Let syk = (1/count(k))

∑
i:ai=k

yi denote the mean response in A = k. Using the indexing β∗ = (β∗2 . . . β
∗
K), we

have

α∗ = sy1

β∗k = syk − sy1 ∀k ∈ {2 . . .K}

Lemma G.1 shows that for k ≥ 2, the LSE parameter β∗k is positive iff syk > sy1. We can add additional factors under
dummy coding and similar properties hold, as shown in the following example with 2 factors and their interaction.

Lemma G.2. Let (a1, b1, y1) . . . (aN , bN , yN ) denote N samples of (A,B, Y ) ∈ {1 . . .K} × {1 . . . L} × R. Denote
the least-squares regressor under dummy coding CdA(a) ∈ RK−1 and CdB(b) ∈ RL−1 by

(α∗, β∗, γ∗, κ∗) = arg min
α∈R, β∈RK−1, γ∈RL−1, κ∈R(K−1)(L−1)

N∑
i=1

(
yi − α− β>CdA(ai)− γ>CdB(bi)− κ>CdA(ai)⊗ CdB(bi)

)2
where u⊗ v ∈ Rdd′ denotes the kronecker product of u ∈ Rd and v ∈ Rd′ . Let syk,l = (1/count(k, l))

∑
i:ai=k,bi=l

yi
denote the mean response in (A = k) ∧ (B = l). Using the indexing β∗ = (β∗2 . . . β

∗
K), γ∗ = (γ∗2 . . . γ

∗
L), and
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κ∗ = (κ∗2,2 . . . κ
∗
K,L), we have

α∗ = sy1,1

β∗k = syk,1 − sy1,1 ∀k ∈ {2 . . .K}
γ∗l = sy1,l − sy1,1 ∀l ∈ {2 . . . L}
κ∗k,l = syk,l − (syk,1 + sy1,l − sy1,1) ∀k ∈ {2 . . .K} , l ∈ {2 . . . L}

G.2.2 Sum coding

The LSE weights under dummy coding change depending on the choice of a specific reference level. In sum coding,
we represent the reference level as a vector of K−1 negative ones instead of zeros. WLOG we always assume k = K
(which is consistent with the implementation in R) is the reference level and write CsA(a) ∈ RK−1 to indicate the
sum coding of A ∈ {1 . . .K}. The sum coding of A ∈ {1, 2} and B ∈ {1, 2, 3} is

CsA(1) = 1 CsB(1) = (1, 0)

CsA(2) = −1 CsB(2) = (0, 1)

CsB(3) = (−1,−1)

This has the effect that a balanced data matrix is automatically centered. For example, the data matrix associated
with samples 1, 1, 2, 2, 3, 3 of B ∈ {1, 2, 3} under sum coding is given by

X =


1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1


which is full-rank and centered.

Lemma G.3. Let (a1, y1) . . . (aN , yN ) denote N samples of (A, Y ) ∈ {1 . . .K} × R. Assume that the data is
balanced so that each level has M samples (so N = MK). Denote the least-squares regressor under sum coding
CsA(a) ∈ RK−1 by

(α∗, β∗) = arg min
α∈R, β∈RK−1

N∑
i=1

(
yi − α− β>CsA(ai)

)2
Let sy = (1/N)

∑N
i=1 yi denote the grand mean, and syk = (1/M)

∑
i:ai=k

yi denote the mean when A = k. Then

α∗ = sy

β∗k = syk − sy ∀k ∈ {1 . . .K − 1}

Lemma G.3 shows that for k = 1 . . .K − 1, the LSE parameter β∗k is positive iff syk > sy (assuming balanced data).
Unlike in dummy coding, the parameters are not affected by the choice of reference level since we always compare
the level mean with the grand mean (although we don’t have a parameter associated with the reference level). We
can add additional factors under sum coding and similar properties hold. We give the following lemma and omit
the proof.

Lemma G.4. Let (a1, b1, y1) . . . (aN , bN , yN ) denote N samples of (A,B, Y ) ∈ {1 . . .K} × {1 . . . L} × R. Assume
that the data is balanced so that each treatment has M samples (so N = MKL). Denote the least-squares regressor
under sum coding CsA(a) ∈ RK−1 and CdB(b) ∈ RL−1 by

(α∗, β∗, γ∗, κ∗) = arg min
α∈R, β∈RK−1, γ∈RL−1, κ∈R(K−1)(L−1)

N∑
i=1

(
yi − α− β>CsA(ai)− γ>CsB(bi)− κ>CsA(ai)⊗ CsB(bi)

)2
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where u⊗ v ∈ Rdd′ denotes the kronecker product of u ∈ Rd and v ∈ Rd′ . Let sy = (1/N)
∑N
i=1 yi denote the grand

mean, syk,· = (1/ML)
∑
i:ai=k

yi denote the mean when A = k, sy·,l = (1/MK)
∑
i:bi=l

yi denote the mean when
B = l, and syk,l = (1/M)

∑
i:ai=k,bi=l

yi denote the mean when (A = k) ∧ (B = l). Then

α∗ = sy

β∗k = syk,· − sy ∀k ∈ {1 . . .K − 1}
γ∗l = sy·,l − sy ∀l ∈ {1 . . . L− 1}
κ∗k,l = syk,l − (syk,· + sy·,l − sy) ∀k ∈ {1 . . .K − 1} , l ∈ {1 . . . L− 1}

H Satellite Distributions Derived for Normal Variables

These are distributions that emerge when estimating certain quantities under normal distributions. Specifically,

• Sample variance, scaled by sample size and true variance, follows a chi-square distribution (45).

• Whitened average using sample variance is distributed as a t-distribution (47).

• Ratio of sample variances, scaled by true variances, is distributed as an F -distribution (49).

They have complicated PDFs and CDFs, but we don’t care as long as we can calculate probabilities under these
distributions (e.g., see this calculator). Image credit: Wikipedia.

H.1 Chi-Square Distribution

The chi-square distribution with k degrees of freedom, denoted by χ2(k), is the distribution of Qk ∈ R≥0
defined as

Qk =

k∑
i=1

Z2
i Z1 . . . Zk

iid∼ N (0, 1) (42)

Equivalently Qk = ||Z||2 where Z ∼ N (0k, Ik×k). There are many chi-square distributions (one for each k ∈ N).
They are assymetric and look like these.

The right figure shows the right-tail critical value for χ2(4) at significance level 0.05 (9.488).

Additivity and subtractivity.

Qk1 ∼ χ2(k1), Qk2 ∼ χ2(k2) ⇒ Qk1 +Qk2 ∼ χ2(k1 + k2) (43)

Z = X + Y, X ⊥ Y, Z ∼ χ2(k1 + k2), X ∼ χ2(k1) ⇒ Y ∼ χ2(k2) (44)

The additivity follows immediatly from the definition (42). The subtractivity can be verified by deriving the MGF
of Y from the MGF of Z, which is the product of the MGFs of X and Y (since X ⊥ Y ), the MGF of X (see p. 35
of here).
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For general normal distributions. Let X1 . . . XN
iid∼ N (µ, σ2). From (43) we have 1

σ2

∑N
i=1 (Xi − µ)

2 ∼ χ2(N),

but this requires the knowledge of µ. A more useful characterization is the following. Let sXN = 1
N

∑N
i=1Xi denote

the sample mean and assume N ≥ 2. Then

1

σ2

N∑
i=1

(
Xi − sXN

)2 ∼ χ2(N − 1) (45)

H.1.1 Noncentral Chi-Square Distribution

Let Z ∼ N (µ, Ik×k) for some µ ∈ Rk. Then ||Z||2 distributed as χ2(k, ||µ||2) which is called the noncentral

chi-square distribution with k degrees of freedom and the noncentrality parameter ||µ||2. If µ = 0k
then χ2(k, 0) = χ2(k). A result we use is the following.

Lemma H.1. Let y ∼ N (µ,Σ) for some µ ∈ RN and positive definite Σ ∈ RN×N . If A ∈ RN×N is symmetric with
rank k, and if AΣ is idempotent (i.e., (AΣ)(AΣ) = AΣ), then y>Ay ∼ χ2(k, µ>Aµ).

While we omit the proof (see this), we make a quick note that we can get rid of Σ in the lemma since (AΣ)(AΣ) = AΣ
and Σ � 0 together imply AΣA = A. The rank of A becomes the degree of freedom of the noncentral chi-square
variable y>Ay.

H.2 T -Distribution

The t-distribution with ν ∈ N degrees of freedom, denoted by τ(ν), is the distribution of Tν ∈ R defined as

Tν = Z

√
ν

V
Z ∼ N (0, 1) ⊥ V ∼ χ2(ν) (46)

t-distributions are symmetric and look like standard normal with fatter tails (in fact Tν
d→ Z).

The right figure shows the two-tail critical values for τ(4) at significance level 0.05 (-2.776 and 2.776). Note that
the critical region is smaller than N (0, 1) at the same significance level (-1.96 and 1.96). Intuitively, this means it
is harder to reject the null hypothesis (of zero mean) due to uncertainty of a small sample size.

Lemma H.2. Let X1 . . . XN
iid∼ N (µ, σ2) where N ≥ 2. Let sXN = 1

N

∑N
i=1Xi and sS2

N = 1
N−1

∑N
i=1(Xi − sXN )2

denote unbiased estimators of the mean and variance. Then

sXN − µ
sSN/
√
N
∼ τ(N − 1) (47)

Proof. Define sZN =
ĎXN−µ
σ/
√
N
∼ N (0, 1) using the knowledge of σ2. We may rewrite

sXN − µ
sSN/
√
N

= sZN

√
σ2

sS2
N

= sZN

√
N − 1

(N − 1) sS2
N/σ

2

It remains to show that (N − 1) sS2
N/σ

2 ∼ χ2(N − 1) and it is independent of sZN . The first follows from the
definition of sS2

N and (45). The second follows from the fact that sXN and sS2
N are independent under normality

(Theorem I.1).
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From Lemma H.2, we have

sXN − µ
σ/
√
N
∼ N (0, 1) v.s.

sXN − µ
sSN/
√
N
∼ τ(N − 1)

Given this fact, the shape of the t-distribution makes sense. It is “standard normal” but has fatter tails to account
for the uncertainty of the sample variance when the sample size N is finite.

We give another useful lemma.

Lemma H.3. Let X1 . . . XN
iid∼ N (µ, σ2) and Y1 . . . YN

iid∼ N (µ, σ2) where N ≥ 2. Let sXN = 1
N

∑N
i=1Xi and

sS2
X = 1

N−1
∑N
i=1(Xi − sXN )2. Let sYN = 1

N

∑N
i=1 Yi and sS2

Y = 1
N−1

∑N
i=1(Yi − sYN )2. Let sS2

pooled = ( sS2
X + sS2

Y )/2

denote the pooled estimator of σ2 (37). Then

sXN − sYN

sSpooled

√
2
N

∼ τ(2N − 2)

Proof. We have sXN − sYN ∼ N
(
0, 2σ2/N

)
by the independence of sXN and sYN . Define sZN =

ĎXN− sYN

σ
√

2/N
∼ N (0, 1)

using the knowledge of σ2. We may rewrite

sXN − sYN

sSpooled

√
2
N

= sZN

√
σ2

sS2
pooled

= sZN

√
2N − 2

(2N − 2) sS2
pooled/σ

2

It remains to show that (2N−2) sS2
pooled/σ

2 ∼ χ2(2N−2) and it is independent of sZN . As in the proof of Lemma H.2

(N − 1) sS2
X/σ

2 and (N − 1) sS2
X/σ

2 are distributed as χ2(N − 1) and are independent, thus by the additivity of the
chi-square distribution (43)

(2N − 2) sS2
pooled

σ2
=

(N − 1) sS2
X

σ2
+

(N − 1) sS2
Y

σ2
∼ χ2(2N − 2)

The second follows since sXN ⊥ sS2
X and sYN ⊥ sS2

Y under normality (Theorem I.1) so that sXN − sYN ⊥ sS2
X + sS2

Y .

H.3 F -Distribution

The F -distribution with (d1, d2) ∈ N2 degrees of freedom, denoted by F (d1, d2), is the distribution of F ∈ R≥0
defined as

Fd1,d2 =
U1/d1
U2/d2

U1 ∼ χ2(d1) ⊥ U2 ∼ χ2(d2) (48)

F -distributions are assymetric and look like these15

The right figure shows the upper-tail critical value for F (4, 4) at significance level 0.1 (4.107).

15The mean E[Fd1,d2 ] = d2/(d2 − 2) exists only if d2 > 2 and is roughly 1 for large d2.
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Lemma H.4. Let X1 . . . XN
iid∼ N (µX , σ

2
X) and Y1 . . . YM

iid∼ N (µY , σ
2
Y ) where N,M ≥ 2. Let sXN = 1

N

∑N
i=1Xi

and sYM = 1
M

∑M
i=1 Yi denote sample means. Let sS2

X,N = 1
N−1

∑N
i=1(Xi − sXN )2 and sS2

Y,M = 1
M−1

∑M
i=1(Yi − sYM )2

denote sample variances. Then

sS2
X,N/σ

2
X

sS2
Y,M/σ

2
Y

∼ F (N − 1,M − 1) (49)

Proof. Let QX,N = 1
σ2
X

∑N
i=1(Xi − sXN )2 and QY,M = 1

σ2
Y

∑M
i=1(Yi − sYM )2. They are independent and distributed

as χ2(N − 1) and χ2(M − 1) by (45). The claim then follows since

sS2
X,N/σ

2
X

sS2
Y,M/σ

2
Y

=

1
σ2
X

∑N
i=1(Xi − sXN )2/(N − 1)

1
σ2
Y

∑M
i=1(Yi − sYM )2/(M − 1)

=
QX,N/(N − 1)

QY,M/(M − 1)

Corollary H.5. Let X1 . . . XN
iid∼ N (µX , σ

2) and Y1 . . . YM
iid∼ N (µY , σ

2) where N,M ≥ 2. Let sXN = 1
N

∑N
i=1Xi

and sYM = 1
M

∑M
i=1 Yi denote sample means. Let sS2

X,N = 1
N−1

∑N
i=1(Xi − sXN )2 and sS2

Y,M = 1
M−1

∑M
i=1(Yi − sYM )2

denote sample variances. Then

sS2
X,N

sS2
Y,M

∼ F (N − 1,M − 1) (50)

H.4 Studentized Range Distribution

For k = 1 . . .K, let Xk,1 . . . Xk,Nk
iid∼ N (µ, σ2) and sXk = (1/Nk)

∑Nk
i=1Xk,i. The studentized range distribution

with K groups and N−K degrees of freedom denoted by srange(K,N−K), is the distribution of qK,N−K > 0
defined as

qK,N−K =
maxKk=1

sXk −minKk=1
sXk

sSpooled

√
2
N

where sS2
pooled is pooled variance (37). Note that for K = 2 and N1 = N2 = N we can write

q2,2N−2 =

∣∣ sX1 − sX2

∣∣
sSpooled

√
2
N

which follows the t-distribution with 2N − 2 degrees of freedom (Lemma H.3). Thus the studentized range distri-
bution is equivalent (up to normalization) to the upper half of the t-distribution with 2 groups of the same sample
size. Studentized range distirbutions are assymetric and look like these (using a definition that differs by a factor
of
√

2):
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To get a sense of critical values, the right-tail critical value for srange(3, 10) (the yellow one) at significance level
0.05 is 3.879.

I Facts About Independence

Theorem I.1. LetX1 . . . XN
iid∼ pop be random vectors with sample mean sXN = 1

N

∑N
i=1Xi and sample covariance

matrix sS2
N = 1

N−1
∑N
i=1(Xi − sXN )(Xi − sXN )>. Then

sXN and sS2
N are independent ⇔ pop is normal

A proof can be found here. The fact that this property characterizes the normal distribution was first shown by
Geary (1936).

Theorem I.2 (Craig’s theorem). Let X ∼ N (µ,Σ) be a normal vector in Rd. For any A,B ∈ Rd×d,

AΣB = 0d×d ⇔ X>AX and X>BX are independent

Theorem I.2 is attributed to Allen T. Craig. Despite its simple form, the theorem is difficult to prove and has a
long and complicated history (Driscoll and Gundberg Jr, 1986).

Lemma I.3. Let X ∼ N (µ,Σ), A ∈ Rn×d, and B ∈ Rm×d. Then AX ∈ Rn and BX ∈ Rm are independent iff
AΣB> = 0n×m.

Lemma I.3 is a well-known property of the normal distribution exploiting the equivalence between uncorrelatedness
and independence for jointly normal variables (see here).

J Projection Matrices

A square matrix P ∈ RN×N , not necessarily symmetric, is called a projection (aka. idempotent) matrix if
P 2 = P , because in that case Pnx ∈ range (P ) for all n ∈ N. Properties of a projection P include:

• The eigenvalues must be either zero or one. If Pu = λu for some nonzero vector u, then λu = Pu = PPu =
λPu = λ2u so λ(λ− 1)u = 0N , meaning λ ∈ {0, 1}.

• tr (P ) = rank (P ) (see here).

• It is diagonalizable. So it admits an eigendecomposition of the form P = V diag (1 . . . 1, 0 . . . 0)V −1.

The second and third properties are nontrivial because P is generally nonsymmetric.16 For instance, the following
matrix is a projection onto span ({(1, 1)}) and has the eigendecomposition even though it is not symmetric (note
that V is invertible but not orthonormal):

P =

[
1 0
1 0

]
= V

[
1 0
0 0

]
V −1 V =

[
0.707 0
0.707 1

]
If P is any projection matrix, R = IN×N −P is a projection matrix onto null(P ) since R2 = R (easy to check) and
range (R) = null(P ).17 Thus we can decompose any point x ∈ RN into range (P ) and null(P ) by

x = Px︸︷︷︸
proj. onto range (P )

+ (IN×N − P )x︸ ︷︷ ︸
proj. onto null(P )

(51)

16Recall that any symmetric matrix is diagonalizable and its rank is equal to the number of nonzero eigenvalues.
17If x ∈ range (IN×N − P ), then x = y − Py for some y ∈ RN , so Px = Py − PPy = 0 and hence x ∈ null(P ). If x ∈ null(P ), then

Px = 0N and thus (IN×N − P )x = x− Px = x which shows that x ∈ range (IN×N − P ).
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Now given a subspace S ⊂ RN , there are generally many possible projections onto S. For instance, two projections
onto S = span ({(1, 1)}) ⊂ R2 are (with corresponding null spaces):

P1 =

[
1 0
1 0

]
P2 =

[
1
2

1
2

1
2

1
2

]
null(P1) =

{[
0
c

]
: c ∈ R

}
null(P2) =

{[
c
−c

]
: c ∈ R

}
Note how the null spaces are different even though the ranges are the same. They are clearly very different
transformations. If we project two points (1, 5) and (5, 3) onto S, we will have (1, 1) and (5, 5) if we use P1 and
(3, 3) and (4, 4) if we use P2.

Projection onto S using P1 Projection onto S using P2

While both are valid projections and the range-null decomposition (51) holds in either case (exercise: check this),
the second is more “efficient” in the sense that it’s the closest projection. This property is formalized as follows.

Lemma J.1. Let P ∈ RN×N be a projection onto subspace S = range (P ) ⊂ RN . The following statements are
equivalent:

1. For any x ∈ RN , let y = Px ∈ S. Then ||x− y|| ≤ ||x− z|| for all z ∈ S with equality iff z = y.

2. range (P ) ⊥ null(P )18

3. P = P>

If any holds, we say P is an orthogonal projection.

Corollary J.2. For any subspace S ⊂ RN , there exists an orthogonal projection onto S and it is unique.

Proof. An orthogonal projection onto S is given by P = UU> where U ∈ RN×dim(S) is an orthonormal basis of S.
If P ′ is any orthogonal projection onto S, ||x− Px|| = ||x− P ′x|| for all x ∈ RN by 1. This implies P = P ′.

Construction from a matrix. For any nonzero matrix A ∈ Rm×n, the orthogonal projection onto range (A) ⊂
Rm is given by P = AA+ ∈ Rm×m. Then R = Im×m − P ∈ Rm×m is the orthogonal projection onto null(P ) =

range (A)
⊥

= null(A>) ⊂ Rm.

J.1 Subspace Decomposition Lemma

We state the lemma below without proof (see here).

Lemma J.3. Let A1 . . . AK ∈ RN×N denote square matrices such that IN×N =
∑K
k=1Ak. The following statements

are equivalent:

1. A1 . . . AK are projections.

18Note that we are only able to compare the range and the null space because the matrix is square (otherwise the dimensions do not
match), and even for square matrices the range and the null space are not necessarily orthogonal. See the figure using P1 where the
null space is the y-axis.
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2. AkAl = 0N×N for any k 6= l.

3.
∑K
k=1 rank (Ak) = N

If any holds, we call
∑K
k=1Ak a subspace decomposition of RN .

The lemma generalizes the above discussion involving a single projection P . There we have K = 2 and consider
A1 = P and A2 = IN×N − P . Both are projections (1). We have P (IN×N − P ) = 0N×N (2). We also have
rank (P ) + rank (IN×N − P ) = rank (P ) + nullity (P ) = N by the rank-nullity theorem (3).

J.2 Chi-Square Quadratic Form

Lemma J.4. Let X ∼ N (0N , σ
2IN×N ). For any orthogonal projection P ∈ RN×N ,

X>PX

σ2
∼ χ2 (rank (P ))

Proof. P is a projection so it is diagonalizable with zero-one eigenvalues. P is furthermore symmetric so we can
find orthonormal eigenvectors V ∈ RN×N such that P = V JV > where J = diag (1 . . . 1, 0 . . . 0) has rank (P ) 1’s.
Note that Y := V >X ∼ N (0N×N , σ

2IN×N ) by the orthonormality of V , and

X>PX

σ2
=
Y >JY

σ2
=

rank(P )∑
i=1

(
Yi
σ

)2

is the sum of squares of rank (P ) iid standard normal variables Yi/σ ∼ N (0, 1), thus distributed as χ2(rank (P )).

K Proofs and Lemmas

Lemma K.1. For any f : Rd → R,

E
(x,y)∼popXY

[(y − f∗(x))(f∗(x)− f(x))] = 0

Proof. For any x ∈ Rd,

E
y∼popY |X(·|x)

[(y − f∗(x))(f∗(x)− f(x))] = E
y∼popY |X(·|x)

[
yf∗(x)− yf(x)− f∗(x)2 + f∗(x)f(x)

]
= E
y∼popY |X(·|x)

[y] f∗(x)− E
y∼popY |X(·|x)

[y] f(x)− f∗(x)2 + f∗(x)f(x)

= f∗(x)2 − f∗(x)f(x)− f∗(x)2 + f∗(x)f(x)

= 0

Therefore

E
(x,y)∼popXY

[(y − f∗(x))(f∗(x)− f(x))] = E
x∼popX

[
E

y∼popY |X(·|x)
[(y − f∗(x))(f∗(x)− f(x))]

]
= 0

Proof of Lemma D.8.

Proof. AX is the orthogonal projection onto null(X>) ⊂ RN and thus has rank N − d by the rank-nullity theorem.
XX+ is the orthogonal projection onto range (X) while XPX

+
P is the orthogonal projection onto range (XP ) ⊂

range (X), thus XPX
+
P = (XX+)(XPX

+
P ) = (XPX

+
P )(XX+) and

BPXB
P
X =

(
XX+ −XPX

+
P

) (
XX+ −XPX

+
P

)
= XX+ +XPX

+
P − (XX+)(XPX

+
P )− (XPX

+
P )(XX+)

= XX+ −XPX
+
P

= BPX
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So BPX is a projection. Since it’s a projection, its rank is given by the trace:

rank
(
BPX

)
= tr

(
XX+ −XPX

+
P

)
= tr

(
XX+

)
− tr

(
XPX

+
P

)
= d− p

Finally, BPX is symmetric, so it’s an orthogonal projection. Since Q ⊆ P , the same argument can be used to show

that CP,QX = XPX
+
P −XQX

+
Q is an orthogonal projection with rank p− q. Now we show the quadratic forms:

||ε̂||2 =
∣∣∣∣y −XX+y

∣∣∣∣2 = ||AXy||2 = y>AXy

||ŷ − ŷP ||
2

=
∣∣∣∣XX+y −XPX

+
Py
∣∣∣∣2 =

∣∣∣∣BPXy∣∣∣∣2 = y>BPXy

||y − ŷP ||
2

= ||ε̂||2 + ||ŷ − ŷP ||
2

= y>(AX +BPX)y = y>(IN×N −XPX
+
P )y (52)∣∣∣∣ŷP − ŷQ∣∣∣∣2 =

∣∣∣∣∣∣XPX
+
Py −XQX

+
Qy
∣∣∣∣∣∣2 =

∣∣∣∣∣∣CP,QX y
∣∣∣∣∣∣2 = y>CP,QX y

where we use the fact that AX , BPX , and CP,QX are projections and (52) follows from the decomposition (27).

Proof of Lemma E.1.

Proof. Let J(α, β) =
∑N
i=1(yi−α−βxi)2 which is strongly convex in either parameter. Setting the partial derivatives

to zero yields two equations:

∂J(α, β)

∂α
= −2

N∑
i=1

(yi − α− βxi) = 0 ⇔ α = ȳN − βx̄N

∂J(α, β)

∂β
= −2

N∑
i=1

(yi − α− βxi)xi = 0 ⇔
N∑
i=1

yixi − αxi − βx2i = 0

The expression for α is true no matter what β is. Plugging it in in the second equation we have

N∑
i=1

yixi − (ȳN − βx̄N )xi − βx2i =

N∑
i=1

yixi − ȳNxi + βx̄Nxi − βx2i = 0 ⇔ β =

∑N
i=1 yixi − ȳNxi∑N
i=1 x

2
i − x̄Nxi

The statement follows from the observation

N∑
i=1

(yi − ȳN )(xi − x̄N ) =

N∑
i=1

yixi − yix̄N − ȳNxi + ȳN x̄N =

N∑
i=1

yixi − ȳNxi

N∑
i=1

(xi − x̄N )2 =

N∑
i=1

x2i − 2x̄Nxi + x̄2N =

N∑
i=1

x2i − 2Nx̄2N +Nx̄2N =

N∑
i=1

x2i −Nx̄2N =

N∑
i=1

x2i − x̄Nxi

Proof of Lemma D.17.

Proof. From (33),

ŵN = wtrue + (X>X)−1X>ε = wtrue +

(
1

N
X>X

)−1
1

N
X>ε

Here, 1
NX

>X converges to E
[
XX>

]
in probability by the law of large numbers. Since matrix inversion is con-

tinuous, ( 1
NX

>X)−1 converges to E
[
XX>

]−1
in probability by the continuous mapping theorem (13). As for

1
NX

>ε = 1
N

∑N
i=1 εixi, by the CLT as N →∞ we have

1

N
X>ε

approx.∼ N
(

E [Zσ2X] ,
1

N
Cov (Zσ2X,Zσ2X)

)
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where

E [Zσ2X] = E [Zσ2 ] E [X] = 0d

Cov (Zσ2X,Zσ2X) = E
[
Z2
σ2XX>

]
= E

[
Z2
σ2

]
E
[
XX>

]
= σ2E

[
XX>

]
Let Q ∼ N

(
0d,

σ2

N E
[
XX>

])
. By Slutsky’s theorem C.1,

(
1

N
X>X

)−1
1

N
X>ε

d→ E
[
XX>

]−1
Q

Thus ŵN
d→ wtrue + E

[
XX>

]−1
Q again by Slutsky’s theorem C.1. Finally we observe that

wtrue + E
[
XX>

]−1
Q ∼ N

(
wtrue,

σ2

N
E
[
XX>

]−1)

Proof of Lemma F.1.

Proof sketch. Consistency easily follows from the independence of sS2
k which equals σ2 in expectation. For the second

claim, assume K = 2 and popk is normal for simplicity. Let Rα = αsS2
1 + (1− α) sS2

2 and note

Var (Rα) = α2Var
(

sS2
1

)
+ (1− α)2Var

(
sS2
2

)
⇒ α∗

1− α∗
=

Var
(

sS2
2

)
Var

(
sS2
1

)
where α∗ = arg minα∈R Var (Rα). The variance of sS2

k can be easily derived by using the normality assumption:

Var

(
(Nk − 1) sS2

k

σ2

)
= 2(Nk − 1) ⇔ Var

(
sS2
k

)
=

2σ4

Nk − 1
(53)

where the first equality comes from (45) and the fact that the variance of χ2(k) is 2k. Then

α∗

1− α∗
=
N1 − 1

N2 − 1
⇔ α∗ =

N1 − 1

N1 +N2 − 2

Proof of Lemma F.2.

Proof.

K∑
k=1

Nk∑
i=1

(Yk,i − sY )2 =

K∑
k=1

Nk∑
i=1

(Yk,i − sYk + sYk − sY )2

=

K∑
k=1

Nk∑
i=1

(Yk,i − sYk)2 +

K∑
k=1

Nk(sYk − sY )2 +

K∑
k=1

(sYk − sY )

(
Nk∑
i=1

(Yk,i − sYk)

)

The last term is zero because

Nk∑
i=1

(Yk,i − sYk) =

Nk∑
i=1

Yk,i −Nk sYk = Nk sYk −Nk sYk = 0
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Proof of Lemma F.3.

Proof. The expected value of Qwithin is simple,

E [Qwithin] = E

[
K∑
k=1

Nk∑
i=1

(Yk,i − sYk)2

]
=

K∑
k=1

(Nk − 1)E
[

sS2
k

]
=

K∑
k=1

(Nk − 1)σ2 = (N −K)σ2

We now show that E [Qtotal] = (N − 1)σ2 +
∑K
k=1(µk − µ)2. Once this is shown, it follows that E [Qbetween] =

(K − 1)σ2 +
∑K
k=1(µk − µ)2. We start by writing

Qtotal =

K∑
k=1

Nk∑
i=1

(Yk,i − sY )2 =

K∑
k=1

Nk∑
i=1

((Yk,i − µk)− (sY − µk))2

=

K∑
k=1

Nk∑
i=1

(Yk,i − µk)2 +

K∑
k=1

Nk(sY − µk)2 − 2

K∑
k=1

Nk∑
i=1

(Yk,i − µk)(sY − µk) (54)

We focus on the expected value of each of the three terms. The first is

E

[
K∑
k=1

Nk∑
i=1

(Yk,i − µk)2

]
=

K∑
k=1

Nkσ
2 = Nσ2

using the fact that (1/Nk)
∑Nk
i=1(Yk,i − µk)2 (without Bessel’s correction since we’re using the true mean) is an

unbiased estimator of σ2. The second is

E

[
K∑
k=1

Nk(sY − µk)2

]
=

K∑
k=1

NkE
[
(sY − µ+ µ− µk)2

]
=

K∑
k=1

NkE
[
(sY − µ)2

]
+

K∑
k=1

Nk(µ− µk)2 + 2

K∑
k=1

NkE
[
(sY − µ)(µ− µk)

]
= N E

[
(sY − µ)2

]︸ ︷︷ ︸
Var( sY )=σ2

N

+
K∑
k=1

Nk(µ− µk)2 + 2

K∑
k=1

Nk(µ− µk) E
[
(sY − µ)

]︸ ︷︷ ︸
0

= σ2 +

K∑
k=1

Nk(µ− µk)2

Finally, the third is

E

[
K∑
k=1

Nk∑
i=1

(Yk,i − µk)(sY − µk)

]
=

K∑
k=1

NkE
[
(sYk − µk)(sY − µk)

]
(55)

We have

E
[
(sYk − µk)(sY − µk)

]
= E

[
sYk sY

]
−E

[
sYk
]
µk −E

[
sY
]
µk + µ2

k

= E
[

sYk sY
]
− µµk
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where

E
[

sYk sY
]

= E

[
sYk

(
K∑
l=1

Nl
N

sYl

)]

=

K∑
l=1

Nl
N

E
[

sYk sYl
]

=
Nk
N

E
[

sY 2
k

]
+
∑
l 6=k

Nl
N

E
[

sYk
]
E
[

sYl
]

(independence of sY1 . . . sYK)

=
Nk
N

(
σ2

Nk
+ µ2

k

)
+
∑
l 6=k

Nl
N
µkµl (Var

(
sYk
)

= σ2

Nk
= E

[
sY 2
k

]
− µ2

k)

=
σ2

N
+
Nk
N
µ2
k +

∑
l 6=k

Nl
N
µkµl

=
σ2

N
+

K∑
l=1

Nl
N
µkµl

Going back to (55),

E

[
K∑
k=1

Nk∑
i=1

(Yk,i − µk)(sY − µk)

]
=

K∑
k=1

NkE
[
(sYk − µk)(sY − µk)

]
=

K∑
k=1

Nk
(
E
[

sYk sY
]
− µµk

)
=

K∑
k=1

Nk

(
σ2

N
+

K∑
l=1

Nl
N
µkµl − µµk

)

= σ2 +
∑
k,l

NkNl
N

µkµl − µ
K∑
k=1

Nkµk

= σ2

The last equality holds because

µ
K∑
k=1

Nkµk =

(
K∑
l=1

Nl
N
µl

)(
K∑
k=1

Nkµk

)
=
∑
k,l

NkNl
N

µkµl

Finally, putting everything together into (54)

E

[
K∑
k=1

Nk∑
i=1

(Yk,i − sY )2

]
= E

[
K∑
k=1

Nk∑
i=1

(Yk,i − µk)2

]
+ E

[
K∑
k=1

Nk(sY − µk)2

]
− 2E

[
K∑
k=1

Nk∑
i=1

(Yk,i − µk)(sY − µk)

]

= Nσ2 + σ2 +

K∑
k=1

Nk(µ− µk)2 − 2σ2

= (N − 1)σ2 +

K∑
k=1

Nk(µ− µk)2

Proof of Lemma J.1.

Proof. We will establish the equivalence between (1, 2) and the equivalence between (2, 3).
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• (1 ⇒ 2) Given any z ∈ S, define fz : R → R by fz(t) = ||x− y − tz||2. By premise the minimum of fz
is achieved at t = 0. Since fz is strongly convex we may phrase the optimality of t = 0 as the stationary
condition f ′z(0) = 0. Then we have

f ′z(t) = −2z>(x− y − tz)
⇒ f ′z(0) = −2z>(x− y) = −2z>(x− Px) = −2z>(IN×N − P )x = 0 (56)

Recall that IN×N − P is a projection onto null(P ), so null(P ) =
{

(IN×N − P )x : x ∈ RN
}

. Since (56) holds
for all x ∈ RN and z ∈ S, it implies range (P ) ⊥ null(P ).

• (2 ⇒ 1) For any x ∈ RN and z ∈ S, define y = Px ∈ range (P ) and note that x− y = (IN×N −P )x ∈ null(P )
and y − z ∈ range (P ) (definition of subspace). Thus we have

||x− z||2 = ||x− y + y − z||2

= ||x− y||2 + ||y − z||2 + 2(x− y)>(y − z)

= ||x− y||2 + ||y − z||2

≥ ||x− y||2

where the equality holds iff z = y.

• (2⇒ 3) If dim (range (P )) = 0 or dim (null(P )) = 0 then either P = IN×N or P = 0N×N so trivially P = P>.
Now assume that dim (range (P )) and dim (null(P )) are both positive. We may select nonzero u ∈ null(P )
and x ∈ RN such that Px ∈ range (P ) is nonzero. If P 6= P>,

x>P>u 6= x>Pu = 0

This contradicts the premise that v>u = 0 for all v ∈ range (P ) and u ∈ null(P ). Thus P = P>.

• (3 ⇒ 2) If u = Px for some x ∈ RN and Pv = 0N , then u>v = x>P>v = x>Pv = 0. Thus range (P ) ⊥
null(P ).

Proof of Lemma G.1.

Proof. The loss J : R× RK−1 → R is

J(α, β) =

N∑
i=1

(
yi − α− β>CdA(ai)

)2
=

N∑
i=1

(yi − α− βai [[ai > 1]])
2

where we use the indexing β = (β2 . . . βK). J is strongly convex and its partial derivatives are

∂J(β)

∂α
= −2

N∑
i=1

(yi − α− βai [[ai > 1]])

∂J(β)

∂βk
= −2

∑
i:ai=k

(yi − α− βk) k ∈ {2 . . .K}

Setting ∂J(β)
∂βk

= 0, we have∑
i:ai=k

(yi − α− βk) =
∑
i:ai=k

yi − count(k)α− count(k)βk = 0 ⇔ βk = syk − α (57)

Setting ∂J(β)
∂α = 0, we have

N∑
i=1

(yi − α− βai [[ai > 1]]) =
∑
i:ai=1

(yi − α) +
∑
i:ai≥2

(yi − α− βai) = 0 (58)
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Using condition (57) on the second term, we have

∑
i:ai≥2

(yi − α− βai) =

K∑
k=2

∑
i:ai=k

(yi − α− βk) =

K∑
k=2

∑
i:ai=k

(yi − syk) = 0

Thus condition (58) implies α = sy1

Proof of Lemma G.2.

Proof. The loss J : R× RK−1 × RL−1 × R(K−1)(L−1) → R is

J(α, β, γ, κ) =

N∑
i=1

(
yi − α− β>CdA(ai)− γ>CdB(bi)− κ>CdA(ai)⊗ CdB(bi)

)2
=

N∑
i=1

(yi − α− βai [[ai > 1]]− γbi [[bi > 1]]− κai,bi [[ai > 1, bi > 1]])
2

where we use the indexing β = (β2 . . . βK), γ = (γ2 . . . γL), and κ = (κ2,2 . . . κK,L). The partial derivative wrt κk,l
is

∂J(β)

∂κk,l
= −2

∑
i:ai=k,bi=l

(yi − α− βk − γl − κk,l)

Setting this to zero we have

κk,l = syk,l − α− βk − γl (59)

The partial derivative wrt γl is

∂J(β)

∂γl
= −2

∑
i:bi=l

(yi − α− βai [[ai > 1]]− γl − κai,l [[ai > 1]])︸ ︷︷ ︸
1

where we can write

1 =
∑

i:ai=1, bi=l

(yi − α− γl) +
∑

i:ai>1, bi=l

(yi − α− βai − γl − κai,l)︸ ︷︷ ︸
2

(60)

Using (59), we have

2 =
∑
k≥2

∑
i:ai=k, bi=l

(yi − α− βk − γl − κk,l)

=
∑
k≥2

∑
i:ai=k, bi=l

(yi − syk,l) = 0

Thus 1 = 0 implies γl = sy1,l − α. Similarly, it can be verified that the other stationary points are βk = syk,1 − α
and α = sy1,1.

Proof of Lemma G.3.

Proof. Recall that the sum coding CsA(k) ∈ RK−1 is defined for k = 1 . . .K as (0, . . . , 1, . . . , 0) if k < K and
(−1,−1, . . . ,−1) if k = K. Thus we can write the loss J : R× RK−1 → R as

J(α, β) =

N∑
i=1

(
yi − α− β>CsA(ai)

)2
=

∑
i:ai<K

(yi − α− βai)
2

+
∑

i:ai=K

(
yi − α+

K−1∑
k=1

βk

)2
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The partial derivative wrt α is

∂J(α, β)

∂α
= −2

∑
i:ai<K

(yi − α− βai)︸ ︷︷ ︸
1

−2
∑

i:ai=K

(
yi − α+

K−1∑
k=1

βk

)
︸ ︷︷ ︸

2

so setting it to zero is equivalent to setting 1 + 2 = 0. Using the fact that the data is balanced so that we have
M samples for each level 1 . . .K (in particular N = MK), we have

1 =
∑

i:ai<K

yi −M(K − 1)α−M
K−1∑
k=1

βk

2 =
∑

i:ai=K

yi −Mα+M

K−1∑
k=1

βk

1 + 2 =

N∑
i=1

yi −Nα = 0

Thus α = sy. For any l ∈ {1 . . .K − 1} the partial derivative wrt βl is

∂J(α, β)

∂βl
= −2

( ∑
i:ai=l

yi − α− βl

)
︸ ︷︷ ︸

3
l

+2

( ∑
i:ai=K

yi − α+

K−1∑
k=1

βk

)

so setting it to zero is equivalent to setting 3 − 2 = 0. We have

3
l

=
∑
i:ai=l

yi −Mα−Mβl

3
l
− 2 =

∑
i:ai=l

yi −
∑

i:ai=K

yi −Mβl −M
K−1∑
k=1

βk = 0

Summing both sides over l = 1 . . .K − 1, we have

K−1∑
l=1

(
3
l
− 2

)
=

∑
i:ai<K

yi − (K − 1)
∑

i:ai=K

yi −M
K−1∑
l=1

βl −M(K − 1)

K−1∑
k=1

βk

=

N∑
i=1

yi −K
∑

i:ai=K

yi −MK

K−1∑
k=1

βk = 0

This implies

M

K−1∑
k=1

βk =
1

K

N∑
i=1

yi −
∑

i:ai=K

yi

Therefore

3
l
− 2 =

∑
i:ai=l

yi −
∑

i:ai=K

yi −Mβl −M
K−1∑
k=1

βk

=
∑
i:ai=l

yi −
∑

i:ai=K

yi −Mβl −
1

K

N∑
i=1

yi +
∑

i:ai=K

yi

=
∑
i:ai=l

yi −Mβl −
1

K

N∑
i=1

yi = 0

which implies βl = syl − sy.
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Lemma K.2. If K = 2 and M = N1 = N2, then sS2
between = (M/2)(sY1 − sY2)2

Proof. The statement is equivalent to

2M((sY1 − sY )2 + (sY2 − sY )2) = M(sY1 − sY2)2

⇔ (sY1 − sY )2 + (sY2 − sY )2 + 2(sY1 − sY )(sY2 − sY ) = 0

⇔ ((sY1 − sY ) + (sY2 − sY ))2 = 0

This holds since

sY1 + sY2 − 2sY =
1

M

M∑
i=1

Y1,i +
1

M

M∑
i=1

Y2,i −
1

M

(
M∑
i=1

Y1,i +

M∑
i=1

Y2,i

)
= 0
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