
COMS 4705.H:
Transition-Based Dependency Parsing

Karl Stratos

February 24, 2017

1 / 41

Transition-Based Dependency Parsing

I Dependency parsing framed as a sequence of transitions

c0
t0−→ c1

t1−→ · · · tT−1−−−→ cT

⇓

* the dog saw the cat

PRED

SBJDET
OBJ

DET

I Runtime linear in sentence length!
I Major advantage over graph-based dependency parsing

2 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

3 / 41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Dependency Parsing = Arc Finding

I Sentence: x1 . . . xm

I Associated nodes: N = {0, 1, . . . ,m}
I Convention: leftmost root 0

I Labels: L = {PRED, SBJ, . . .}

Goal. Find a set of labeled, directed arcs

A ⊆ N × L×N

that corresponds to a correct dependency tree for x1 . . . xm.

5 / 41

Valid Dependency Tree

1. (Root): 0 must not have a parent.

0 · · · i

l

2. (Connected): There must be a path from 0 to every i ∈ N .

3. (Tree): A node must not have more than one parent.

i j k

l l′

4. (Acyclic): Nodes must not form a cycle.

i0 · · · in−1

l1 ln−2

ln−1

6 / 41

Projective

I A valid dependency tree is projective if for every arc (i, l, j)
there is a path from i to k for all i < k < j.

* 1 2 3 4 5

I Valid but non-projective

* 1 2 3 4 5

We will focus on projective trees only!

7 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

8 / 41

Parser Configuration

Triple c = (σ, β,A) where

I σ = [. . . i]: “stack” of N with i at the top

I β = [i . . .]: “buffer” of N with i at the front

I A ⊆ N × L×N : arcs

Notation

I C denotes the space of all possible configurations.

I c.σ, c.β, c.A denote stack, buffer, arcs of c ∈ C.

9 / 41

Configuration-Based Parsing Scheme

Initial configuration

c0 := ([0], [1 . . .m], { })

Apply “transitions” until we reach terminal cT (defined later)

c0
t0−→ c1

t1−→ · · · tT−1−−−→ cT

and return as a parse

cT .A

10 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

11 / 41

Shift and Reduce

SHIFT (σ, i|β,A)⇒ (σ|i, β, A)

Illegal if β is empty.

REDUCE (σ|i, β, A)⇒ (σ, β,A)

Illegal if i does not have a parent.

12 / 41

Left-Arc

LEFTl (σ|i|j, β, A)⇒ (σ|j, β, A ∪ {(j, l, i)})

i · · · j

l

Illegal if either i = 0 or i already has a parent.

13 / 41

Right-Arc

RIGHTl (σ|i|j, β, A)⇒ (σ|i, β, A ∪ {(i, l, j)})

i · · · j

l

Illegal if j already has a parent.

14 / 41

“Eager” Left-Arc

LEFTe
l (σ|i, j|β,A)⇒ (σ, j|β,A ∪ {(j, l, i)})

i · · · j

l

Illegal if either i = 0 or i already has a parent.

15 / 41

“Eager” Right-Arc

RIGHTe
l (σ|i, j|β,A)⇒ (σ|i|j, β, A ∪ {(i, l, j)})

i · · · j

l

Illegal if j already has a parent.

16 / 41

Legal transitions

I Certain transitions are illegal depending on c ∈ C.

I We will denote the set of legal actions at c by LEGAL(c).

17 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

18 / 41

Definition

2 |L|+ 1 possible transitions T std

I SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
I LEFTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|j, β,A ∪ {(j, l, i)})

I RIGHTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i, l, j)})

Terminal condition: c.σ = [0] and c.β = []

19 / 41

Properties

I Makes exactly 2m transitions to parse x1 . . . xm. Why?

I Bottom-up: a node must collect all its children before
getting a parent. Why?

I Sound: if c is terminal, c.A forms a valid projective tree.

I Complete: every valid projective tree A can be produced
from c0 by some sequence of transitions t0 . . . tT−1 ∈ T std.

ti = Oraclestd(ci)

ci+1 = ti(ci)

20 / 41

Oraclestd

Input: gold arcs Agold, non-terminal configuration c = (σ, β,A)
Output: transition t ∈ T std to apply on c

1. Return SHIFT if |σ| = 1.

2. Otherwise σ = [. . . i j] for some i < j:

2.1 Return LEFTl if (j, l, i) ∈ Agold.
2.2 Return RIGHTl if (i, l, j) ∈ Agold and for all l′ ∈ L, j′ ∈ N ,

(j, l′, j′) ∈ Agold ⇒ (j, l′, j′) ∈ A

2.3 Return SHIFT otherwise.

21 / 41

Example Parse (Nivre 2013)

22 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

23 / 41

Definition

2 |L|+ 2 possible transitions T eag

SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
REDUCE: (σ|i, β, A)⇒ (σ, β,A)

LEFTe
l for each l ∈ L:

(σ|i, j|β,A)⇒ (σ, j|β,A ∪ {(j, l, i)})

RIGHTe
l for each l ∈ L:

(σ|i, j|β,A)⇒ (σ|i|j, β,A ∪ {(i, l, j)})

Terminal condition: c.β = []

I Stop as soon as the buffer is empty.

24 / 41

Properties
I Makes at most 2m transitions to parse x1 . . . xm. Why?

I Partially top-down: but a node must collect all its left
children before right children. Why?

I Not sound: even if c is terminal, c.A may form unconnected
projective trees (“dependency forest”).

I But can be manually corrected by connecting to the root.

0 1 2 3 4 ⇒ 0 1 2 3 4

I Complete: every valid projective tree A can be produced
from c0 by some sequence of transitions t0 . . . tT−1 ∈ T eag.

ti = Oracleeag(ci)

ci+1 = ti(ci)

25 / 41

Oracleeag

Input: gold arcs Agold, non-terminal configuration

c = (σ = [. . . i], β = [j . . .], A)

Output: transition t ∈ T eag to apply on c

1. Return LEFTe
l if (j, l, i) ∈ Agold.

2. Return RIGHTe
l if (i, l, j) ∈ Agold.

3. Return REDUCE if there is some k < i such that
(k, l, j) ∈ Agold or (j, l, k) ∈ Agold for some l.

4. Return SHIFT otherwise.

26 / 41

Example Parse (Nivre 2013)

27 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

28 / 41

Getting Training Data

I Treebank: sentence-tree pairs (x(1), A(1)) . . . (x(M), A(M))
I Assume all projective

I For each A(j), use an oracle to extract

(c
(j)
0 , t

(j)
0) . . . (c

(j)
T−1, t

(j)
T−1)

where t
(j)
T−1(c

(j)
T−1).A = A(j).

I We can now use this to train a classifier

(x(j), c
(j)
i) 7→ t

(j)
i

29 / 41

Linear Classifier

I Parameters: wt ∈ Rd for each t ∈ T

I Each c ∈ C for sentence x is “featurized” as φx(c) ∈ Rd.
I Classical approach: binary features providing useful signals
I Assumes we have access to POS tags of x1 . . . xm.

φx20134(c) :=

{
1 if xc.σ[0].POS = NN and xc.β[0].POS = VBD

0 otherwise

φx1988(c) :=

{
1 if xc.σ[0].POS = VBD with leftmost arc SUBJ

0 otherwise

φx42(c) :=

{
1 if xc.β[1] = cat

0 otherwise

30 / 41

Linear Classifier (Continued)

I Score of t ∈ T at c ∈ C for x:

scorex(t|c) := wt · φx(c)

=

d∑
i=1: φxi (c)=1

[wt]i

I From here on, we assume {wt}t∈T trained from data.

31 / 41

Important Aside

Each ci is computed from past decisions t0 . . . ti−1.

ci = ti−1(ti−2(· · · t0(c0)))

So the score function on ci is really a function of t0 . . . ti−1.

scorex(t|c) = scorex(t|t1 . . . ti−1)

Will use ci and t0 . . . ti−1 interchangeably.

32 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

33 / 41

Greedy

At each configuration ci, pick

ti ← argmax
t∈ LEGAL(ci)

scorex(t|t0 . . . ti−1)

34 / 41

Parsing Algorithm

Input: {wt}t∈T , sentence x of length m
Output: arcs representing a dependency tree for x

1. c← c0
2. While c.β 6= [],

2.1 Select

t̂← argmax
t∈LEGAL(c)

scorex(t|c)

2.2 Make a transition: c← t̂(c).

3. Return c.A.

35 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

36 / 41

Beam Search

Approximate the optimal sequence of transitions:

t∗0 . . . t
∗
T−1 =

argmax
t0...tT−1:

ti∈LEGAL(ci)
cT .β=[]

T−1∑
i=0

scorex(ti|t0 . . . ti−1)

37 / 41

Parsing Algorithm

Input: {wt}t∈T , sentence x of length m, beam width K
Beam: 〈c, s〉 ∈ C × R organized by second argument (score)
Output: arcs representing a dependency tree for x

1. B ← Beam({〈c0, 0〉} ,K)

2. While c.β 6= [] for some 〈c, s〉 ∈ B,

2.1 B′ ← Beam({ } ,K)

2.2 For 〈c, s〉 ∈ B, for t ∈ LEGAL(c),

B′.push〈t(c), s + scorex(t|c)〉
2.3 B ← B′

3. Return c∗.A where c∗ ← B.pop().

38 / 41

Overview

Dependency Parsing

Transition-Based Framework
Configuration
Transitions

Transition Systems
Arc-Standard
Arc-Eager

Implementation
Training
Greedy Parser
Beam Search Parser
Evaluation

39 / 41

UAS/LAS

I Unlabeled Attachment Score (UAS):

words with correct parent

words

I Labeled Attachment Score (LAS):

words with correct parent and label

words

Current state-of-the-art: 93-95 UAS, 91-93 LAS!

40 / 41

Parting Remarks

I There are better ways to train model {wt}t∈T .
I Online learning, “dynamic” oracles, etc.

I Today, state-of-the-art parsers are obtained by just replacing

scorex(t|c) =
linear
wt · φx(c)

hand-engineered

with a neural network (your next assignment).

I We will revisit dependency parsing in a graph-based
framework.

41 / 41

