
Scale-Invariant Parameterizations

Karl Stratos

1 The Family of Parameterizations

Everett et al. (2024) consider the d-dimensional L-layer bigram language model:

h0 = x h′
L+2 = softmax(hL+2)− y (1)

hl+1 = d−alWlhl ∀l = 0 . . . L+ 1 h′
l = d−alW⊤

l h′
l+1 ∀l = L+ 1 . . . 1

W ′
l = d−alh′

l+1h
⊤
l ∀l = L+ 1 . . . 0

where x, y ∈ {0, 1}V are one-hot vectors, W0 ∈ Rd×V and WL+1 ∈ RV×d are the embedding/readout layers, and
d−al > 0 is a “parameter multiplier”. To understand the motivation behind this form, the reader is encouraged to
first go over standard parameterization (SP, Appendix A) and muP (Appendix B).

1.1 First Step

We use the usual layerwise-variance for weight initialization as in SP (A.1) using the a posteriori power-law form:

Var (Wl) = d−2bl (2)

Then in the first forward and backward passes we have (Lemma D.5)

Var (hl+1) = dl−2(
∑l

i=0 ai+bi) ∀l = 0 . . . L+ 1 (3)

Var (h′
l) = d(L+1)−l−2(

∑L+1
i=l ai+bi) ∀l = L+ 1 . . . 1 (4)

Var (W ′
l) = dL+[[1≤l≤L]]−2((

∑L+1
i=0 ai+bi)−bl) ∀l = L+ 1 . . . 0 (5)

whose square roots coincide with RMS in the infinite-width regime. We define stability as having constant acti-
vations RMS(hl) = Θ(1) for l = 1 . . . L + 1 and bounded logits RMS(hL+2) = O(1). The iterative nature of (3)
implies the following unique conditions for stability in the first forward pass:

a0 + b0 = 0 (6)

al + bl = 1/2 ∀l = 1 . . . L (7)

aL+1 + bL+1 ≥ 1/2 (8)

Under these conditions,
∑L+1

i=l ai + bi = (L+ 1− l)/2 + aL+1 + bL+1 and thus (4) and (5) imply

RMS(h′
l) = Θ(d−(aL+1+bL+1)) ∀l = L+ 1 . . . 1 (9)

RMS(W ′
L+1) = Θ(d−aL+1) RMS(W ′

l) = Θ(d−(aL+1+bL+1+al)) ∀l = L . . . 0 (10)

For convenience, we write RMS(W ′
l) = Θ(d−gl) where gl = aL+1 + [[l ≤ L]](bL+1 + al).

1.2 Second Step

We assume a posteriori the learning rate has the power-law form

ηl = Cd−cl (11)

1

param. multiplier weight init. LR scale
Parameterization a0 ah aL+1 b0 bh bL+1 c0 ch cL+1

SP 0 0 0 0 1/2 1/2 0 1 1
NTK 0 1/2 1/2 0 0 0 0 1/2 1/2
muP −1/2 0 1/2 1/2 1/2 1/2 1/2 1 1/2
MF 0 1/2 1 0 0 0 0 1/2 0

Table 1: Examples of scale-invariant parameterizations that ensure stability at initialization (6–8) and in subsequent
steps (21–24), using momentumless Adam with full alignment.

for some constant C > 0. The change in weight ∆Wl = −ηlOPT(W ′
l) depends on the optimizer, e.g.,

(SGD) ∆Wl = −Cd−clW ′
l ⇒ ∆Wl,i,j = Θ(d−(cl+gl))

(Adam) ∆Wl = −Cd−clsign(W ′
l) ⇒ ∆Wl,i,j = Θ(d−cl) (12)

(Adafactor) ∆Wl = −Cd−clRMS(Wl)sign(W
′
l) ⇒ ∆Wl,i,j = Θ(d−(cl+bl))

For simplicity we will assume (12) and parameterize the update scale as

RMS(∆hl) = O(d−rl) (13)

for some rl ≥ 0. Maintaining stability requires rl ≥ 0 for all l (updates do not grow with width). Since ∆h1 =
d−a0col(∆W0) and thus ∆h1,i = Θ(d−(a0+c0)) under (12), we must first have

r1 = a0 + c0 ≥ 0 (14)

For l = 1 . . . L+1, we have ∆hl+1 = d−al(Wl∆hl+∆Wlhl+∆Wl∆hl). To measure each term’s alignment strength,
we impose the a posteriori forms

RMS(Wl∆hl) = Θ(dωl × RMS(Wl)× RMS(∆hl)) (15)

RMS(∆Wlhl) = Θ(dαl × RMS(∆Wl)× RMS(hl)) (16)

RMS(∆Wl∆hl) = Θ(dul × RMS(∆Wl)× RMS(∆hl)) (17)

where ωl, αl, ul ∈ [0, 1] are invariant to scale and thus capture only interaction.1 For (16) and (17), we know
retrospectively that αl, ul ∈ [1/2, 1] with αl = ul = 1 under full alignment and αl = ul = 1/2 under no alignment
(see (30)). Thus a sufficient condition to ensure rl+1 ≥ 0 for l = 1 . . . L+ 1 is

d−al × (15) = O(d−al × dωl × d−bl × d−rl) = O(1) ⇔ al + bl + rl − ωl ≥ 0 (18)

d−al × (16) = O(d−al × dαl × d−cl × d0) = O(1) ⇔ al + cl − αl ≥ 0 (19)

d−al × (17) = O(d−al × dul × d−cl × d−rl) = O(1) ⇔ al + cl + rl − ul ≥ 0 (20)

where (18) simplifies to 1/2 + rl − ωl ≥ 0 for l = 1 . . . L by (7). Assuming full alignment, and assuming rl ≥ 0 is
maintained iteratively l = 1 . . . L+ 1, we can intersect the conditions (14) and (18–20) against (6–8) to have

a0 + c0 ≥ 0 (21)

al + cl ≥ 1 ∀l = 1 . . . L+ 1 (22)

ωl ≤ 1/2 ∀l = 1 . . . L (23)

aL+1 + bL+1 ≥ max(1/2, ωL+1) (24)

Since ωl is not configurable, assuming (23) is a clean sufficient assumption to achieve stability. However, the readout
layer allows for some wiggle room. muP assumes the worst-case dependence ωL+1 = 1 and uses aL+1 = bL+1 = 1/2
to satisfy (24). Everett et al. (2024) relax the assumption to ωL+1 = 1/2 and demonstrate empirical scale invariance.
Example parameterizations that satify these conditions are reproduced in Table 1.

1More formally we may write, e.g., ωl = limd→∞ logd
RMS(Wl∆hl)

RMS(Wl)RMS(∆hl)
in probability.

2

1.2.1 Equivalence classes

Pick any parameterization (al, bl, cl) satisfying (6–8) and (21–24). Pick any scalar θl ∈ R and redefine

al ← al + θl bl ← bl − θl cl ← cl − θl

It is clear that the conditions still hold. Thus one stable parameterization defines an infinite family of equivalent
parameterizations. In particular, in Table 1 we see that SP ≡ NTK and muP ≡ MF.

1.3 Subsequent Steps

The above conditions maintain RMS(hl) = Θ(1) for all l. The Adam update does not modify the asymptotic size
of the weights and gradients. Thus assuming that the interaction scales ωl, αl, ul ∈ [0, 1] remain stable throughout
training, stability is maintained inductively for a constant number of steps T = Θ(1).

2 Attention

Attention is used to extend the bigram language model (1) to n-grams. All inputs maintain independent MLP
structures except in the attention layer parameterized by per-head weights Wq,Wk,Wv ∈ RdH×d and Wo ∈ Rd×dH .
The score between a pair of activations h, hpast ∈ Rd is computed by

q = Wq︸︷︷︸
dH×d

h︸︷︷︸
d×1

k = Wk︸︷︷︸
dH×d

hpast︸ ︷︷ ︸
d×1

s =
1√
dH

dH∑
i=1

qiki

With stable initialization (6–8), the variance of both q and k is Θ(1).2 Thus Var (s) = (1/dH)
∑dH

i=1 Θ(1)Θ(1) = Θ(1)
(conditioning on h, hpast) thanks to the explicit scale factor proposed in the original transformer paper.3 Given
a sequence of past activations X ∈ Rd×n and a distribution p ∈ Rn (computed using these scores), the per-head
output is computed by

V = Wv︸︷︷︸
dH×d

X︸︷︷︸
d×n

= [v1 . . . vn] o =

n∑
j=1

pjvj

where oi = E[vj] implies Var (oi) = Θ(1). The final output combines H such heads o(1) . . . o(H) ∈ RdH by

ofinal =

H∑
k=1

W (h)
o︸ ︷︷ ︸

d×dH

o(h)︸︷︷︸
dH×1

Since Var (Wo) = Θ(1/d), we have Var (ofinal,i) = Θ(1) assuming the number of heads growing in width H = Θ(d).
This output ofinal ∈ Rd is fed into the next MLP layer. Thus the whole network remains stable at initialization even
with attention layers, and any scale-invariant parameterization that ensures the activation change stays constant
(e.g., scaling the learning rates for attention weights properly) will maintain this stability.

References

Everett, K. E., Xiao, L., Wortsman, M., Alemi, A. A., Novak, R., Liu, P. J., Gur, I., Sohl-Dickstein, J., Kaelbling,
L. P., Lee, J., and Pennington, J. (2024). Scaling exponents across parameterizations and optimizers. In Forty-first
International Conference on Machine Learning .

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–256.
JMLR Workshop and Conference Proceedings.

Yang, G. and Hu, E. J. (2020). Feature learning in infinite-width neural networks. arXiv preprint arXiv:2011.14522 .

2In fact, a popular practice now is to have an explicit RMSNorm applied to q and k (“QK-norm”) which guarantees this stability.
3Typically dH = Θ(1) is a fixed constant (e.g., we match d = dHH by only changing the number of heads H), so technically this

explicit scaling is not necessary for the purpose of width invariance.

3

A Standard Parameterization (SP)

An L-layer transformer without attention and normalization is a bigram language model with weights W0 . . .WL+1

where Wl ∈ Rdl+1×dl . We view training as a function of the hidden widths d1 . . . dL+1, so we can omit elementwise

nonlinearity (Appendix C). Given a bigram x, y ∈ {0, 1}V as one-hot vectors, the forward and backward passes for
the cross-entropy loss compute

h0 = x h′
L+2 = softmax(hL+2)− y (25)

hl+1 = Wlhl ∀l = 0 . . . L+ 1 h′
l = W⊤

l h′
l+1 ∀l = L+ 1 . . . 1

W ′
l = h′

l+1h
⊤
l ∀l = L+ 1 . . . 0

A.1 Initialization

We assume that the weights Wl,i,j are sampled iid from a symmetric zero-mean distribution with variance σ2
l > 0.

Let Var (X) denote the variance of a single entry of X when all entries have the same variance. Then in the first
forward and backward passes (Lemma D.1)

Var (h1) = σ2
0

Var (hl) = σ2
l−1dl−1Var (hl−1) ∀l = 2 . . . L+ 2

Var
(
h′
L+1

)
= σ2

L+1E[∥h′
L+2∥2]

Var (h′
l) = σ2

l dl+1Var
(
h′
l+1

)
∀l = L . . . 1

Var
(
W ′

L+1

)
= Var (hL+1)E[(h′

L+2,i)
2]

Var (W ′
l) = Var

(
h′
l+1

)
Var (hl) ∀l = L . . . 1

Var
(
W ′

0,i,j

)
= [[xj = 1]]Var (h′

1)

The logit gradient h′
L+2 ∈ [−1, 1]V is width-invariant, so E[(h′

L+2,i)
2] = Θ(1) and E[∥h′

L+2∥2] = Θ(1).

A.1.1 Hidden layers

Using σ2
l = 1/dl for l = 1 . . . L+ 1 prevents exploding variance in activations, yielding

Var (hl) = σ2
0 ∀l = 1 . . . L+ 2 (26)

On the other hand, using σ2
l = 1/dl+1 for l = L . . . 1 prevents exploding variance in gradients, yielding

Var (h′
l) = Θ(σ2

L+1) ∀l = L . . . 1 (27)

A popular tradeoff is to use the average width σ2
l = 2/(dl + dl+1) (Glorot and Bengio, 2010) for l = 1 . . . L, but in

practice it does not matter since typically d1 . . . dL+1 grow proportionally (e.g., dl+1 = cldl where cl is some constant
factor like 4 or 1/4). Thus in the asymptotic regime, we assume d = d1 = · · · dL+1 WLOG and use σ2

l = 1/d for
l = 1 . . . L.

A.1.2 Embedding and readout layers

Note that σ2
L+1 triggers a tradeoff: using σ2

L+1 = 1/d stabilizes the logits hL+2 (26) but shrinks the activation gradi-
ents (27). The choices of σ2

0 and σ2
L+1 together control Var (W ′

l). Table 2 lists elementwise variances under different

choices of σ2
0 and σ2

L+1 (no RMSNorm). With tied embeddings W0 = W⊤
L+1, the gradient will be accumulated and

will not affect the asymptotic behavior, but we have no choice but to use σ2
0 = σ2

L+1.

A.1.3 Bonus: RMSNorm

In real transformers, we apply X 7→ RMSNorm(X) = X/RMS(X) between layers, making the activations unit-
variance for any X in the forward pass. But the normalization layer also annihilates the component of the gradient
parallel to X (i.e., we cannot learn from the magnitude, which was not used) and scales it by 1/RMS(X) in the
backward pass (Lemma D.2). For illustration, consider incorporating RMSNorm as hl = RMSNorm(Wl−1hl−1) for
all layers except l = L+ 2. It turns out that (Lemma D.3)

4

RMSNorm σ2
0 σ2

L+1 h1 . . . hL+1 hL+2 h′
L+2 h′

L+1 . . . h
′
1 W ′

L+1 W ′
L . . .W ′

1 W ′
0

1 1/d 1 1 1 1/d 1 1/d 1/d
✓ 1 1 1 1/d 1 1/d 1/d

1/d 1/d 1/d 1/d 1/d 1/d 1/d 1/d2 1/d
✓ 1 1 1 1/d 1 1/d 1

1 1 1 d 1 1 1 1 1
✓ 1 d 1 1 1 1 1

Table 2: Elementwise variances (asymptotic in the hidden width d) under different choices of σ2
0 and σ2

L+1 at

initialization. We use the first-order approximation Var
(
h′
L+2

)
≈ Θ(σ2

L+1dL+1Var(hL+1)) when hL+2 ≈ 0. When
RMSNorm is ✓, we assume hl = RMSNorm(Wl−1hl−1) for all layers except l = L + 2. Most studies assume the
first row for SP (25), which makes activations unit order without RMSNorm.

1. The RMS cancels the width propagation for activation gradients, so their variance is preserved for any σ2
l .

2. Unfortunately, the weight gradients are still affected, so we should still use σ2
l = 1/d for l = 1 . . . L.

The resulting variances shown in Table 2 (RMSNorm ✓).

A.2 Post-Initialization

We use RMS to measure per-element size more generally in training steps (e.g., it coincides with the square-root of
Table 2 in the first step in the infinite-width regime). Maintaining RMS during training depends on

• The initial weight variance σ2
l , which determines the initial RMS

• The choice of optimizer OPT and learning rate ηl, which determines the per-step weight update ∆Wl = −ηlOl

where Ol = OPT(W ′
l) is a transformation of the gradient

Since the gradients depend on activations, maintaining the Θ(1) width-dependence of activations is key. The new
activation after one training step is hnew

l+1 = (Wl +∆Wl)(hl +∆hl), so we have

∆hnew
1 = −η0O0,:,i xi = 1

∆hnew
l+1 = Wl∆hl︸ ︷︷ ︸

1

+ (−ηlOlh
new
l)︸ ︷︷ ︸

2

∀l = 1 . . . L+ 1 (28)

The idea is we can choose ηl appropriately for the given OPT to make these elementwise Θ(1). At l = 0 we can

ensure RMS(∆hnew
1) = Θ(1) by setting η0 = Θ(1/O0). Unfortunately in (28), 1 is not controllable by the learning

rate. To make analysis tractable, we enforce the following conditions.

Condition A.1. ||Wl||2 = Θ(1) for l = 1 . . . L+ 1 throughout training.

Condition A.2. RMS(Wl∆hl) = Θ(1) for l = 1 . . . L+ 1 throughout training.

Condition A.1 is relatively mild given that it holds at initialization.4 Condition A.2, however, is not easily justifiable.
Note that for l = 1 . . . L, Condition A.1 implies Condition A.2 since

RMS(Wl∆hl) =
||Wl∆hl||2√

dl+1

≤ ||Wl||2
||∆hl||2√

d
= Θ(1)Θ(1) = Θ(1) ∀l = 1 . . . L (29)

where we inductively assume RMS(∆hl) = Θ(1) (i.e., ||∆hl||2 =
√
d). This breaks at l = L+1 since dl+1 = dL+2 =

V = O(1) so that the bound becomes Θ(
√
d). We will come back to this issue in muP (Appendix B) and assume

both Condition A.1 and A.2 hold for SP.

4We invoke without proof the fact that an iid sub-Gaussian random matrix B ∈ Rn×m with zero mean and variance 1/m satisfies

||B||2 → 1 +
√

n/m as n,m → ∞, which is 2 for l = 1 . . . L and 1 for l = L + 1 in the case B = Wl at initialization. We assume that
subsequent updates are small enough to maintain ||Wl||2 = Θ(1).

5

A.2.1 Learning rates (LLN vs CLT)

2 has the entry 2
i
= −ηlAl,i where Al,i =

∑d
j=1 Ol,i,jh

new
l,j measures the update-activation alignment. Let

µl,i = (1/d)
∑d

j=1 E[Ol,i,jh
new
l,j] and assume ∥Cov((Ol,i,jh

new
l,j)dj=1)∥2 = Θ(1) (the mean may still grow in d). Then

Al,i = dµl,i +Op(
√
d) (30)

where Op is big-O in probability. So there are two cases:

• µl,i ̸= 0⇒ Al,i = Θ(d): Set ηl = Θ(1/d) to make 2
i
= Θ(1).

• µl,i = 0⇒ Al,i = Θ(
√
d): Set ηl = Θ(1/

√
d) to make 2

i
= Θ(1).

These cases are so-called “LNN vs CLT” because (30) can be written as Al,i/d = µl,i+Op(1/
√
d) which corresponds

to the law of large numbers and sAl,i/
√
d = Op(1) which corresponds to the central limit theorem. Note that

alignment is not static; it seems inevitable that alignment will emerge during training given that weights and
activations coevolve. But committing to one specific assumption allows us to prove concrete results like the following.

Example A.1. Assume σ2
0 = 1 and σ2

l = 1/d for l = 1 . . . L+ 1. Assume momentumless Adam for OPT. Assume
Condition A.1 and A.2 hold. Set

η0 = Θ(1) ηl =

{
Θ(1/d) if Adam is aligned

Θ(1/
√
d) if Adam is not aligned

∀l = 1 . . . L+ 1

Then the initial RMS is maintained for all training steps (Lemma D.4).

B muP

muP (Yang and Hu, 2020) relaxes Condition A.2 for l = L+ 1 and instead assumes the full upper bound:

RMS(WL+1∆hL+1) = Θ(
√
d) (31)

One justification for (31) is that W ′
L+1 = h′

L+2h
⊤
L+1 involves the logit gradient h′

L+2 whose mean is never zero, so

∆WL+1 will accumulate rank-1 components uh⊤
L+1 causing WL+1 and ∆hL+1 to be aligned. Since this component

(1 in (28)) is not controllable by the learning rate, the only choice we have in order to make RMS(∆hL+2) = Θ(1)

is to scale the readout layer by 1/
√
d. This changes the forward and backward passes as

hL+2 = (1/
√
d)WL+1hL+1 h′

L+1 = (1/
√
d)W⊤

L+1h
′
L+2

W ′
L+1 = (1/

√
d)h′

L+2h
⊤
L+1

The gradients shrink by
√
d, but it does not matter for magnitude-invariant optimizers like Adam for training

purposes. Nonetheless, muP also scales the embedding layer by
√
d to have

h1 =
√
dW0x W ′

0 =
√
dh′

1h
⊤
0

while at the same time changing σ2
0 from 1 to 1/d to preserve the forward pass. This has the effect of restoring the

gradient scale for embeddings. Unlike SP, muP’s parameter multipliers force different LR exponents: with Adam,
take η0 = ηL+1 = 1/

√
d and ηh = 1/d if aligned, ηh = 1/

√
d if not aligned. With these, the muP RMS scales in

Table 3 are maintained for any fixed number of training steps, under the same interaction assumptions as in the
general framework (Table 1).

C Omitting Elementwise Nonlinearity

Let ϕ1 . . . ϕL+2 denote elementwise functions. The forward pass computes activations h1 . . . hL+2 from h0 = x by

ul = Wl−1hl−1 ∈ Rdl

hl = ϕl(ul) ∈ Rdl (32)

6

Model σ2
0 σ2

L+1 h1 . . . hL+1 ∆hL+2 h′
L+2 h′

L+1 . . . h
′
1 W ′

L+1 W ′
L . . .W ′

1 W ′
0

SP (Condition A.2) 1 1/d 1 1 1 1/
√
d 1 1/

√
d 1/

√
d

SP (31) 1 1/d 1
√
d 1 1/

√
d 1 1/

√
d 1/

√
d

SP+readout (31) 1 1/d 1 1 1 1/d 1/
√
d 1/d 1/d

SP+emb/readout (31) 1/d 1/d 1 1 1 1/d 1/
√
d 1/d 1/

√
d

Table 3: Asymptotic RMS that needs to be maintained under different models. The ∆hL+2 column denotes the
logit change per training step, which stays invariant with SP under Condition A.2 but grows as square-root width√
d when relaxed to (31). Scaling the readout layer by 1/

√
d fixes the logit issue but also shrinks the gradients by√

d. Scaling the embedding layer by
√
d and shrinking the variance accordingly preserves the forward pass while

upscaling the embedding gradient (muP).

The gradient wrt. the logits is h′
L+2 = softmax(hL+2) − y ∈ [−1, 1]V . By the chain rule, the gradients wrt.

hL+1 . . . h1 and WL+1 . . .W0 are computed as

u′
l+1 = ϕ′

l+1(ul+1)⊙ h′
l+1 ∈ Rdl+1 (33)

h′
l = W⊤

l u′
l+1 ∈ Rdl

W ′
l = u′

l+1h
⊤
l ∈ Rdl+1×dl

We assume that ϕl is Λ-Lipschitz |ϕl(a)− ϕl(b)| ≤ Λ |a− b| for some constant Λ > 0. Then |ϕ′
l| ≤ Λ (this holds at

kinks using sub-gradients), so when we view (32) and (33) as functions of the widths d1 . . . dL+2, we have

hl,i = ϕl(ul,i) = ϕl(0) +O(ul,i)

u′
l+1,i = ϕ′

l+1(ul+1,i)× h′
l+1,i = O(h′

l+1,i)

All common activation functions are Lipschitz (ReLU/tanh/identity Λ = 1, sigmoid Λ = 1/4) and also usually
satisfy ϕl(0) = 0 so

hl = O(Wl−1hl−1)

h′
l = O(W⊤

l h′
l+1)

(i.e., ϕl does not change the asymptotic behavior of the input in either the forward nor the backward pass).

D Lemmas

Lemma D.1. In the first forward and backward pass,

• (Activations): E[hl] = 0dl
and Cov (hl) = σ2

l−1E[||hl−1||2]Idl
for l = 1 . . . L+ 2.

• (Logit gradient): E[h′
L+2] = (1/V)1V − y. A first-order approximation of Cov

(
h′
L+2

)
= Cov (softmax(hL+2))

around hL+2 = 0V is σ2
L+1E[||hL+1||2]((1/V 2)IV − (1/V 3)1V 1

⊤
V).

• (Activation gradients): E[h′
l] = 0dl

and Cov (h′
l) = σ2

l E[||h′
l+1||2]Idl

for l = L+ 1 . . . 1.

• (Weight gradients): E[W ′
l] = 0dl+1×dl

and Var(W ′
l,i,j) = E[(h′

l+1,i)
2]E[h2

l,j] for l = L + 1 . . . 0 with zero
correlation except within the columns of W ′

L+1.

Proof. (Activations): E[hl] = E[Wl−1hl−1] = E[Wl−1]E[hl−1] = 0dl
since Wl−1 ⊥ hl−1 at initialization and

E[Wl−1,i,j] = 0. Then Cov (hl) = E[hlh
⊤
l] = E[Wl−1hl−1h

⊤
l−1W

⊤
l−1] has

∑
k,t E[Wl−1,i,kWl−1,j,t]E[hl−1,khl−1,t]

as the (i, j)-th entry, which is zero unless i = j since the rows of Wl−1 are independent. The i-th diagonal entry is∑
k E[W 2

l−1,i,k]E[h2
l−1,k] = σ2

l−1E[||hl−1||2] (which is σ2
0 at l = 1).

(Logit gradient): Let p = softmax(hL+2). Conditioned on any hL+1, the coordinates of hL+2 = WL+1hL+1 ∈ RV

7

are iid (since the rows of WL+1 are iid), in particular exchangeable. This implies E[pi] = 1/V .5 Thus E[h′
L+2] =

E[p] − y = (1/V)1V − y. Since Cov
(
h′
L+2

)
= Cov (p) and the covariance of random variables bounded in [0, 1]

cannot exceed 1/4, each entry is accordingly bounded. Let J := ∇hsoftmax(h)|h=0V = (1/V)IV − (1/V 2)1V 1
⊤
V

denote the Jacobian of softmax at 0V . Then the first-order approximation of softmax around 0V evaluated at hL+2

is p̂ = (1/V)1V + JhL+2. Then Cov
(
h′
L+2

)
= Cov (p) ≈ Cov (p̂) = JCov (hL+2) J

⊤ = σ2
L+1E[||hL+1||2]JJ⊤ where

JJ⊤ = (1/V 2)IV − (1/V 3)1V 1
⊤
V .

(Activation gradients): Let h̃l+1 denote an iid copy of hl+1 sampled by independently re-drawing W̃0 . . . W̃L+1 and
re-computing forward/backward (“ghost”). Clearly h̃l+1 and hl+1 are equal in distribution but h̃l+1 ⊥ Wl, thus
E[h′

l] = E[W⊤
l h′

l+1] = E[W⊤
l h̃′

l+1] = E[Wl]
⊤E[h̃′

l+1] = 0dl
. The covariance is then Cov(h′

l,i, h
′
l,j) = E[h′

l,ih
′
l,j] =∑

k,t E[Wl,k,iWl,t,jh
′
l+1,kh

′
l+1,t] =

∑
k,t E[Wl,k,iWl,t,j h̃

′
l+1,kh̃

′
l+1,t] =

∑
k,t E[Wl,k,iWl,t,j]E[h̃′

l+1,kh̃
′
l+1,t]. This is zero

if i ̸= j and σ2
l E[||h′

l+1||2] otherwise.

(Weight gradients): We also have h̃l+1 ⊥ hl by construction, thusE[W ′
l] = E[h′

l+1h
⊤
l] = E[h̃′

l+1h
⊤
l] = E[h′

l+1]E[hl]
⊤.

But E[hl] = 0dl
if l ≥ 1 and E[h′

1] = 0d1 from above, so E[W ′
l] = 0dl+1×dl

for all l = 0 . . . L + 1. Then

Cov(W ′
l,i,j ,W

′
l,k,t) = E[W ′

l,i,jW
′
l,k,t] = E[h′

l+1,ih
′
l+1,khl,jhl,t] = E[h̃′

l+1,ih̃
′
l+1,khl,jhl,t] = E[h′

l+1,ih
′
l+1,k]E[hl,jhl,t].

This is zero if j ̸= t (since E[hl,jhl,t] = 0), or l ∈ {0 . . . L} and i ̸= k (since E[h′
l+1,ih

′
l+1,k] = 0).

Lemma D.2. Let

RMS(u) :=

√√√√1

d

d∑
i=1

u2
i =
||u||√
d

v = RMSNorm(u) :=
u

RMS(u)
=
√
dū

where ū = u/ ||u|| (we omit epsilon and fix gating to 1 for simplicity). Then

• v = RMSNorm(cu) for all c > 0 with RMS(v) = 1 and ||v|| =
√
d.

• Let gin = ∂L
∂v denote the incoming gradient and gout =

∂L
∂u the outgoing gradient. Then

gout =
g⊥in

RMS(u)

where g⊥in is the component of gin perpendicular to u.

Proof. The first statement is obvious. The second statement follows from the Jacobian:

∇RMSNorm(u) =
1

RMS(u)
(I − ūū⊤)

Lemma D.3. Let h0 = x ∈ {0, 1}V and define the forward pass

ul = Wl−1hl−1 hl = RMSNorm(ul) ∀l = 1 . . . L+ 1

hL+2 = WL+1hL+1

Then for all σ2
0 . . . σ

2
L+1 > 0 with σ2

L+1 = Ω(1/d), in the infinite-width regime:

• Var (hl) = 1 for l = 1 . . . L+ 1 and Var (hL+2) = Ω(1).

• E[∥h′
L+2∥2] = Θ(1), Var

(
W ′

L+1

)
= Θ(1), and Var

(
h′
L+1

)
= Θ(σ2

L+1).

5More formally, hL+2 = PhL+2 for any permutation matrix P ∈ {0, 1}. Given any i, j, we can pick any P such that Pi,j = 1 and
have

E[pi] = E

[
exp((PhL+2)i)∑V

k=1 exp((PhL+2)k)

]
= E

[
exp(hL+2,j)∑V

k=1 exp(hL+2,k)

]
= E[pj]

Thus E[pi] = π for some constant π > 0 for i = 1 . . . V . Since E[
∑V

i=1 pi] =
∑V

i=1 E[pi] = V π = 1, we must have π = 1/V . Note that
this bypasses the argument that E[softmax(hL+2)] = softmax(E[hL+2]) (not true in general) and Jensen’s inequality (exact only for
constants and linear functions).

8

• Var (h′
l) = Θ(σ2

L+1) and Var (W ′
l) = Θ(

σ2
L+1

σ2
l d

) for l = L . . . 1.

• Var (W ′
0) = Θ(

σ2
L+1

σ2
0

).

Proof. The forward pass is obvious. The backward pass for the cross-entropy loss is

h′
L+2 = softmax(hL+2)− y

h′
L+1 = W⊤

L+1h
′
L+2 W ′

L+1 = h′
L+2h

⊤
L+1

h′
l = W⊤

l u′
l+1 W ′

l = u′
l+1h

⊤
l ∀l = L . . . 0

where u′
l =

∂L
∂ul

for l = 1 . . . L+ 1 is given by (Lemma D.2)

u′
l =

h′′
l

RMS(ul)
h′′
l :=

(
Id − ūlū

⊤
l

)
h′
l

At initialization Var (h′′
l) = Θ(Var (h′

l)).
6 Critically, since ul = Wl−1hl−1 has identically distributed entries with

zero mean for l = L + 1 . . . 1 at initialization, we may treat the RMS as constant variance in the infinite-width
regime:

RMS(ul)
2 =

{
Var (u1) = Var (W0x) = σ2

0 if l = 1

Var (ul) = Var (Wl−1hl−1) = σ2
l−1dVar (hl−1) = σ2

l−1d if l ≥ 2

This implies for l = L . . . 1:

Var (h′
l) = Var

(
W⊤

l u′
l+1

)
= Var

(
W⊤

l

h′′
l+1

RMS(ul+1)

)
=

Var
(
W⊤

l h′′
l+1

)
RMS(ul+1)2

=
σ2
l dVar

(
h′′
l+1

)
σ2
l d

= Var
(
h′′
l+1

)
thus Var (h′

l) = Var
(
h′
L+1

)
= Θ(σ2

L+1). Likewise for l = L . . . 1:

Var (W ′
l) = Var

(
u′
l+1h

⊤
l

)
=

Var
(
h′′
l+1h

⊤
l

)
RMS(ul+1)2

=
Var

(
h′′
l+1

)
Var (hl)

σ2
l d

=
Var

(
h′′
l+1

)
σ2
l d

= Θ

(
σ2
L+1

σ2
l d

)
Finally, for the relevant column of W ′

0, the variance is

Var (W ′
0) = Var (u′

1) =
Var (h′′

1)

RMS(u1)2
= Θ

(
σ2
L+1

σ2
0

)

Lemma D.4. Assume σ2
0 = 1 and σ2

l = 1/d for l = 1 . . . L + 1. Assume momentumless Adam for OPT. Assume
Condition A.1 and A.2 hold. Set

η0 = Θ(1) ηl =

{
Θ(1/d) if Adam is aligned

Θ(1/
√
d) otherwise

∀l = 1 . . . L+ 1 (34)

Then the following invariants hold at all training steps:

RMS(W0) = Θ(1) (35)

RMS(Wl) = Θ(1/
√
d) ∀l = 1 . . . L+ 1 (36)

RMS(hl) = Θ(1) ∀l = 1 . . . L+ 2 (37)

RMS(h′
L+2) = Θ(1) (38)

RMS(h′
l) = Θ(1/

√
d) ∀l = L+ 1 . . . 1 (39)

RMS(W ′
L+1) = Θ(1) (40)

RMS(W ′
l) = Θ(1/

√
d) ∀l = L . . . 0 (41)

6
∣∣∣∣h′′

l

∣∣∣∣2 =
∣∣∣∣h′

l

∣∣∣∣2 − (ū⊤
l h′

l)
2 ⇒ E[

∣∣∣∣h′′
l

∣∣∣∣2] = E[
∣∣∣∣h′

l

∣∣∣∣2]−E[(ū⊤
l h′

l)
2] = (d− 1)Var(h′

l) ⇒ Var
(
h′′
l

)
= (1− 1/d)Var(h′

l).

9

Proof. Since RMS coincides with standard deviation for variables with zero-mean iid elements (exact in the infinite-
width regime, w.h.p. in general), the base case (i.e., the initial forward/backward pass) is immediate from the given
initialization by taking the square-root of the first row of Table 2.

Assume (36–41) hold and consider a new forward/backward pass. Adam specifies ∆Wl,i,j = −ηlsign(W ′
l,i,j) =

Θ(ηl). We have ∆W0,i,j = Θ(1) and thus W0,i,j+∆W0,i,j = Θ(1)+Θ(1) = Θ(1) per element, so (35) is maintained.

For l = 1 . . . L + 1, we have ∆Wl,i,j = Θ(ηl) where ηl is Θ(1/d) or Θ(1/
√
d). In either case, Wl,i,j + ∆Wl,i,j =

Θ(1/
√
d) + Θ(ηl) = Θ(1/

√
d) per element (since 1/

√
d ≥ 1/d), so (36) is maintained.

Likewise for the activations, it is sufficient to show ∆hl is of the same order as hl per element (i.e., Θ(1)). At
l = 1 we have ∆h1 = ∆W0x = col(∆W0) where ∆W0,i,j = Θ(1), so we are done. For l = 1 . . . L + 1, assume that

∆hl,i = Θ(1) (equivalently ||∆hl||2 = Θ(
√
d)) and consider

∆hl+1 = Wl∆hl︸ ︷︷ ︸
u

+∆Wlh
new
l︸ ︷︷ ︸

v

For the first term, we have RMS(u) = Θ(1) from Condition A.2. For the second term, we have

vi = −ηlAl,i = −ηl(dµl,i +Op(
√
d)) =

{
Θ(ηld) if µl,i ̸= 0

Θ(ηl
√
d) otherwise

where Op is big-O in probability. By our choice of the learning rate (34), this is Θ(1) always. Thus (37) is
maintained.

For the activation gradients, (38) is trivial since h′
L+2 ∈ [−1, 1]V . For l = L+ 1 . . . 1, since h′

l = W⊤
l h′

l+1 we have

RMS(h′
l) ≤

||Wl||2
∣∣∣∣h′

l+1

∣∣∣∣
2√

d
= Θ(1)Θ(1/

√
d) = Θ(1/

√
d)

which uses Condition A.1 and ∥h′
l+1∥2 = Θ(1) inductively (∥h′

L+2∥2 = Θ(1) since V is constant). Thus h′
l,i =

Θ(1/
√
d) and (39) is maintained.

For the weight gradients W ′
l = h′

l+1h
⊤
l , we make similar arguments. At l = L + 1 we have ∥W ′

L+1∥F ≤
∥h′

L+2∥2∥hL+1∥2 = Θ(1)Θ(
√
d) = Θ(

√
d) and thus RMS(W ′

L+1) = Θ(
√
d/
√
d) = Θ(1). Note that RMS(W ′

L+1) =

Θ(∥W ′
L+1∥F /

√
d) again because V is constant. For l = L . . . 0 we have ∥W ′

l ∥F ≤ ∥h′
l+1∥2∥hl∥2 = Θ(1)Θ(

√
d) =

Θ(
√
d) and thus RMS(W ′

l) = Θ(
√
d/d) = Θ(1/

√
d). So (40) and (41) are maintained.

Lemma D.5. Under (1) and (2), (3–5) hold.

Proof. For the forward pass, the base case is

Var (h1,i) = Var
(
d−a0coli(W0)

)
= d−2a0Var (W0) = d−2(a0+b0)

For l = 1 . . . L+ 1, using the fact that Wl and hl are independent at initialization,

Var (hl+1,i) = Var

d−al

d∑
j=1

Wl,i,jhl,j

 = d−2al

d∑
j=1

Var (Wl,i,j)Var (hl,j) = d1−2(al+bl)Var (hl,j)

= d1−2(al+bl)d(l−1)−2(
∑l−1

k=0 ak+bk)

= dl−2(
∑l

k=0 ak+bk)

For the backward pass, since V = Θ(1) and h′
L+2,j ∈ [−1, 1], the base case is

Var
(
h′
L+1,i

)
= Var

d−aL+1

V∑
j=1

WL+1,j,ih
′
L+2,j

 = d−2(aL+1+bL+1)Var

 V∑
j=1

h′
L+2,j

 = Θ(d−2(aL+1+bL+1))

10

For l = L . . . 1,

Var
(
h′
l,i

)
= Var

d−al

d∑
j=1

Wl,j,ih
′
l+1,j


= Var

d−al

d∑
j=1

Wl,j,ih̃
′
l+1,j

 (h̃′
l+1 is a ghost variable as defined in the proof of Lemma D.1)

= d−2alVar

 d∑
j=1

Wl,j,ih̃
′
l+1,j


= d−2al

d∑
j=1

Var (Wl,j,i)Var
(
h̃′
l+1,j

)
(since h̃l+1 and Wl are independent and elementwise iid)

= d1−2(al+bl)dL−l−2(
∑L+1

k=l+1 ak+bk)

= d(L+1)−l−2(
∑L+1

k=l ak+bk)

Likewise for the weight gradients, the base case is

Var
(
W ′

L+1,i,j

)
= Var

(
d−aL+1 h̃′

L+2,ihL+1,j

)
= d−2aL+1Var

(
h̃′
L+2,i

)
Var (hL+1,j)

= Θ(d−2aL+1dL−2(
∑L

k=0 ak+bk)) = Θ(dL−2((
∑L+1

k=0 ak+bk)−bL+1))

For l = L . . . 1,

Var
(
W ′

l,i,j

)
= Var

(
d−al h̃′

l+1,ihl,j

)
= d−2alVar

(
h̃′
l+1,i

)
Var (hl,j)

= d−2al × d(L+1)−(l+1)−2(
∑L+1

k=l+1 ak+bk) × d(l−1)−2(
∑l−1

k=0 ak+bk)

= d(L+1)−2((
∑L+1

k=0 ak+bk)−bl)

Finally for l = 0,

Var
(
W ′

0,i,j

)
= Var

(
d−a0h′

1,ixj

)
=

{
0 if xj = 0

d−2a0dL−2(
∑L+1

k=1 ak+bk) = dL−2((
∑L+1

k=0 ak+bk)−b0) if xj = 1

11

	The Family of Parameterizations
	First Step
	Second Step
	Equivalence classes

	Subsequent Steps

	Attention
	Standard Parameterization (SP)
	Initialization
	Hidden layers
	Embedding and readout layers
	Bonus: RMSNorm

	Post-Initialization
	Learning rates (LLN vs CLT)

	muP
	Omitting Elementwise Nonlinearity
	Lemmas

