Transition-Based Dependency Parsing

- Dependency parsing framed as a sequence of transitions

\[C_0 \xrightarrow{t_0} C_1 \xrightarrow{t_1} \cdots \xrightarrow{t_{T-1}} C_T \]

\[\downarrow \]

* the dog saw the cat

- Runtime **linear** in sentence length!
 - Major advantage over graph-based dependency parsing
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Economic news had little effect on financial markets.
Economic news had little effect on financial markets.

\[A = \{(0, \text{PRED}, 3), (3, \text{SBJ}, 2), (2, \text{ATT}, 1), (3, \text{OBJ}, 5), (3, \text{PU}, 9), (5, \text{ATT}, 4), (5, \text{ATT}, 6), (6, \text{PC}, 8), (8, \text{ATT}, 7)\} \]
Dependency Parsing \equiv Arc Finding

- Sentence: $x_1 \ldots x_m$

- Associated nodes: $\mathcal{N} = \{0, 1, \ldots, m\}$
 - Convention: leftmost root 0

- Labels: $L = \{\text{PRED}, \text{SBJ}, \ldots\}$

Goal. Find a set of labeled, directed arcs

$$A \subseteq \mathcal{N} \times L \times \mathcal{N}$$

that corresponds to a correct dependency tree for $x_1 \ldots x_m$.
Valid Dependency Tree

1. (Root): 0 must not have a parent.

 ![Root Diagram]

2. (Connected): There must be a path from 0 to every $i \in \mathcal{N}$.

3. (Tree): A node must not have more than one parent.

 ![Tree Diagram]

4. (Acyclic): Nodes must not form a cycle.

 ![Acyclic Diagram]
A valid dependency tree is **projective** if for every arc \((i, l, j)\) there is a path from \(i\) to \(k\) for all \(i < k < j\).

![Diagram of a projective tree](image)

Valid but non-projective

![Diagram of a non-projective tree](image)

We will focus on projective trees only!
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Parser Configuration

Triple \(c = (\sigma, \beta, A) \) where

- \(\sigma = [\ldots \ i] \): “stack” of \(\mathcal{N} \) with \(i \) at the top
- \(\beta = [i \ \ldots] \): “buffer” of \(\mathcal{N} \) with \(i \) at the front
- \(A \subseteq \mathcal{N} \times L \times \mathcal{N} \): arcs

Notation

- \(\mathcal{C} \) denotes the space of all possible configurations.
- \(c.\sigma, c.\beta, c.A \) denote stack, buffer, arcs of \(c \in \mathcal{C} \).
Configuration-Based Parsing Scheme

Initial configuration

\[c_0 := ([0], [1 \ldots m], \{\}) \]

Apply “transitions” until we reach terminal \(c_T \) (defined later)

\[c_0 \xrightarrow{t_0} c_1 \xrightarrow{t_1} \cdots \xrightarrow{t_{T-1}} c_T \]

and return as a parse

\[c_T \cdot A \]
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Shift and Reduce

SHIFT \((\sigma, i | \beta, A) \Rightarrow (\sigma | i, \beta, A)\)

Illegal if \(\beta\) is empty.

REDUCE \((\sigma | i, \beta, A) \Rightarrow (\sigma, \beta, A)\)

Illegal if \(i\) does not have a parent.
\[\text{LEFT}_i \quad (\sigma | i | j, \beta, A) \Rightarrow (\sigma | j, \beta, A \cup \{(j, l, i)\}) \]

Illegal if either \(i = 0 \) or \(i \) already has a parent.
Right-Arc

\[\text{RIGHT}_l \ (\sigma | i | j, \beta, A) \Rightarrow (\sigma | i, \beta, A \cup \{(i, l, j)\}) \]

Illegal if \(j \) already has a parent.
“Eager” Left-Arc

\[
\text{LEFT}_i^e \ (\sigma | i, j \mid \beta, A) \Rightarrow (\sigma, j | \beta, A \cup \{(j, l, i)\})
\]

Illegal if either \(i = 0\) or \(i\) already has a parent.
“Eager” Right-Arc

\[
\text{\texttt{RIGHT}}^e_i \quad (\sigma|i,j|\beta, A) \Rightarrow (\sigma| i|j, \beta, A \cup \{(i, l, j)\})
\]

Illegal if \(j \) already has a parent.
Legal transitions

- Certain transitions are illegal depending on $c \in C$.

- We will denote the set of legal actions at c by $\text{LEGAL}(c)$.
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Definition

\[2|L| + 1 \text{ possible transitions } \mathcal{T}^{\text{std}} \]

- **SHIFT**: \((\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)\)
- **LEFT\(_l\)** for each \(l \in L\):
 \[
 (\sigma|i|j, \beta, A) \Rightarrow (\sigma|j, \beta, A \cup \{(j, l, i)\})
 \]
- **RIGHT\(_l\)** for each \(l \in L\):
 \[
 (\sigma|i|j, \beta, A) \Rightarrow (\sigma|i, \beta, A \cup \{(i, l, j)\})
 \]

Terminal condition: \(c.\sigma = [0]\) and \(c.\beta = []\)
Properties

- **Makes exactly** $2m$ transitions to parse $x_1 \ldots x_m$. Why?

- **Bottom-up**: a node must collect all its children before getting a parent. Why?

- **Sound**: if c is terminal, $c.A$ forms a valid projective tree.

- **Complete**: every valid projective tree A can be produced from c_0 by some sequence of transitions $t_0 \ldots t_{T-1} \in T^{\text{std}}$.

\[
 t_i = \text{Oracle}^{\text{std}}(c_i) \\
 c_{i+1} = t_i(c_i)
\]
Input: gold arcs A^{gold}, non-terminal configuration $c = (\sigma, \beta, A)$
Output: transition $t \in T^{\text{std}}$ to apply on c

1. Return **SHIFT** if $|\sigma| = 1$.
2. Otherwise $\sigma = [\ldots i \ j]$ for some $i < j$:
 2.1 Return **LEFT** l if $(j, l, i) \in A^{\text{gold}}$.
 2.2 Return **RIGHT** l if $(i, l, j) \in A^{\text{gold}}$ and for all $l' \in L, j' \in N$,
 $$(j, l', j') \in A^{\text{gold}} \implies (j, l', j') \in A$$
 2.3 Return **SHIFT** otherwise.
Example Parse (Nivre 2013)

Transition	Configuration
$c_s(x) =$ | \emptyset
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
LEFT-ARC$_{ATT}$ \rightarrow | (0, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
LEFT-ARC$_{SBJ}$ \rightarrow | (0, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
LEFT-ARC$_{ATT}$ \rightarrow | (0, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
LEFT-ARC$_{ATT}$ \rightarrow | (0, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
LEFT-ARC$_{ATT}$ \rightarrow | (0, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
LEFT-ARC$_{ATT}$ \rightarrow | (0, 2, 3, 4, 5, 6, 7, 8, 9, 0)
RIGHT-ARC$_{PC}$ \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
RIGHT-ARC$_{ATT}$ \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
RIGHT-ARC$_{OBJ}$ \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
SHIFT \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
RIGHT-ARC$_{PU}$ \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
RIGHT-ARC$_{ROOT}$ \rightarrow | (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Definition

\[2|L| + 2 \text{ possible transitions } T_{\text{eag}} \]

SHIFT: \((\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)\)

REDUCE: \((\sigma|i, \beta, A) \Rightarrow (\sigma, \beta, A)\)

LEFT\(_i^e\) for each \(l \in L:\)

\[(\sigma|i, j|\beta, A) \Rightarrow (\sigma, j|\beta, A \cup \{(j, l, i)\})\]

RIGHT\(_i^e\) for each \(l \in L:\)

\[(\sigma|i, j|\beta, A) \Rightarrow (\sigma|i|j, \beta, A \cup \{(i, l, j)\})\]

Terminal condition: \(c.\beta = []\)

- Stop as soon as the buffer is empty.
Properties

- **Makes at most** $2m$ transitions to parse $x_1 \ldots x_m$. Why?

- **Partially top-down**: but a node must collect all its left children before right children. Why?

- **Not sound**: even if c is terminal, $c.A$ may form unconnected projective trees ("dependency forest").
 - But can be manually corrected by connecting to the root.

 \[
 \begin{array}{cccccc}
 0 & 1 & 2 & 3 & 4 \\
 \end{array}
 \quad \Rightarrow \quad
 \begin{array}{cccccc}
 0 & 1 & 2 & 3 & 4 \\
 \end{array}
 \]

- **Complete**: every valid projective tree A can be produced from c_0 by some sequence of transitions $t_0 \ldots t_{T-1} \in \mathcal{T}^{eag}$.

 \[
 t_i = \text{Oracle}^{eag}(c_i) \\
 c_{i+1} = t_i(c_i)
 \]
Input: gold arcs A^gold, non-terminal configuration

\[c = (\sigma = [\ldots i], \beta = [j \ldots], A) \]

Output: transition $t \in T^\text{eag}$ to apply on c

1. Return LEFT_l^e if $(j, l, i) \in A^\text{gold}$.
2. Return RIGHT_l^e if $(i, l, j) \in A^\text{gold}$.
3. Return REDUCE if there is some $k < i$ such that $(k, l, j) \in A^\text{gold}$ or $(j, l, k) \in A^\text{gold}$ for some l.
4. Return SHIFT otherwise.
Example Parse (Nivre 2013)
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Getting Training Data

- **Treebank**: sentence-tree pairs \((x^{(1)}, A^{(1)}) \ldots (x^{(M)}, A^{(M)})\)
 - Assume all projective

- For each \(A^{(j)}\), use an oracle to extract
 \[
 (c^{(j)}_0, t^{(j)}_0) \ldots (c^{(j)}_{T-1}, t^{(j)}_{T-1})
 \]
 where \(t^{(j)}_{T-1}(c^{(j)}_{T-1}) \cdot A = A^{(j)}\).

- We can now use this to train a **classifier**
 \[
 (x^{(j)}, c^{(j)}_i) \mapsto t^{(j)}_i
 \]
Linear Classifier

- Parameters: \(w_t \in \mathbb{R}^d \) for each \(t \in T \)

- Each \(c \in C \) for sentence \(x \) is “featurized” as \(\phi^x(c) \in \mathbb{R}^d \).
 - Classical approach: **binary features** providing useful signals
 - Assumes we have access to POS tags of \(x_1 \ldots x_m \).

\[
\phi^x_{20134}(c) := \begin{cases}
1 & \text{if } x_{c.\sigma[0]}.\text{POS} = \text{NN} \text{ and } x_{c.\beta[0]}.\text{POS} = \text{VBD} \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi^x_{1988}(c) := \begin{cases}
1 & \text{if } x_{c.\sigma[0]}.\text{POS} = \text{VBD} \text{ with leftmost arc SUBJ} \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi^x_{42}(c) := \begin{cases}
1 & \text{if } x_{c.\beta[1]} = \text{cat} \\
0 & \text{otherwise}
\end{cases}
\]
Linear Classifier (Continued)

- **Score** of $t \in T$ at $c \in C$ for x:

 $$\text{score}_x(t|c) := w_t \cdot \phi^x(c)$$

 $$= \sum_{i=1}^{d} \phi^x_i(c) = 1$$

 From here on, we assume $\{w_t\}_{t \in T}$ trained from data.
Important Aside

Each \(c_i \) is computed from past decisions \(t_0 \ldots t_{i-1} \).

\[
c_i = t_{i-1}(t_{i-2}(\cdots t_0(c_0)))
\]

So the score function on \(c_i \) is really a function of \(t_0 \ldots t_{i-1} \).

\[
\text{score}_x(t \mid c) = \text{score}_x(t \mid t_1 \ldots t_{i-1})
\]

Will use \(c_i \) and \(t_0 \ldots t_{i-1} \) interchangeably.
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
At each configuration c_i, pick

$$t_i \leftarrow \arg \max_{t \in \text{LEGAL}(c_i)} \text{score}_x(t | t_0 \ldots t_{i-1})$$
Parsing Algorithm

Input: \(\{w_t\}_{t \in \mathcal{T}} \), sentence \(x \) of length \(m \)

Output: arcs representing a dependency tree for \(x \)

1. \(c \leftarrow c_0 \)
2. While \(c.\beta \neq [] \),
 2.1 Select \(\hat{t} \leftarrow \arg \max_{t \in \text{LEGAL}(c)} \text{score}_x(t|c) \)
 2.2 Make a transition: \(c \leftarrow \hat{t}(c) \).
3. Return \(c.A \).
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
Beam Search

Approximate the **optimal sequence of transitions**:

\[
t_0^* \ldots t_{T-1}^* = \arg \max_{t_0 \ldots t_{T-1}: t_i \in \text{LEGAL}(c_i), c_T \cdot \beta = [\]} \sum_{i=0}^{T-1} \text{score}_x(t_i | t_0 \ldots t_{i-1})
\]
Parsing Algorithm

Input: $\{w_t\}_{t \in \mathcal{T}}$, sentence x of length m, beam width K

Beam: $\langle c, s \rangle \in \mathcal{C} \times \mathbb{R}$ organized by second argument (score)

Output: arcs representing a dependency tree for x

1. $B \leftarrow \text{Beam}(\{\langle c_0, 0 \rangle\}, K)$
2. While $c.\beta \neq []$ for some $\langle c, s \rangle \in B$,
 2.1 $B' \leftarrow \text{Beam}(\{\} , K)$
 2.2 For $\langle c, s \rangle \in B$, for $t \in \text{LEGAL}(c)$,
 \[B'.\text{push}\langle t(c), s + \text{score}_x(t|c)\rangle\]
 2.3 $B \leftarrow B'$
3. Return $c^*.A$ where $c^* \leftarrow B.\text{pop}()$.
Overview

Dependency Parsing

Transition-Based Framework
 Configuration
 Transitions

Transition Systems
 Arc-Standard
 Arc-Eager

Implementation
 Training
 Greedy Parser
 Beam Search Parser
 Evaluation
UAS/LAS

- Unlabeled Attachment Score (UAS):
 \[
 \frac{\text{\# words with correct parent}}{\text{\# words}}
 \]

- Labeled Attachment Score (LAS):
 \[
 \frac{\text{\# words with correct parent and label}}{\text{\# words}}
 \]

Current state-of-the-art: 93-95 UAS, 91-93 LAS!
Parting Remarks

- There are better ways to train model $\{w_t\}_{t \in T}$.
 - Online learning, “dynamic” oracles, etc.

- Today, state-of-the-art parsers are obtained by just replacing
 \[
 \text{score}_x(t|c) = \text{linear} \cdot w_t \cdot \phi^x(c) \text{ hand-engineered}
 \]
 with a neural network (your next assignment).

- We will revisit dependency parsing in a graph-based framework.