COMS 4705.H: Hidden Markov Models

Karl Stratos

February 10, 2017
Motivation: Part-of-Speech (POS) Tagging

Task. Given a sentence, output a sequence of POS tags.

Ambiguity. A word can have many possible POS tags.

```
the/DT man/NN saw/VBD the/DT cut/NN
the/DT saw/NN cut/VBD the/DT man/NN
```

Solution. Use a statistical approach to disambiguate.
Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM
 - Marginalization and Inference
 - Forward Algorithm
 - Viterbi Algorithm
 - Practical Issues

Beam Search
Sequence Labeling with a Probabilistic Model

Vocabulary V, set of POS tags L

$$V = \{\text{prim, that, Arya, fastidiously, 1988, ...}\}$$

$$L = \{\text{DT, NN, VBD, JJ, ...}\}$$
Sequence Labeling with a Probabilistic Model

Vocabulary V, set of POS tags L

$$V = \{\text{prim, that, Arya, fastidiously, 1988, ...}\}$$

$$L = \{\text{DT, NN, VBD, JJ, ...}\}$$

Want to define a **joint** distribution $p(x_1 \ldots x_m, y_1 \ldots y_m)$ over

1. Any sentence $x_1 \ldots x_m \in V^m$
2. A corresponding sequence of POS tags $y_1 \ldots y_m \in L^m$
Sequence Labeling with a Probabilistic Model

Vocabulary V, set of POS tags L

\[\begin{align*}
V &= \{\text{prim, that, Arya, fastidiously, 1988, ...}\} \\
L &= \{\text{DT, NN, VBD, JJ, ...}\}
\end{align*} \]

Want to define a **joint** distribution $p(x_1 \ldots x_m, y_1 \ldots y_m)$ over

1. Any sentence $x_1 \ldots x_m \in V^m$
2. A corresponding sequence of POS tags $y_1 \ldots y_m \in L^m$

Why? Then we can infer for any given $x_1 \ldots x_m$

\[
\begin{align*}
y_1^* \ldots y_m^* &= \arg\max_{y_1 \ldots y_m \in L^m} p(y_1 \ldots y_m|x_1 \ldots x_m) \\
&= \arg\max_{y_1 \ldots y_m \in L^m} p(x_1 \ldots x_m, y_1 \ldots y_m)
\end{align*}
\]
A Left-to-Right Generative Process

By the chain rule, we may assume that

\[p(x_1 \ldots x_m, y_1 \ldots y_m) = p(y_1) \times p(x_1 | y_1) \times p(y_2 | x_1, y_1) \times p(x_2 | x_1, y_1, y_2) \times \ldots \]
\[\times p(y_m | \{x_i, y_i\}_{i=1}^{m-1}) \times p(x_m | \{x_i, y_i\}_{i=1}^{m-1}, y_m) \times p(\text{STOP} | \{x_i, y_i\}_{i=1}^m) \]
A Left-to-Right Generative Process

By the chain rule, we may assume that

\[
p(x_1 \ldots x_m, y_1 \ldots y_m) \\
= p(y_1) \times p(x_1 | y_1) \times p(y_2 | x_1, y_1) \times p(x_2 | x_1, y_1, y_2) \cdots \\
\times p(y_m | \{x_i, y_i\}_{i=1}^{m-1}) \times p(x_m | \{x_i, y_i\}_{i=1}^{m-1}, y_m) \\
\times p(\text{STOP} | \{x_i, y_i\}_{i=1}^{m})
\]

Design a tractable model by making \textbf{independence assumptions}.

- What kind of assumption is reasonable for POS tagging?
First-Order HMM Assumptions

1. At any position i, the word depends on the current tag only.

\[p(x_i | \{ x_j, y_j \}_{j=1}^{i-1}, y_i) = p(x_i | y_i) \]

2. At any position i, the tag depends on the previous tag only.

\[p(y_i | \{ x_j, y_j \}_{j=1}^{i-1}) = p(y_i | y_{i-1}) \]
Model Parameters

- $|V| \times |L|$ “emission” probabilities

\[o(x|y) = \text{probability of emitting word } x \text{ given tag } y \]

- $|L|^2 + 2|L|$ “transition” probabilities

\[t(y'|y) = \text{probability of transitioning from tag } y \text{ to } y' \]
\[t(y|*) = \text{probability of starting with tag } y \]
\[t(\text{STOP}|y) = \text{probability of ending with tag } y \]

Used to calculate

\[p(x_1 \ldots x_m, y_1 \ldots y_m) = \prod_{i=1}^{m+1} t(y_i|y_{i-1}) \times \prod_{i=1}^{m} o(x_i|y_i) \]

where $y_0 = *$ and $y_{m+1} = \text{STOP}$ are special symbols.
Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM
- Marginalization and Inference
- Forward Algorithm
- Viterbi Algorithm
- Practical Issues

Beam Search
Labeled Data

- Consists of N annotated sentences $(x^{(1)}, y^{(1)}) \ldots (x^{(N)}, y^{(N)})$ where $l_i = |x^{(i)}| = |y^{(i)}|$ and $y_0^{(i)} = \ast$, $y_{l_i+1}^{(i)} = \text{STOP}$.

- Define $\text{count}(y, y')$ for $y, y' \in L \cup \{\ast, \text{STOP}\}$:

\[
\text{count}(y, y') = \sum_{i=1}^{N} \sum_{j=1}^{l_i+1} 1
\]

\[\begin{align*}
& y_{j-1}^{(i)} = y \\
& y_j^{(i)} = y'
\end{align*}\]

- Define $\text{count}(x, y)$ for $x \in V$, $y \in L$:

\[
\text{count}(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{l_i} 1
\]

\[\begin{align*}
& x_j^{(i)} = x \\
& y_j^{(i)} = y
\end{align*}\]
For all y, y' with $\text{count}(y, y') > 0$, set

$$t(y' | y) = \frac{\text{count}(y, y')}{\sum_{y' \in L} \text{count}(y, y')}$$

Otherwise $t(y' | y) = 0$.
Parameter Estimation

- For all y, y' with $\text{count}(y, y') > 0$, set

 $$ t(y' | y) = \frac{\text{count}(y, y')}{\sum_{y' \in L} \text{count}(y, y')} $$

 Otherwise $t(y' | y) = 0$.

- For all x, y with $\text{count}(x, y) > 0$, set

 $$ o(x | y) = \frac{\text{count}(x, y)}{\sum_{x \in V} \text{count}(x, y)} $$

 Otherwise $o(x | y) = 0$.
Claim. The solution of

\[o^*, t^* = \arg \max_{o, t: \ o(x|y), t(y'|y) \geq 0} \sum_{i=1}^{N} \log p(x^{(i)}, y^{(i)}) \]

\[\sum_{y'} t(y'|y) = \sum_{x} o(x|y) = 1 \]

where \(p(x, y) \) is the distribution of an HMM is given by

\[o^*(x|y) = \frac{\text{count}(x, y)}{\sum_{x} \text{count}(x, y)} \]

\[t^*(y'|y) = \frac{\text{count}(y, y')}{\sum_{y'} \text{count}(y, y')} \]
Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM

Marginalization and Inference
Forward Algorithm
Viterbi Algorithm
Practical Issues

Beam Search
We now assume that we have parameters $o(x|y)$ and $t(y'|y)$.
We now assume that we have parameters $o(x|y)$ and $t(y'|y)$.

They define the joint probability distribution

$$p(x_1 \ldots x_m, y_1 \ldots y_m) = \prod_{i=1}^{m+1} t(y_i|y_{i-1}) \times \prod_{i=1}^{m} o(x_i|y_i)$$

over any words $x_1 \ldots x_m \in V^m$ and POS tags $y_1 \ldots y_m \in L^m$.
Setting

- We now assume that we have parameters $o(x|y)$ and $t(y'|y)$.

- They define the joint probability distribution

\[
p(x_1 \ldots x_m, y_1 \ldots y_m) = \prod_{i=1}^{m+1} t(y_i|y_{i-1}) \times \prod_{i=1}^{m} o(x_i|y_i)
\]

over any words $x_1 \ldots x_m \in V^m$ and POS tags $y_1 \ldots y_m \in L^m$.

- Given a **fixed sentence** $x_1 \ldots x_m \in V^m$, we often wish to perform two critical calculations (next slide).
Marginalization and Inference

1. What is the probability of $x_1 \ldots x_m$ under the HMM?

$$\sum_{y_1 \ldots y_m \in L^m} p(x_1 \ldots x_m, y_1 \ldots y_m)$$
Marginalization and Inference

1. What is the probability of $x_1 \ldots x_m$ under the HMM?

$$\sum_{y_1 \ldots y_m \in L^m} p(x_1 \ldots x_m, y_1 \ldots y_m)$$

2. What is the most probable $y_1 \ldots y_m \in L^m$ under the HMM?

$$\arg \max_{y_1 \ldots y_m \in L^m} p(x_1 \ldots x_m, y_1 \ldots y_m)$$
Exponential in the length of the sentence

Enumerating all $m^{|L|}$ candidates is clearly not practical.

We will exploit the HMM assumptions to perform marginalization/inference exactly and with polynomial complexity.
Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM
 - Marginalization and Inference
 - Forward Algorithm
 - Viterbi Algorithm
 - Practical Issues

Beam Search
Left-to-Right Incremental Marginalization

- **Idea.** No need to consider all $m^{|L|}$ candidates because of the left-to-right generative process and independence assumptions under the HMM
Left-to-Right Incremental Marginalization

- **Idea.** No need to consider all $m^{|L|}$ candidates because of the left-to-right generative process and independence assumptions under the HMM.

- **Forward algorithm.** For $i = 1 \ldots m$, for all $y \in L$,

\[
\pi(i, y) := \sum_{y_1 \ldots y_i \in L^i : y_i = y} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

We will see that computing each $\pi(i, y)$ takes $O(|L|)$ time using **dynamic programming**.
Left-to-Right Incremental Marginalization

- **Idea.** No need to consider all $m^{|L|}$ candidates because of the left-to-right generative process and independence assumptions under the HMM.

- **Forward algorithm.** For $i = 1 \ldots m$, for all $y \in L$,

$$
\pi(i, y) := \sum_{y_1 \ldots y_i \in L^i: y_i = y} p(x_1 \ldots x_i, y_1 \ldots y_i)
$$

We will see that computing each $\pi(i, y)$ takes $O(|L|)$ time using dynamic programming.

- Total runtime?
Base Case \((i = 1)\)

\[
\pi(1, y) := \sum_{y_1 \in L: y_1 = y} p(x_1, y_1) = t(y|\star) \times o(x_1|y)
\]
Main Body \((i > 1)\)

\[
\pi(i, y') := \sum_{y_1 \ldots y_i: y_i = y'} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]
\[\pi(i, y') := \sum_{y_1 \ldots y_i: y_i = y'} p(x_1 \ldots x_i, y_1 \ldots y_i) \]

\[= \sum_{y_1} \cdots \sum_{y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_{i-1}, y') \]
Main Body ($i > 1$)

\[
\pi(i, y') := \sum_{y_1 \ldots y_i: y_i = y'} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

\[
= \sum_{y_1} \cdots \sum_{y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_{i-1} \ y')
\]

\[
= \sum_{y_1} \cdots \sum_{y_{i-1}} p(x_1 \ldots x_{i-1}, y_1 \ldots y_{i-1}) \times t(y'|y_{i-1}) \times o(x_i|y')
\]
\[
\pi(i, y') := \sum_{y_1 \ldots y_i: y_i = y'} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

\[
= \sum_{y_1} \cdots \sum_{y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_{i-1}, y')
\]

\[
= \sum_{y_1} \cdots \sum_{y_{i-1}} p(x_1 \ldots x_{i-1}, y_1 \ldots y_{i-1}) \times t(y'|y_{i-1}) \times o(x_i|y')
\]

\[
= \sum_{y} \sum_{y_1 \ldots y_{i-2}} p(x_1 \ldots x_{i-1}, y_1 \ldots y_{i-2}, y) \times t(y'|y) \times o(x_i|y')
\]
Main Body \((i > 1)\)

\[
\pi(i, y') := \sum_{y_1 \cdots y_i: y_i = y'} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

\[
= \sum_{y_1} \cdots \sum_{y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_{i-1} y')
\]

\[
= \sum_{y_1} \cdots \sum_{y_{i-1}} p(x_1 \ldots x_{i-1}, y_1 \ldots y_{i-1}) \times t(y' | y_{i-1}) \times o(x_i | y')
\]

\[
= \sum_{y} \sum_{y_1 \cdots y_{i-2}} p(x_1 \ldots x_{i-1}, y_1 \ldots y_{i-2} y) \times t(y' | y) \times o(x_i | y')
\]

\[
= \sum_{y} \pi(i - 1, y) \times t(y' | y) \times o(x_i | y')
\]
Final Marginalization

Obtain the probability of \(x_1 \ldots x_m \) under the HMM by

\[
\sum_{y_1 \ldots y_m} p(x_1 \ldots x_m, y_1 \ldots y_m) = \sum_{y \in L} \pi(m, y)
\]
Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM
 Marginalization and Inference
 Forward Algorithm
 Viterbi Algorithm
 Practical Issues

Beam Search
Left-to-Right Incremental Maximization

- **Same Idea.** Use the properties of the HMM.
Left-to-Right Incremental Maximization

- **Same Idea.** Use the properties of the HMM.

- **Viterbi algorithm.** For $i = 1 \ldots m$, for all $y \in L$,

 $$
 \pi(i, y) := \max_{y_1 \ldots y_i \in L^i: y_i = y} p(x_1 \ldots x_i, y_1 \ldots y_i)
 $$

- But how do we extract the actual tag sequence $y^*_{1 \ldots m} = \arg\max_{y_{1 \ldots m} \in L^m} p(x_{1 \ldots m}, y_{1 \ldots m})$?
Left-to-Right Incremental Maximization

- **Same Idea.** Use the properties of the HMM.

- **Viterbi algorithm.** For \(i = 1 \ldots m \), for all \(y \in L \),

\[
\pi(i, y) := \max_{y_1 \ldots y_i \in L^i: y_i = y} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

- The **only** difference from the forward alg: “\(\sum \)” \(\mapsto \) “\(\max \)”

\[
\pi(1, y) = t(y|\star) \times o(x_1|y)
\]
\[
\pi(i, y') = \max_{y \in L} \pi(i - 1, y) \times t(y'|y) \times o(x_i|y')
\]
Left-to-Right Incremental Maximization

- **Same Idea.** Use the properties of the HMM.

- **Viterbi algorithm.** For \(i = 1 \ldots m \), for all \(y \in L \),

\[
\pi(i, y) := \max_{y_1 \ldots y_i \in L^i: y_i = y} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

- The *only* difference from the forward alg: “\(\sum \)” \(\mapsto \) “\(\max \)”

\[
\begin{align*}
\pi(1, y) &= t(y|\ast) \times o(x_1|y) \\
\pi(i, y') &= \max_{y \in L} \pi(i - 1, y) \times t(y'|y) \times o(x_i|y')
\end{align*}
\]

- But how do we extract the actual **tag sequence**?

\[
y_1^* \ldots y_m^* = \arg \max_{y_1 \ldots y_m \in L^m} p(x_1 \ldots x_m, y_1 \ldots y_m)
\]
Backtracking

- Keep an *additional* chart to record the path:

\[
\beta(i, y') = \arg \max_{y \in L} \pi(i - 1, y) \times t(y'|y) \times o(x_i|y')
\]

for \(i = 2 \ldots m \).
Backtracking

- Keep an *additional* chart to record the *path*:

\[
\beta(i, y') = \arg \max_{y \in L} \pi(i - 1, y) \times t(y' | y) \times o(x_i | y')
\]

for \(i = 2 \ldots m \).

- After running Viterbi, we can “backtrack”

\[
y_m^* = \arg \max_{y \in L} \pi(m, y)
\]

\[
y_{m-1}^* = \beta(m, y_m^*)
\]

\[
\vdots
\]

\[
y_1^* = \beta(2, y_2^*)
\]

and return \(y_1^* \ldots y_m^* \).
Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM
 - Marginalization and Inference
 - Forward Algorithm
 - Viterbi Algorithm
 - Practical Issues

Beam Search
Log Space

- For numerical stability, always operate in \textbf{log space}.

\[
\pi(1, y) = \log t(y) + \log o(x_1 | y)
\]

\[
\pi(i, y') = \max_{y \in L} \pi(i-1, y) + \log t(y'|y) + \log o(x_i | y')
\]

- For the forward algorithm, we need a helper function:
 \[\logsum(\log(c_1) \ldots \log(c_n))\]
 returns \[\log(c_1 + \cdots + c_n)\]
 without exponentiating.
Log Space

- For numerical stability, always operate in log space.

- For Viterbi, it’s a simple change:

\[
\pi(1, y) = \log t(y|*) + \log o(x_1|y)
\]

\[
\pi(i, y') = \max_{y \in L} \pi(i - 1, y) + \log t(y'|y) + \log o(x_i|y')
\]
Log Space

- For numerical stability, always operate in **log space**.

- For Viterbi, it’s a simple change:

\[
\begin{align*}
\pi(1, y) &= \log t(y|\ast) + \log o(x_1|y) \\
\pi(i, y') &= \max_{y \in L} \pi(i - 1, y) + \log t(y'|y) + \log o(x_i|y')
\end{align*}
\]

- For the forward algorithm, we need a helper function:

\[
\text{logsum}(\log(c_1) \ldots \log(c_n))
\]

returns \(\log(c_1 + \cdots + c_n)\) **without exponentiating** \(\log(c_i)\)!
Log Space: Forward Algorithm

- Original:

\[
\pi(1, y) = t(y|\ast) \times o(x_1|y) \\
\pi(i, y') = \sum_{y \in L} \pi(i - 1, y) \times t(y'|y) \times o(x_i|y')
\]

- Log space:

\[
\pi(1, y) = \log t(y|\ast) + \log o(x_1|y) \\
\pi(i, y') = \text{logsum}_{y \in L} \pi(i - 1, y) + \log t(y'|y) + \log o(x_i|y')
\]
Trick to Sum Logs

Input: $\log a \geq \log b$

Output: $\log(a + b)$

- If $\log a < -\infty$: return $-\infty$.
- If $\log b - \log a < -20$: return $\log a$.
- If $\log b - \log a \geq -20$: return

$$\log a + \log(1 + \exp(\log b - \log a))$$
Justification of the Trick

\[
\log (a + b) = \log \left(a \left(1 + \frac{b}{a}\right)\right) \\
= \log (a) + \log (1 + \exp (\log b - \log a))
\]

- Even if \(\exp(\log a)\) and \(\exp(\log b)\) underflow to zero, \(\exp(\log b - \log a)\) does not.

\[
\log a = -99999 \\
\log b = -100000 \\
\log b - \log a = -1
\]
Debugging

▶ How do you debug the forward/Viterbi algorithm?

▶ The (only) surest check:
 1. Generate a small synthetic HMM, say with $|V| = 10, |L| = 5$.
 2. Generate a short random sentence, say length 7.
 3. **Brute-force**: enumerate all 5^7 possible sequences for exact marginalization and inference.
 4. Run your forward/Viterbi.
 5. Make sure 4 is precisely the same as 3.
 6. Repeat 2–5 many times.
Overview

Derivation of an HMM

Parameter Estimation from Labeled Data

Computation with an HMM
 - Marginalization and Inference
 - Forward Algorithm
 - Viterbi Algorithm
 - Practical Issues

Beam Search
We will now talk about an extremely general technique called **beam search**.

- Applicable to many models other than HMMs

- Possibly the most practical trick in NLP you’ll learn in this course
Score Function Under an HMM

Given a fixed input sequence $x = (x_1 \ldots x_m)$, an HMM defines the “score” of a candidate sequence $y = (y_1 \ldots y_m)$ as

$$\text{score}_x(y) = \prod_{i=1}^{m} \text{score}_x(y_i | y_1 \ldots y_{i-1})$$

where each local score is restricted to only depend on the previous label y_{i-1} and current input x_i.

$$\text{score}_x(y_i | y_1 \ldots y_{i-1}) := t(y_i | y_{i-1}) \times o(x_i | y_i)$$
Score Function Under an HMM

Given a fixed input sequence \(x = (x_1 \ldots x_m) \), an HMM defines the “score” of a candidate sequence \(y = (y_1 \ldots y_m) \) as

\[
\text{score}_x(y) = \prod_{i=1}^{m} \text{score}_x(y_i|y_1 \ldots y_{i-1})
\]

where each local score is restricted to only depend on the previous label \(y_{i-1} \) and current input \(x_i \).

\[
\text{score}_x(y_i|y_1 \ldots y_{i-1}) := t(y_i|y_{i-1}) \times o(x_i|y_i)
\]

With this restriction, we can efficiently and exactly compute

\[
\arg \max_{y_1 \ldots y_m} \text{score}(y_1 \ldots y_m) \quad \text{(Viterbi)}
\]

\[
\sum_{y_1 \ldots y_m} \text{score}(y_1 \ldots y_m) \quad \text{(forward)}
\]
Now suppose we have a local score that can depend arbitrarily on all previous labels $y_1 \ldots y_{i-1}$:

$$\text{score}_x(y_i|y_1 \ldots y_{i-1}) = f(x_1 \ldots x_m, y_1 \ldots y_{i-1})$$
General Score Function

- Now suppose we have a local score that can depend arbitrarily on all previous labels $y_1 \ldots y_{i-1}$:

$$\text{score}_x(y_i | y_1 \ldots y_{i-1}) = f(x_1 \ldots x_m, y_1 \ldots y_{i-1})$$

- Without any Markov assumption, we can’t hope to do inference/marginalization efficiently and exactly.
Now suppose we have a local score that can depend arbitrarily on all previous labels $y_1 \ldots y_{i-1}$:

$$\text{score}_x(y_i | y_1 \ldots y_{i-1}) = f(x_1 \ldots x_m, y_1 \ldots y_{i-1})$$

Without any Markov assumption, we can’t hope to do inference/marginalization efficiently and exactly.

But we can approximate it.
Beam Search

- A hack to approximate a set of top-K candidate sequences

$$\mathcal{B} \approx \text{K-argmax}_{y_1 \ldots y_m} \text{score}_x(y_1 \ldots y_m)$$

for any score function of the form

$$\text{score}_x(y) = \prod_{i=1}^{m} \text{score}_x(y_i|y_1 \ldots y_{i-1})$$
Uses of the Beam Search

- The best sequence can be approximated as
 \[
 \arg \max_{(y_1 \ldots y_m) \in \mathcal{B}} \text{score}(y_1 \ldots y_m)
 \]

- The total score of all sequences can be approximated as
 \[
 \sum_{(y_1 \ldots y_m) \in \mathcal{B}} \text{score}(y_1 \ldots y_m)
 \]
Idea

- Maintain a “beam” B_i at each time step $i = 1 \ldots m$ where

$$B_i \approx \text{K-argmax} \quad \text{score}_x(y_1 \ldots y_i)_{y_1 \ldots y_i}$$
Beam Search Algorithm

- Base case \((i = 1)\):

\[
B_1 = \text{K-argmax}_{y \in L} \text{score}_x(y)
\]

- Main body \((i > 1)\):

\[
B_i = \text{K-argmax}_{(y_1 \ldots y_{i-1}) \in B_{i-1}, y_i \in L} \text{score}_x(y_1 \ldots y_{i-1}) \times \text{score}_x(y_i | y_1 \ldots y_{i-1})
\]
Leaky Priority Queue

- A “leaky” priority queue q with capacity K

- Accepts a stream of elements [thing, score] but maintains only K elements with the highest scores seen so far.

- Both push and pop: $O(\log K)$ worst-case time complexity

- Assume a $O(K \log K)$ operation dump:

 $$q.dump() = [q.pop() \text{ for } K \text{ times}]$$

- Exercise: try implementing it with a standard priority queue.
Implementation

\[q \leftarrow \text{leaky_priority_queue}(K) \]
\[q.\text{push}([y_1, \text{score}_x(y_1)]) \quad \forall y_1 \in L \]
\[\text{For } i = 2 \ldots m: \]
\[\quad B_{i-1} \leftarrow q.\text{dump()} \]
\[\quad \text{For } (y, s) \in B_{i-1}: \]
\[\quad \quad q.\text{push}([y.\text{append}(y_i), s \times \text{score}_x(y_i|y)]) \quad \forall y_i \in L \]
\[\text{Return } q.\text{dump}(). \]
Implementation

- $q \leftarrow \text{leaky_priority_queue}(K)$
- $q\text{.push}([y_1, \text{score}_x(y_1)])$ $\forall y_1 \in L$
- For $i = 2 \ldots m$:
 - $B_{i-1} \leftarrow q\text{.dump}()$
 - For $(y, s) \in B_{i-1}$:
 - $q\text{.push}([y\text{.append}(y_i), s \times \text{score}_x(y_i|y)])$ $\forall y_i \in L$
- Return $q\text{.dump}()$.

Runtime complexity: $O(|L| K \log K m)$

Compare with first-order HMM’s forward/Viterbi: $O(|L|^2 m)$
Parting Remarks

- HMMs are important: master these concepts.

- Computation over **structured objects** (sequences)
 - Arguably the most distinguishing aspect of NLP as a field

- We will revisit many of the same ideas in parsing (trees).