COMS 4705.H:
Transition-Based Dependency Parsing

Karl Stratos

February 24, 2017

1/41

Transition-Based Dependency Parsing
» Dependency parsing framed as a sequence of transitions

to t1 tr_q
cop—>C —> -+ ——>CT

0BJ

* the dog saw the «cat

» Runtime liNe@ar in sentence length!
» Major advantage over graph-based dependency parsing

2/41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

3/41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

4 /41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

PU

PC
0BJ
ATT
ST //—\

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

A = {(0,PRED, 3), (3,SBJ, 2), (2, ATT, 1), (3,0BJ, 5),
(3,PU,9), (5, ATT, 4), (5, ATT, 6), (6,PC, 8), (8, ATT, 7)}

4 /41

Dependency Parsing = Arc Finding

» Sentence: z1...Zy,

» Associated nodes: N = {0,1,...,m}

» Convention: leftmost root 0

» Labels: L = {PRED,SBJ,...}

Goal. Find a set of labeled, directed arcs
ACN XLxN

that corresponds to a correct dependency tree for z7 ... x,.

5/41

Valid Dependency Tree

1. (Root): 0 must not have a parent.
l

T

] i

2. (Connected): There must be a path from 0 to every i € N.
3. (Tree): A node must not have more than one parent.
l i
1 J k
4. (Acyclic): Nodes must not form a cycle.
lnfl

ll ln—?
. /\ .
ZO e Zn—l

6 /41

Projective

» A valid dependency tree is projective if for every arc (i,l,7)
there is a path from ¢ to k for all i < k < j.

We will focus on projective trees only!

7/41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

8 /41

Parser Configuration

Triple ¢ = (o, 8, A) where
» o =[... 1] “stack” of A/ with i at the top
» 3=1[i ...]: "buffer” of N with i at the front
» ACN x L xN: arcs

Notation
» C denotes the space of all possible configurations.

» c.o, c.3, c.A denote stack, buffer, arcs of ¢ € C.

9/41

Configuration-Based Parsing Scheme

Initial configuration

co = ([0, [1...m[,{ })

Apply “transitions” until we reach terminal ¢y (defined later)

to t1 tr—1
cg—>Cl —» -+ —CT

and return as a parse
CT.A

10 /41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

11/41

Shift and Reduce

SHIFT (0,i[5,A) = (ali, 5, A)

lllegal if 5 is empty.

REDUCE (0li,3,A) = (0,5, A)

lllegal if ¢ does not have a parent.

12 /41

Left-Arc

LEFT, (olilj,3,A) = (o], 8,AU{(4,1,7)})

l

RN

Z DR j

lllegal if either ¢ = 0 or ¢ already has a parent.

13 /41

Right-Arc

RIGHT, (0lilj, 5, A) = (oli, 8, AU{(i,1,7)})

l

RN

’l DR j

lllegal if j already has a parent.

14 / 41

“Eager” Left-Arc

LEFTS (0]i,j|8,4) = (0,7|3, AU{(j,1,7)})

l

RN

Z DR]

lllegal if either ¢ = 0 or ¢ already has a parent.

15 /41

“Eager” Right-Arc

RIGHT] (cli, |5, A) = (alilj, B, AU{(i,1,5)})

l

RN

’l DR]

lllegal if j already has a parent.

16 / 41

Legal transitions

» Certain transitions are illegal depending on ¢ € C.

» We will denote the set of legal actions at ¢ by LEGAL(c).

17 /41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

18 /41

Definition

2|L| + 1 possible transitions 7
» SHIFT: (0,i|8,A) = (0li, 8, A)
» LEFT,; foreach [€ L:

(alilj, B, A) = (o5, 8, AU{(4,1,9)})

» RIGHT, foreach [€ L:

(olilj, B, A) = (oli, 8, AU{(i,1,5)})

Terminal condition: c.oc = [0] and ¢.f =[]

19 /41

Properties
» Makes exactly 2m transitions to parse x7 ... Zy,,. Why?

» Bottom-up: a node must collect all its children before
getting a parent. Why?

» Sound: if ¢ is terminal, c.A forms a valid projective tree.

» Complete: every valid projective tree A can be produced

from ¢y by some sequence of transitions ty...t7_1 € T

t; = Oracle™(¢;)

cit1 = ti(e;)

20 /41

Oracle

Input: gold arcs A%, non-terminal configuration ¢ = (o, 3, A)
Output: transition t € T to apply on ¢

1. Return SHIFT if o] = 1.
2. Otherwise o = [... i j] for some i < j:

2.1 Return LEFT, if (j,1,1) € A&,
2.2 Return RIGHT; if (i,1,5) € A®" and for all ' € L,j' € N,

(4, V,5') € A= = (0" eA

2.3 Return SHIFT otherwise.

21/41

Example Parse (Nivre 2013)

PRED

ATT

ROOT Economic

Transition

cs(z) =

SHIFT =

SHIFT =
LEFT-ARCypp =
SHIFT =
LEFT-ARCsp; =
SHIFT =

SHIFT =
LEFT-ARCy1r =
SHIFT =

SHIFT =

SHIFT =
LEFT-ARCurr =
RIGHT-ARCpe =
RIGHT-ARC,y =
RIGHT-ARCp, =
SHIFT =
RIGHT-ARCy; =
RIGHT- ARCroor =

SBJ

news had little effect on financial markets
Configuration
([, [L,....9], ©
([0,1], 2,....9, 0
([0,1,2 By, 9, 0
([0,2], By 9], A, ={(2,arT,1)}
([0,2,3, [4,....9, A4
([o0,3], 4,...,9), Az = AU{(3,584,2)}
([0,3,4], 5,..., 9], A,
([o,..., 5], [6,..., 9], Ay
([0,3,5, [6,..., 9], Asz= AU{(5, aTT,4)}
([0,....6], [7,8,9], As
([o,...7, [89], Az
([,-.-.8, [, Az
([0,...8, [9], As = AsU{(8, aTT,T)}
{ [0,...,6], [9), As = AU{(6, 7, 8)}
([0,3,5], 9], Ag = A;U{(5, ATT,6)}
([0,3], 9], A; = AsU{(3,081,5)}
([0,3,9 11 A7
([0,3], I As = A7U{(3,PU,9)}
([o], [l Ay = AsU{(0, ROOT, 3)}

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

22 /41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

23 /41

Definition

2|L| 4 2 possible transitions 7%
SHIFT: (0,i|8,A) = (oli, 5, A)
REDUCE: (o]i,5,A) = (0,8, A)
LEFT] for each | € L:

(oli, 418, A) = (0,418, AUL(,1,4)})
RIGHT] for each [€ L:

(ali, 18, A) = (olilj, 5, AU{(i,1,5)})

Terminal condition: c.f =[]

» Stop as soon as the buffer is empty.

24 /41

Properties

» Makes at most 2m transitions to parse xj ... xZ,;,. Why?

» Partially top-down: but a node must collect all its left
children before right children. Why?

» Not sound: even if ¢ is terminal, c.A may form unconnected
projective trees (“dependency forest”).
» But can be manually corrected by connecting to the root.

» Complete: every valid projective tree A can be produced
from ¢y by some sequence of transitions tg...tp_1 € T8,

t; = Oracle™®(¢;)
civ1 = ti(ci)

25 /41

Oracle=s

Input: gold arcs A", non-terminal configuration

c=(o=[..0,8=[..]14)

Output: transition t € 7 to apply on ¢

1. Return LEFTY] if (j,1,) € A=,
2. Return RIGHTY if (i,1,7) € A",

3. Return REDUCE if there is some k < ¢ such that
(k,1,7) € A= or (4,1, k) € A= for some I.

4. Return SHIFT otherwise.

26 /41

Example Parse (Nivre 2013)

PRED

ATT

ROOT Economic
Transition

SHIFT =
LEFT-ARCapr =
SHIFT =
LEFT-ARCyy, =
RICHT-ARCroor =
SHIFT =
LEFT-ARC,pr =
RIGHT-ARCos; =>
RIGHT-ARCyr =
SHIFT =
LEPT-ARCy =
RICHT-ARCp; =
REDUCE =
REDUCE =
REDUCE =
RicguT-ARC,; =

SB)

news had
Configuration
(o], [1,..., 9],
([0,1] [2,.--.9],
(o], 2,..., 9]
(0,2, [3,....9]
((o], [3,....9]
([0,3], [4,....9]
([0,3,4], [5,..., 9]
([0,3], [5..-..9]
([0,3,5], 6,.... 9]
([o,..., 6], [7,8,9]
{ [0,..., 7, 8,9,
([0,...6], [8,9
([0,....8, [9],
([0,....8], [a],
([0,3,8], 9],
([0,3], 191,
(0,39, I,

little effect on financial markets

o A ={(24rT,1)}

v A

, Ay = AU{(3,8B4,2)}

. As = A0{(0,r00T,3)}

, A3

. Ay = AgU{(5,arT,4)}

. As; = AsU{(3,0B1,5)}
}

Ag = AsU{(5, ATT,6)
Ag

A; = AgU{(8, aTT,T)}
Ag = A7U{(6,pC,8)}
Ag

Ag

Ag

Ag = AgU{(3,ru,9)}

27 /41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

28 /41

Getting Training Data

» Treebank: sentence-tree pairs (z(1), AM) ... (z(M) AM))
» Assume all projective

» For each AU, use an oracle to extract
(e, t) . (L,)

where tgfll(cgzzl).A = AU,

» We can now use this to train a classifier

29 /41

Linear Classifier

» Parameters: w; € R? foreach t € T

» Each c € C for sentence x is “featurized” as ¢”(c) € R

» Classical approach: binary features providing useful signals
» Assumes we have access to POS tags of 1 ...x,,.

20134871 0 otherwise

67 s (c) = 1 if 2. 4[0)-POS = VBD with leftmost arc SUBJ
19883771 0 otherwise

1 ifw.pgp = cat
0 otherwise

Piz(c) =

30/41

Linear Classifier (Continued)

» Score of t €T at c € C for z:

score,(t|c) == wy - ¢*(c)

» From here on, we assume {w;},.+ trained from data.

31/41

Important Aside

Each ¢; is computed from past decisions ¢ ...1;_ 1.

ci =t 1(tio(---to(co)))

So the score function on ¢; is really a function of ¢y...¢; 1.

score, (t|c) = score,(t|ty...1; 1)

Will use ¢; and tg...t;—1 interchangeably.

32/41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

33/41

Greedy

At each configuration ¢;, pick

t; < argmax score,(t|ty...t; 1)
te LEGAL(c;)

34 /41

Parsing Algorithm

Input: {w;}, ;. sentence x of length m
Output: arcs representing a dependency tree for x

1. c+ ¢
2. While ¢.8 # [,
2.1 Select
t < argmax score,(t|c)
tELEGAL(c)

2.2 Make a transition: ¢ < t(c).
3. Return c.A.

35/ 41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

36 /41

Beam Search

Approximate the optimal sequence of transitions:

* *x
T—1
arg max Z score, (t|to ... ti—1)
tg...tp_1: i—0
t;E€LEGAL (c;)
cp-f=|]

37/41

Parsing Algorithm

Input: {w;}, ., sentence x of length m, beam width K
Beam: (c,s) € C x R organized by second argument (score)
Output: arcs representing a dependency tree for z

1. B < Beam({(co,0)}, K)
2. While ¢.8 # [] for some (c,s) € B,
21 B « Bean({ }, K)

2.2 For {c,s) € B, for t € LEGAL(c),

B'.push(t(c), s + score,(t|c))

23 B+ B
3. Return c*.A where ¢* < B.pop().

38 /41

Overview

Dependency Parsing

Transition-Based Framework

Configuration
Transitions

Transition Systems

Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

39/41

UAS/LAS

» Unlabeled Attachment Score (UAS):

words with correct parent
words

> Labeled Attachment Score (LAS):

words with correct parent and label

words

Current state-of-the-art: 93-95 UAS, 91-93 LAS!

40 /41

Parting Remarks

» There are better ways to train model {w;},
» Online learning, “dynamic” oracles, etc.

» Today, state-of-the-art parsers are obtained by just replacing

linear
score, (t|e) = ' - " (c)

| M|
hand-engineered

with a neural network (your next assignment).

» We will revisit dependency parsing in a graph-based
framework.

41 /41

