COMS 4705.H: Hidden Markov Models

Karl Stratos

February 10, 2017

Motivation: Part-of-Speech (POS) Tagging

Task. Given a sentence, output a sequence of POS tags.

Ambiguity. A word can have many possible POS tags.

the/DT man/NN saw/VBD the/DT cut/NN the/DT saw/NN cut/VBD the/DT man/NN

Solution. Use a statistical approach to disambiguate.

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

Sequence Labeling with a Probabilistic Model

Vocabulary V, set of POS tags L

```
V = \{ \texttt{prim}, \; \texttt{that}, \; \texttt{Arya}, \; \texttt{fastidiously}, \; \texttt{1988}, \; \ldots \} L = \{ \texttt{DT}, \; \texttt{NN}, \; \texttt{VBD}, \; \texttt{JJ}, \; \ldots \}
```

Sequence Labeling with a Probabilistic Model

Vocabulary V, set of POS tags L

```
V = \{ \texttt{prim}, \; \texttt{that}, \; \texttt{Arya}, \; \texttt{fastidiously}, \; \texttt{1988}, \; \ldots \} L = \{ \texttt{DT}, \; \texttt{NN}, \; \texttt{VBD}, \; \texttt{JJ}, \; \ldots \}
```

Want to define a **joint** distribution $p(x_1 \dots x_m, y_1 \dots y_m)$ over

- 1. Any sentence $x_1 \dots x_m \in V^m$
- 2. A corresponding sequence of POS tags $y_1 \dots y_m \in L^m$

Sequence Labeling with a Probabilistic Model

Vocabulary V, set of POS tags L

$$V = \{ \texttt{prim}, \; \texttt{that}, \; \texttt{Arya}, \; \texttt{fastidiously}, \; \texttt{1988}, \; \ldots \}$$

$$L = \{ \texttt{DT}, \; \texttt{NN}, \; \texttt{VBD}, \; \texttt{JJ}, \; \ldots \}$$

Want to define a **joint** distribution $p(x_1 \dots x_m, y_1 \dots y_m)$ over

- 1. Any sentence $x_1 \dots x_m \in V^m$
- 2. A corresponding sequence of POS tags $y_1 \dots y_m \in L^m$

Why? Then we can infer for any given $x_1 \dots x_m$

$$y_1^* \dots y_m^* = \underset{y_1 \dots y_m \in L^m}{\arg \max} p(y_1 \dots y_m | x_1 \dots x_m)$$

= $\underset{y_1 \dots y_m \in L^m}{\arg \max} p(x_1 \dots x_m, y_1 \dots y_m)$

A Left-to-Right Generative Process

By the chain rule, we may assume that

$$\begin{split} p(x_1 \dots x_m, \ y_1 \dots y_m) \\ &= p(y_1) \times p(x_1 | y_1) \times p(y_2 | x_1, y_1) \times p(x_2 | x_1, y_1, y_2) \cdots \\ &\times p(y_m | \left\{ x_i, y_i \right\}_{i=1}^{m-1}) \times p(x_m | \left\{ x_i, y_i \right\}_{i=1}^{m-1}, y_m) \\ &\times p(\text{STOP} | \left\{ x_i, y_i \right\}_{i=1}^m) \end{split}$$

A Left-to-Right Generative Process

By the chain rule, we may assume that

$$\begin{split} p(x_1 \dots x_m, \ y_1 \dots y_m) \\ &= p(y_1) \times p(x_1 | y_1) \times p(y_2 | x_1, y_1) \times p(x_2 | x_1, y_1, y_2) \cdots \\ &\times p(y_m | \left\{ x_i, y_i \right\}_{i=1}^{m-1}) \times p(x_m | \left\{ x_i, y_i \right\}_{i=1}^{m-1}, y_m) \\ &\times p(\text{STOP} | \left\{ x_i, y_i \right\}_{i=1}^m) \end{split}$$

Design a tractable model by making independence assumptions.

What kind of assumption is reasonable for POS tagging?

First-Order HMM Assumptions

1. At any position i, the word depends on the current tag only.

$$p(x_i | \{x_j, y_j\}_{j=1}^{i-1}, y_i) = p(x_i | y_i)$$

2. At any position i, the tag depends on the previous tag only.

$$p(y_i | \{x_j, y_j\}_{j=1}^{i-1}) = p(y_i | y_{i-1})$$

Model Parameters

 $lackbox{ } |V| imes |L|$ "emission" probabilities

$$o(\boldsymbol{x}|\boldsymbol{y}) = \text{probability of emitting word } \boldsymbol{x} \text{ given tag } \boldsymbol{y}$$

▶ $|L|^2 + 2|L|$ "transition" probabilities

$$t(y'|y) =$$
 probability of transitioning from tag y to y' $t(y|*) =$ probability of starting with tag y $t(\mathtt{STOP}|y) =$ probability of ending with tag y

Used to calculate

$$p(x_1 \dots x_m, y_1 \dots y_m) = \prod_{i=1}^{m+1} t(y_i | y_{i-1}) \times \prod_{i=1}^m o(x_i | y_i)$$

where $y_0 = *$ and $y_{m+1} = STOP$ are special symbols.

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

Labeled Data

- ▶ Consists of N annotated sentences $(x^{(1)}, y^{(1)}) \dots (x^{(N)}, y^{(N)})$ where $l_i = |x^{(i)}| = |y^{(i)}|$ and $y_0^{(i)} = *, y_{l_i+1}^{(i)} = \texttt{STOP}.$
- ▶ Define **count**(y, y') for $y, y' \in L \cup \{*, STOP\}$:

$$\mathbf{count}(y,y') = \sum_{i=1}^{N} \sum_{\substack{j=1:\\y_{j-1}^{(i)} = y\\y_{j}^{(i)} = y'}}^{l_i+1} 1$$

▶ Define **count**(x,y) for $x \in V$, $y \in L$:

$$\mathbf{count}(x,y) = \sum_{i=1}^{N} \sum_{\substack{j=1:\\x_{j}^{(i)} = x\\y_{i}^{(i)} = y}}^{l_{i}} 1$$

Parameter Estimation

▶ For all y, y' with **count**(y, y') > 0, set

$$t(y'|y) = \frac{\mathsf{count}(y,y')}{\sum_{y' \in L} \mathsf{count}(y,y')}$$

Otherwise t(y'|y) = 0.

Parameter Estimation

► For all y, y' with **count**(y, y') > 0, set

$$t(y'|y) = \frac{\mathsf{count}(y,y')}{\sum_{y' \in L} \mathsf{count}(y,y')}$$

Otherwise t(y'|y) = 0.

For all x, y with **count**(x, y) > 0, set

$$o(x|y) = \frac{\mathsf{count}(x,y)}{\sum_{x \in V} \mathsf{count}(x,y)}$$

Otherwise o(x|y) = 0.

Justification

Claim. The solution of

$$o^*, t^* = \underset{\sum_{y'} t(y'|y) = \sum_{x} o(x|y), \ t(y'|y) \ge 1}{\arg \max} \sum_{i=1}^{N} \log p(x^{(i)}, y^{(i)})$$

where p(x,y) is the distribution of an HMM is given by

$$o^*(x|y) = \frac{\mathsf{count}(x,y)}{\sum_x \mathsf{count}(x,y)} \qquad \quad t^*(y'|y) = \frac{\mathsf{count}(y,y')}{\sum_{y'} \mathsf{count}(y,y')}$$

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference Forward Algorithm Viterbi Algorithm Practical Issues

Beam Search

Setting

▶ We now assume that we have parameters o(x|y) and t(y'|y).

Setting

- ▶ We now assume that we have parameters o(x|y) and t(y'|y).
- They define the joint probability distribution

$$p(x_1 \dots x_m, y_1 \dots y_m) = \prod_{i=1}^{m+1} t(y_i | y_{i-1}) \times \prod_{i=1}^{m} o(x_i | y_i)$$

over any words $x_1 \dots x_m \in V^m$ and POS tags $y_1 \dots y_m \in L^m$.

Setting

- ▶ We now assume that we have parameters o(x|y) and t(y'|y).
- They define the joint probability distribution

$$p(x_1 \dots x_m, y_1 \dots y_m) = \prod_{i=1}^{m+1} t(y_i | y_{i-1}) \times \prod_{i=1}^{m} o(x_i | y_i)$$

over any words $x_1 \dots x_m \in V^m$ and POS tags $y_1 \dots y_m \in L^m$.

▶ Given a fixed sentence $x_1 ... x_m \in V^m$, we often wish to perform two critical calculations (next slide).

Marginalization and Inference

1. What is the probability of $x_1 \dots x_m$ under the HMM?

$$\sum_{y_1\dots y_m\in L^m} p(x_1\dots x_m, y_1\dots y_m)$$

Marginalization and Inference

1. What is the probability of $x_1 \dots x_m$ under the HMM?

$$\sum_{\dots,y_m\in L^m} p(x_1\dots x_m, y_1\dots y_m)$$

2. What is the most probable $y_1 \dots y_m \in L^m$ under the HMM?

$$\underset{y_1...y_m \in L^m}{\operatorname{arg max}} p(x_1...x_m, y_1...y_m)$$

Number of Possible Tag Sequences

- Exponential in the length of the sentence
- ▶ Enumerating all $m^{|L|}$ candidates is clearly not practical.
- We will exploit the HMM assumptions to perform marginalization/inference exactly and with polynomial complexity.

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

Left-to-Right Incremental Marginalization

▶ Idea. No need to consider all $m^{|L|}$ candidates because of the left-to-right generative process and independence assumptions under the HMM

Left-to-Right Incremental Marginalization

- ▶ **Idea.** No need to consider all $m^{|L|}$ candidates because of the left-to-right generative process and independence assumptions under the HMM
- ▶ Forward algorithm. For $i = 1 \dots m$, for all $y \in L$,

$$\pi(i,y) := \sum_{y_1...y_i \in L^i: \ y_i = y} p(x_1 ... x_i, y_1 ... y_i)$$

We will see that computing each $\pi(i,y)$ takes O(|L|) time using **dynamic programming**.

Left-to-Right Incremental Marginalization

- ▶ **Idea.** No need to consider all $m^{|L|}$ candidates because of the left-to-right generative process and independence assumptions under the HMM
- ▶ Forward algorithm. For $i = 1 \dots m$, for all $y \in L$,

$$\pi(i,y) := \sum_{y_1...y_i \in L^i: y_i = y} p(x_1...x_i, y_1...y_i)$$

We will see that computing each $\pi(i,y)$ takes O(|L|) time using **dynamic programming**.

► Total runtime?

Base Case (i = 1)

$$\pi(1, y) := \sum_{y_1 \in L: y_1 = y} p(x_1, y_1)$$
$$= t(y|*) \times o(x_1|y)$$

$$\pi(i, \mathbf{y'}) := \sum_{y_1 \dots y_i : y_i = \mathbf{y'}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$\pi(i, \mathbf{y'}) := \sum_{y_1 \dots y_i : y_i = \mathbf{y'}} p(x_1 \dots x_i, y_1 \dots y_i)$$
$$= \sum_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_{i-1} \mathbf{y'})$$

$$\pi(i, \mathbf{y'}) := \sum_{y_1 \dots y_i : y_i = \mathbf{y'}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \sum_{y_1} \dots \sum_{y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_{i-1} \mathbf{y'})$$

$$= \sum_{y_1} \dots \sum_{y_{i-1}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1}) \times t(\mathbf{y'}|y_{i-1}) \times o(x_i|\mathbf{y'})$$

$$\pi(i, \mathbf{y'}) := \sum_{y_1 \dots y_i : y_i = \mathbf{y'}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \sum_{y_1} \dots \sum_{y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_{i-1} \mathbf{y'})$$

$$= \sum_{y_1} \dots \sum_{y_{i-1}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1}) \times t(\mathbf{y'}|y_{i-1}) \times o(x_i|\mathbf{y'})$$

$$= \sum_{\mathbf{y}} \sum_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-2} \mathbf{y}) \times t(\mathbf{y'}|\mathbf{y}) \times o(x_i|\mathbf{y'})$$

$$\pi(i, \mathbf{y'}) := \sum_{y_1 \dots y_i : y_i = \mathbf{y'}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \sum_{y_1} \dots \sum_{y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_{i-1} \mathbf{y'})$$

$$= \sum_{y_1} \dots \sum_{y_{i-1}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1}) \times t(\mathbf{y'}|y_{i-1}) \times o(x_i|\mathbf{y'})$$

$$= \sum_{y} \sum_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-2} \mathbf{y}) \times t(\mathbf{y'}|\mathbf{y}) \times o(x_i|\mathbf{y'})$$

$$= \sum_{y} \pi(i-1, y) \times t(\mathbf{y'}|\mathbf{y}) \times o(x_i|\mathbf{y'})$$

Final Marginalization

Obtain the probability of $x_1 \dots x_m$ under the HMM by

$$\sum_{y_1...y_m} p(x_1...x_m, y_1...y_m) = \sum_{y \in L} \pi(m, y)$$

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

Left-to-Right Incremental Maximization

▶ **Same Idea.** Use the properties of the HMM.

Left-to-Right Incremental Maximization

- ▶ **Same Idea.** Use the properties of the HMM.
- ▶ Viterbi algorithm. For $i = 1 \dots m$, for all $y \in L$,

$$\pi(i,y) := \max_{y_1 \dots y_i \in L^i: \ y_i = y} \ p(x_1 \dots x_i, y_1 \dots y_i)$$

Left-to-Right Incremental Maximization

- ▶ **Same Idea.** Use the properties of the HMM.
- ▶ Viterbi algorithm. For $i = 1 \dots m$, for all $y \in L$,

$$\pi(i, y) := \max_{y_1 \dots y_i \in L^i: y_i = y} p(x_1 \dots x_i, y_1 \dots y_i)$$

▶ The *only* difference from the forward alg: " \sum " \mapsto " \max "

$$\pi(1,y) = t(y|*) \times o(x_1|y)$$

$$\pi(i,y') = \max_{y \in L} \pi(i-1,y) \times t(y'|y) \times o(x_i|y')$$

Left-to-Right Incremental Maximization

- ▶ **Same Idea.** Use the properties of the HMM.
- ▶ Viterbi algorithm. For $i = 1 \dots m$, for all $y \in L$,

$$\pi(i, y) := \max_{y_1 \dots y_i \in L^i: y_i = y} p(x_1 \dots x_i, y_1 \dots y_i)$$

▶ The *only* difference from the forward alg: " \sum " \mapsto " \max "

$$\begin{split} \pi(1,y) &= t(y|*) \times o(x_1|y) \\ \pi(i,y') &= \max_{y \in L} \ \pi(i-1,y) \times t(y'|y) \times o(x_i|y') \end{split}$$

▶ But how do we extract the actual **tag sequence**?

$$y_1^* \dots y_m^* = \underset{y_1 \dots y_m \in L^m}{\arg \max} \ p(x_1 \dots x_m, \ y_1 \dots y_m)$$

Backtracking

Keep an additional chart to record the path:

$$\beta(i,y') = \arg\max_{y \in L} \ \pi(i-1,y) \times t(y'|y) \times o(x_i|y')$$
 for $i=2\dots m$.

Backtracking

Keep an additional chart to record the path:

$$\beta(i,y') = \argmax_{y \in L} \ \pi(i-1,y) \times t(y'|y) \times o(x_i|y')$$
 for $i=2\dots m$.

After running Viterbi, we can "backtrack"

$$y_m^* = \underset{y \in L}{\arg \max} \quad \pi(m, y)$$

$$y_{m-1}^* = \beta(m, y_m^*)$$

$$\vdots$$

$$y_1^* = \beta(2, y_2^*)$$

and return $y_1^* \dots y_m^*$.

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm
Viterbi Algorithm
Practical Issues

Beam Search

Log Space

► For numerical stability, always operate in **log space**.

Log Space

- ► For numerical stability, always operate in **log space**.
- ► For Viterbi, it's a simple change:

$$\pi(1, y) = \log t(y|*) + \log o(x_1|y)$$

$$\pi(i, y') = \max_{y \in L} \pi(i - 1, y) + \log t(y'|y) + \log o(x_i|y')$$

Log Space

- ► For numerical stability, always operate in log space.
- For Viterbi, it's a simple change:

$$\pi(1, y) = \log t(y|*) + \log o(x_1|y)$$

$$\pi(i, y') = \max_{y \in L} \pi(i - 1, y) + \log t(y'|y) + \log o(x_i|y')$$

▶ For the forward algorithm, we need a helper function:

$$\log \sup(\log(c_1) \dots \log(c_n))$$

returns $\log(c_1 + \cdots + c_n)$ without exponentiating $\log(c_i)!$

Log Space: Forward Algorithm

Original:

$$\pi(1,y) = t(y|*) \times o(x_1|y)$$

$$\pi(i,y') = \sum_{y \in L} \pi(i-1,y) \times t(y'|y) \times o(x_i|y')$$

▶ Log space:

$$\pi(1, y) = \log t(y|*) + \log o(x_1|y)$$

$$\pi(i, y') = \underset{y \in L}{\operatorname{log sum}} \ \pi(i - 1, y) + \log t(y'|y) + \log o(x_i|y')$$

Trick to Sum Logs

Input: $\log a \ge \log b$ Output: $\log(a+b)$

- ▶ If $\log a < -\infty$: return $-\infty$.
- ▶ If $\log b \log a < -20$: return $\log a$.
- ▶ If $\log b \log a \ge -20$: return

$$\log a + \log(1 + \exp(\log b - \log a))$$

Justification of the Trick

$$\log (a + b) = \log \left(a \left(1 + \frac{b}{a} \right) \right)$$
$$= \log (a) + \log (1 + \exp (\log b - \log a))$$

▶ Even if $\exp(\log a)$ and $\exp(\log b)$ underflow to zero, $\exp(\log b - \log a)$ does not.

$$\log a = -99999$$
$$\log b = -100000$$
$$\log b - \log a = -1$$

Debugging

- ▶ How do you debug the forward/Viterbi algorithm?
- ► The (only) surest check:
 - 1. Generate a small synthetic HMM, say with |V| = 10, |L| = 5.
 - 2. Generate a short random sentence, say length 7.
 - 3. Brute-force: enumerate all 5^7 possible sequences for exact marginalization and inference.
 - 4. Run your forward/Viterbi.
 - 5. Make sure 4 is precisely the same as 3.
 - 6. Repeat 2–5 many times.

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

Heads-Up

- We will now talk about an extremely general technique called beam search.
 - Applicable to many models other than HMMs

 Possibly the most practical trick in NLP you'll learn in this course

Score Function Under an HMM

▶ Given a fixed input sequence $x=(x_1 \dots x_m)$, an HMM defines the "score" of a candidate sequence $y=(y_1 \dots y_m)$ as

$$score_x(y) = \prod_{i=1}^m score_x(y_i|y_1 \dots y_{i-1})$$

where each local score is **restricted** to only depend on the previous label y_{i-1} and current input x_i .

$$score_x(y_i|y_1...y_{i-1}) := t(y_i|y_{i-1}) \times o(x_i|y_i)$$

Score Function Under an HMM

▶ Given a fixed input sequence $x = (x_1 \dots x_m)$, an HMM defines the "score" of a candidate sequence $y = (y_1 \dots y_m)$ as

$$score_x(y) = \prod_{i=1}^m score_x(y_i|y_1 \dots y_{i-1})$$

where each local score is **restricted** to only depend on the previous label y_{i-1} and current input x_i .

$$score_x(y_i|y_1...y_{i-1}) := t(y_i|y_{i-1}) \times o(x_i|y_i)$$

▶ With this restriction, we can efficiently and exactly compute

$$rg \max_{y_1...y_m} \ \mathsf{score}(y_1 \ldots y_m)$$
 (Viterbi) $\sum_{y_1...y_m} \ \mathsf{score}(y_1 \ldots y_m)$ (forward)

General Score Function

Now suppose we have a local score that can depend arbitrarily on all previous labels $y_1 \dots y_{i-1}$:

$$score_x(y_i|y_1...y_{i-1}) = f(x_1...x_m, y_1...y_{i-1})$$

General Score Function

Now suppose we have a local score that can depend arbitrarily on all previous labels $y_1 \dots y_{i-1}$:

$$score_x(y_i|y_1...y_{i-1}) = f(x_1...x_m, y_1...y_{i-1})$$

Without any Markov assumption, we can't hope to do inference/marginalization efficiently and exactly.

General Score Function

Now suppose we have a local score that can depend arbitrarily on all previous labels $y_1 \dots y_{i-1}$:

$$score_x(y_i|y_1...y_{i-1}) = f(x_1...x_m, y_1...y_{i-1})$$

- Without any Markov assumption, we can't hope to do inference/marginalization efficiently and exactly.
- But we can approximate it.

Beam Search

lacktriangle A hack to approximate a **set** of top-K candidate sequences

$$\mathcal{B} pprox \text{K-argmax score}_x(y_1 \dots y_m)$$

for any score function of the form

$$score_x(y) = \prod_{i=1}^m score_x(y_i|y_1 \dots y_{i-1})$$

Uses of the Beam Search

▶ The best sequence can be approximated as

$$\underset{(y_1 \dots y_m) \in \mathcal{B}}{\operatorname{arg max}} \quad \operatorname{score}(y_1 \dots y_m)$$

▶ The total score of all sequences can be approximated as

$$\sum_{(y_1...y_m)\in\mathcal{B}} \mathsf{score}(y_1...y_m)$$

Idea

▶ Maintain a "beam" \mathcal{B}_i at each time step $i = 1 \dots m$ where

$$\mathcal{B}_i \approx \text{K-argmax score}_x(y_1 \dots y_i)$$

Beam Search Algorithm

▶ Base case (i = 1):

$$\mathcal{B}_1 = \text{K-argmax } \operatorname{score}_x(y)$$

▶ Main body (i > 1):

$$\mathcal{B}_i = \underset{\substack{(y_1 \dots y_{i-1}) \in \mathcal{B}_{i-1} \\ y_i \in L}}{\text{K-argmax}} \quad \text{score}_x(y_1 \dots y_{i-1}) \times$$

37 / 40

Leaky Priority Queue

- ▶ A "leaky" priority queue q with capacity K
- ▶ Accepts a stream of elements [thing, score] but maintains only *K* elements with the highest scores seen so far.
- ▶ Both push and pop: $O(\log K)$ worst-case time complexity
- ▶ Assume a $O(K \log K)$ operation dump:

$$q.\mathtt{dump}() = [q.\mathtt{pop}() \text{ for } K \text{ times}]$$

Exercise: try implementing it with a standard priority queue.

Implementation

- ▶ $q \leftarrow \text{leaky_priority_queue}(K)$ ▶ $q.\text{push}([y_1, \text{score}_x(y_1)])$ $\forall y_1 \in L$ ▶ For $i = 2 \dots m$:
 ▶ $\mathcal{B}_{i-1} \leftarrow q.\text{dump}()$ ▶ For $(y, s) \in \mathcal{B}_{i-1}$: $q.\text{push}([y.\text{append}(y_i), s \times \text{score}_x(y_i|y)])$ $\forall y_i \in L$
- ► Return q.dump().

Implementation

- $\blacktriangleright \ q \leftarrow \texttt{leaky_priority_queue}(K)$
- $q.push([y_1, score_x(y_1)])$ $\forall y_1 \in L$
- For $i=2\ldots m$:
 - \triangleright $\mathcal{B}_{i-1} \leftarrow q.\mathtt{dump}()$
 - ▶ For $(y,s) \in \mathcal{B}_{i-1}$:

$$q.\mathtt{push}([y.\mathsf{append}(y_i), s \times \mathsf{score}_x(y_i|y)]) \qquad \forall y_i \in L$$

► Return q.dump().

Runtime complexity: $O(|L| K \log Km)$

Compare with first-order HMM's forward/Viterbi: $O(|L|^2 m)$

Parting Remarks

- ▶ HMMs are important: master these concepts.
- Computation over structured objects (sequences)
 - Arguably the most distinguishing aspect of NLP as a field
- ▶ We will revisit many of the same ideas in parsing (trees).