COMS 4705.H: Hidden Markov Models

Karl Stratos

February 10, 2017

1/40

Motivation: Part-of-Speech (POS) Tagging

Task. Given a sentence, output a sequence of POS tags.

Ambiguity. A word can have many possible POS tags.

the/DT man/NN saw/VBD the/DT cut/NN
the/DT saw/NN cut/VBD the/DT man/NN

Solution. Use a statistical approach to disambiguate.

2 /40

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

3/40

Sequence Labeling with a Probabilistic Model
Vocabulary V, set of POS tags L

V = {prim, that, Arya, fastidiously, 1988, ...}
L = {DT, NN, VBD, JJ, ...}

4 / 40

Sequence Labeling with a Probabilistic Model
Vocabulary V, set of POS tags L

V = {prim, that, Arya, fastidiously, 1988, ...}
L = {DT, NN, VBD, JJ, ...}

Want to define a joint distribution p(x1 ... Zm, Y1 ... Ym) Over
1. Any sentence x1...x,;,, € V™

2. A corresponding sequence of POS tags y1...ym € L™

4 / 40

Sequence Labeling with a Probabilistic Model

Vocabulary V, set of POS tags L

V = {prim, that, Arya, fastidiously
L = {DT, NN, VBD, JJ, ...}

Want to define a joint distribution p(x1 ... Zm,,
1. Any sentence x1...x,;,, € V™

2. A corresponding sequence of POS tags y; .

Why? Then we can infer for any given x7 ...z,

*

Y1...ym EL™

= argmax p(x1...Tm, Y1 ..

Y1---YmEL™

Yyl ...y, = argmax p(yi...Yml|T1 ...

, 1988, ...}

Y1 ... Ym) OVEr

o Ym € L™

Ym)

4 / 40

A Left-to-Right Generative Process

By the chain rule, we may assume that

p(T1.. Ty Y1 Ym)
= p(y1) X p(z1ly1) X p(y2|z1,y1) X p(@2|T1,91,92) - -
X Py {wis yi} i) * plem] {zi i} 5" ym)
x p(STOP| {w;, yi }i~1)

5 /40

A Left-to-Right Generative Process

By the chain rule, we may assume that

p(T1.. Ty Y1 Ym)
= p(y1) X p(z1ly1) X p(y2|z1,y1) X p(@2|T1,91,92) - -
X Py {wis yi} i) * plem] {zi i} 5" ym)
x p(STOP| {w;, yi }i~1)

Design a tractable model by making independence assumptions.

» What kind of assumption is reasonable for POS tagging?

5 /40

First-Order HMM Assumptions

1. At any position ¢, the word depends on the current tag only.

p(zi| {zy, yj};;11 yYi) = p(3lyi)

2. At any position i, the tag depends on the previous tag only.

p(yil {25, 9;}520) = p(yilyi1)

6 /40

Model Parameters
» |V| x |L| “emission” probabilities

o(x|y) = probability of emitting word = given tag y

> |L|> 4+ 2|L| “transition” probabilities

t(y'|y) = probability of transitioning from tag y to ¢/
t(y|*) = probability of starting with tag y
t(STOP|y) = probability of ending with tag y

Used to calculate

m+1 m
p@r o @m, y1ym) =] tilyia) x [ol@ilye)
i=1 i=1

where yg = * and y,,,+1 = STOP are special symbols.

7/40

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

8 /40

Labeled Data

» Consists of N annotated sentences (z(1), y(1)) .
where [; = |:c(‘ = ’y | and y(()) = *, yl(z) = STOP.

i+l T

» Define count(y,y’) for y,y' € L U {*,STOP}:

l;+1

N
count(y,y’) = Z Z 1
=1 j=1

» Define count(z,y) forx € V, y € L:

N
count(z,y) = Z 1

y™)

9/40

Parameter Estimation

» For all y,3’ with count(y,y’) > 0, set
count(y, y')

el count(y, y')

t(y'ly) = 5

Otherwise t(y'|y) = 0.

10 / 40

Parameter Estimation

» For all y,3’ with count(y,y’) > 0, set

count(y, y')

t(y'ly) = 5

el count(y, y')

Otherwise t(y'|y) = 0.

» For all z,y with count(x,y) > 0, set

count(x,y)

o(xly) = >

oy count(z, y)

Otherwise o(z]y) = 0.

10 / 40

Justification

Claim. The solution of

N
0", = argmax Y logp(a!,y)
o, t: o(zly), t(y'|y)=0 ;7
St ly) =2, o(zly)=1

where p(z,y) is the distribution of an HMM is given by

count(y, ')
>, count(y, y')

o (oly) = St) -

11/ 40

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

12 / 40

Setting

» We now assume that we have parameters o(x|y) and t(y/'|y).

13/ 40

Setting

» We now assume that we have parameters o(z|y) and t(y'|y).

» They define the joint probability distribution

m+1 m

p@r-m, Y1 -ym) = [twilyior) x [olwilys)
=1

=1

over any words x1 ...x, € V™ and POS tags y1 ...ym € L™.

13/ 40

Setting

» We now assume that we have parameters o(z|y) and t(y'|y).

» They define the joint probability distribution

m—+1 m
p@r-m, Y1 -ym) = [twilyior) x [olwilys)
=1 =1

over any words x1 ...x, € V™ and POS tags y1 ...ym € L™.

» Given a fixed sentence z;...x,, € V™, we often wish to
perform two critical calculations (next slide).

13/ 40

Marginalization and Inference

1. What is the probability of z; ...z, under the HMM?

j{: p(T1. Ty Y1+ Ym)

14 / 40

Marginalization and Inference

1. What is the probability of z; ...z, under the HMM?

Z p(T1. Ty Y1+ Ym)

Y1---ymEL™

2. What is the most probable y; ...y, € L™ under the HMM?

argmax p(Ti...Tm, Y1---Ym)
Y1---ym L™

14 / 40

Number of Possible Tag Sequences

» Exponential in the length of the sentence
» Enumerating all m!%l candidates is clearly not practical.

> We will exploit the HMM assumptions to perform
marginalization /inference exactly and with polynomial
complexity.

15 / 40

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

16 / 40

Left-to-Right Incremental Marginalization

» Idea. No need to consider all m!Zl candidates because of the
left-to-right generative process and independence assumptions
under the HMM

17 /40

Left-to-Right Incremental Marginalization

» Idea. No need to consider all m!Zl candidates because of the
left-to-right generative process and independence assumptions
under the HMM

» Forward algorithm. Fori=1...m, for all y € L,
(i, y) = > ey)
Y1--Yi €LY yi=y

We will see that computing each 7(i,y) takes O(|L|) time
using dynamic programming.

17 / 40

Left-to-Right Incremental Marginalization

» Idea. No need to consider all m!Zl candidates because of the
left-to-right generative process and independence assumptions
under the HMM

» Forward algorithm. Fori=1...m, for all y € L,

m(i,y) == > ey)

Y1y €LY yi=y
We will see that computing each 7(i,y) takes O(|L|) time

using dynamic programming.

» Total runtime?

17 / 40

Base Case (1 = 1)

m(l,y) = 2{: p(z1, 1)

y1el: y1=y
= t(y|*) x o(z1]y)

18 / 40

Main Body (i > 1)

m(iy) = Y. plerwnyr.y)

Y1---Yii Yi=y’

19 /40

Main Body (i > 1)

wi) = 3L Pl)

Y1---Yit Yi=y’

_Z Zp ,:1;7;7y1...yi—1y/)

19 /40

Main Body (i > 1)

m(i,y') = Z Py T, y1 - Yi)
Y1--Yit Yi=y'

/
—-§: EZZ) e @iy Yim)
= Z ZP Lo e, Y1 Yie1) X HY [yie1) X o(i]y)
Y1

19 / 40

Main Body (i > 1)

= Z p(z1 ..

/

Y1---Yit Yi—=

=2 ZP
:%:yz:lp
=2 2

Y Yi--Yi—2

-ﬂﬁz‘,yl--ﬂi)
!
T Y1 Yi-1 y)
Ty T, Y1 - Yie1) X Y Tyio1) x o(zi]y)

Ty L1, Y1 - Yie2 y) X (Y |y) X o(xi|y)

19 / 40

Main Body (i > 1)

(i, y') = Z (@1 @iy Y1 - i)

Y1yt Yyi=y'

= Z"'Zp(m.-.xuw e Y)
Y1 Yi—1

= Z T Zp(l‘l T, Y1 i) XY yio1) X o(zily')
Y1 Yi—1

=3 > i,y yi2 y) X HY |y) < o(ly)
Y Yi1--Yi-2

= w(i = 1,y) x t(y/|y) x o(xily)
Y

19 / 40

Final Marginalization

Obtain the probability of z1 ...z, under the HMM by

> P T yiym) = w(m,y)
Y1---Ym

yeL

20 /40

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

21/40

Left-to-Right Incremental Maximization

» Same Idea. Use the properties of the HMM.

22 /40

Left-to-Right Incremental Maximization

» Same Idea. Use the properties of the HMM.

» Viterbi algorithm. Fori =1...m, for all y € L,

W(ia y) = InaXy, | yeli: y=y p(xl SRR A yl)

22 /40

Left-to-Right Incremental Maximization

» Same Idea. Use the properties of the HMM.

» Viterbi algorithm. Fori =1...m, for all y € L,

7T(i, y) = InaXy, | yeli: y=y p(xl SRR A yl)

» The only difference from the forward alg: — “max”

m(1,y) = t(yl*) x o(x1]y)
m(i,y') = maxyer w(i — 1,y) x t(y'|ly) x o(zily’)

22 /40

Left-to-Right Incremental Maximization

» Same Idea. Use the properties of the HMM.

» Viterbi algorithm. Fori =1...m, for all y € L,

m(i,y) == maxy, y.epiy=y P(T1.--TisY1 - Yi)

» The only difference from the forward alg: — “max”

m(1,y) = t(yl*) x o(x1]y)
m(i,y') = maxyer w(i — 1,y) x t(y'|ly) x o(zily’)

» But how do we extract the actual tag sequence?

Yl ...y, = argmax p(T1...Tm, Y1---Ym)

22 /40

Backtracking

» Keep an additional chart to record the path:

B(i,y') = argmaxyer, m(i—1,y) X t(y'ly) x o(a|y")

fori=2...m.

23 /40

Backtracking
» Keep an additional chart to record the path:
Bi,y") = argmaxyer, m(i —1,y) x t(y'ly) x o(zily)

fori=2...m.

» After running Viterbi, we can “"backtrack”

Yy, = argmax 7w(m,y)
yeL

Y1 = B(m,y)

yi = B(2,y3)

*

and return yi ... y;,.

23 /40

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

24 / 40

Log Space

» For numerical stability, always operate in log space.

25 /40

Log Space
» For numerical stability, always operate in log space.

> For Viterbi, it's a simple change:

7(1,y) = logt(y|*) 4 log o(x1]y)

(i, y') = max m(i — 1,y) +logt(y'|y) + log o(xi|y’)
Yy

25 /40

Log Space
» For numerical stability, always operate in log space.

> For Viterbi, it's a simple change:
m(1,y) = logt(y|*) + log o(z1]y)

(i, y') = max m(i — 1,y) +logt(y'|y) + log o(xi|y’)
Yy

» For the forward algorithm, we need a helper function:

logsum(log(cy) . .. log(cy))

returns log(cy + - -+ + ¢,) without exponentiating log(c;)!

25 /40

Log Space: Forward Algorithm

» Original:

m(1,y) = t(y|*) x o(z1ly)
m(i,y) =Y w(i—1y) x ty']y) x o(x:ly)
yeL

» Log space:
m(1,y) = logt(y[*) + log o(x1]y)

7(i,y) = logglzm 7(i — 1,y) + logt(y'|y) + log o(x;|y")
Yy

26 / 40

Trick to Sum Logs

Input: loga > logb
Output: log(a + b)

> If loga < —o0: return —oo.

> If logh — loga < —20: return loga.

> If logbh —loga > —20: return

log a + log(1 + exp(logb — log a))

27 /40

Justification of the Trick

bgm+b):kg<a<1+g>>

= log (a) + log (1 + exp (log b — log a))

» Even if exp(loga) and exp(logb) underflow to zero,
exp(logb — loga) does not.

log a = —99999
log b = —100000
logb —loga = —1

28 /40

Debugging

» How do you debug the forward/Viterbi algorithm?

» The (only) surest check:

1. Generate a small synthetic HMM, say with |V| = 10, |L| = 5.

2. Generate a short random sentence, say length 7.

3. Brute-force: enumerate all 57 possible sequences for exact
marginalization and inference.

4. Run your forward/Viterbi.

Make sure 4 is precisely the same as 3.

6. Repeat 2-5 many times.

o

29 /40

Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm

Viterbi Algorithm

Practical Issues

Beam Search

30 /40

Heads-Up

» We will now talk about an extremely general technique called
beam search.

» Applicable to many models other than HMMs

» Possibly the most practical trick in NLP you'll learn in this
course

31/40

Score Function Under an HMM

» Given a fixed input sequence x = (z1 ...2y,), an HMM
defines the “score” of a candidate sequence y = (y1...ym) as

m
score; (y) = H scorez (Yily1 - - - Yi—1)
i=1

where each local score is restricted to only depend on the
previous label y;_1 and current input z;.

scorex (yily1 - - - yi—1) = t(Yilyi—1) x o(xilyi)

32/40

Score Function Under an HMM

» Given a fixed input sequence x = (z1 ...2y,), an HMM
defines the “score” of a candidate sequence y = (y1...ym) as

m
score; (y) = H scorez (Yily1 - - - Yi—1)
i=1

where each local score is restricted to only depend on the
previous label y;_1 and current input z;.

scorex (yily1 - - - yi—1) = t(Yilyi—1) x o(xilyi)

» With this restriction, we can efficiently and exactly compute

argmax score(yy . .. Ym) (Viterbi)
Y1-Ym
Z score(y1 - . - Ym) (forward)
Yi1.--Ym

32/40

General Score Function

» Now suppose we have a local score that can depend arbitrarily
on all previous labels y; ...y;_1:

scorex (Yilyr - .- yi—1) = f(T1. .. Ty Y1 -+ Yi1)

33 /40

General Score Function

» Now suppose we have a local score that can depend arbitrarily
on all previous labels y; ...y;_1:

scorex (Yilyr - .- yi—1) = f(T1. .. Ty Y1 -+ Yi1)

» Without any Markov assumption, we can't hope to do
inference/marginalization efficiently and exactly.

33 /40

General Score Function

» Now suppose we have a local score that can depend arbitrarily
on all previous labels y; ...y;_1:

scorex (Yilyr - .- yi—1) = f(T1. .. Ty Y1 -+ Yi1)

» Without any Markov assumption, we can't hope to do
inference/marginalization efficiently and exactly.

» But we can approximate it.

33 /40

Beam Search

» A hack to approximate a set of top-K candidate sequences

B ~ K-argmax score;(y1 - .. Ym)
Yi---Ym

for ANY score function of the form

m
score, (y) = H scorey (Yily1 - - - Yi-1)
i=1

34 /40

Uses of the Beam Search

» The best sequence can be approximated as

argmax score(yi ... %Ym)
(y1-~~ym)€B

» The total score of all sequences can be approximated as

Z score(y1 - . - Ym)

(y1..-.ym)€EB

35 /40

Idea

> Maintain a “beam” BB; at each time step ¢ = 1...m where

B; ~ K-argmax score;(y; ...y;)
Y1--Yi

Ny

36 /40

Beam Search Algorithm

» Base case (i = 1):

B; = K-argmax score,(y)
yeL
» Main body (i > 1):

B; = K-argmax score,(y;...4i1)X

(y1.-yi—1)EB; 1
y;€L

score, (Yily1 - - yi-1)

37 /40

Leaky Priority Queue

> A “leaky" priority queue ¢ with capacity K

v

Accepts a stream of elements [thing, score] but maintains
only K elements with the highest scores seen so far.

v

Both push and pop: O(log K') worst-case time complexity

v

Assume a O(K log K') operation dump:

q.dump() = [g.pop() for K times]

» Exercise: try implementing it with a standard priority queue.

38 /40

Implementation

» ¢ < leaky_priority_queue(K)

» q.push([y1,score,(y1)]) Yy € L
» Fori=2...m:

> Bi—l < q.dump()

» For (y,s) € Bi_1:

q.push([y.append(y;), s X score, (y;|y)]) Yy, € L

» Return ¢.dump().

39 /40

Implementation

» ¢ < leaky_priority_queue(K)

» q.push([y1,score,(y1)]) Yy € L
» Fori=2...m:

> Bi—l < q.dump()

» For (y,s) € Bi_1:

q.push([y.append(y;), s X score, (y;|y)]) Yy, € L

» Return ¢.dump().

Runtime complexity: O(|L| K log K'm)

Compare with first-order HMM'’s forward /Viterbi: O(|L|* m)

39 /40

Parting Remarks

» HMMs are important: master these concepts.

» Computation over structured objects (sequences)
» Arguably the most distinguishing aspect of NLP as a field

» We will revisit many of the same ideas in parsing (trees).

40 / 40

