Scale-Invariant Parameterizations
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1 The Family of Parameterizations
Everett et al. (2024) consider the d-dimensional L-layer bigram language model:

ho =z 142 = softmax(hp42) —y (1)
hip1 =d " “Wihy Vi=0...L+1 h) =d- W, 41 VI=L+1...1
W/ =d “hj b/ VI=L+1...0
where x,y € {0, l}v are one-hot vectors, Wy € RV and Wy, € RV*? are the embedding/readout layers, and

d=% > 0 is a “parameter multiplier”. To understand the motivation behind this form, the reader is encouraged to
first go over standard parameterization (SP, Appendix A) and muP (Appendix B).

1.1 First Step

We use the usual layerwise-variance for weight initialization as in SP (A.1) using the a posteriori power-law form:
Var (W) = d=2% (2)

Then in the first forward and backward passes we have (Lemma D.5)

Var (hyyq) = di=2(Zizo aitbi) Vi=0...L+1 (3)
Var (b)) = d(EHD—1=2(Z5 aitbo) Vi=L+1...1 (4)
Var (W}) = dEHISISLI=2((20 aitbi)—b) Vi=L+1...0 (5)

whose square roots coincide with RMS in the infinite-width regime. We define stability as having constant acti-
vations RMS(h;) = ©(1) for l = 1...L 4+ 1 and bounded logits RMS(hr4+2) = O(1). The iterative nature of (3)
implies the following unique conditions for stability in the first forward pass:

ap+bp =0 (6)
al—l—bl:1/2 Vi=1...L (7)
ar+1+br+1 > 1/2 (8)
Under these conditions, ZlL:ll a;+b;=(L+1-1)/2+ ary1 + br+1 and thus (4) and (5) imply
RMS(h)) = ©(d~(@z+1+b+1)) Vi=L+1...1 (9)
RMS(W} ) = ©(d~*+1) RMS(W/) = ©(d~(ar+1tbrital)) Vi=L...0 (10)
For convenience, we write RMS(W/) = ©(d~9") where g; = a1 + [[l < L)](br41 + ar).
1.2 Second Step
We assume a posteriori the learning rate has the power-law form
m=Cd " (11)



param. multiplier weight init. LR scale
Parameterization ap ap ary1 | bo b, br+1 | co Ch  CL41
SP 0 0 0 0 1/2 1/2 0 1 1
NTK 0 172 1/2 0 0 0 0 1/2 1/2
muP -1/2 0 /2 | 1/2 1/2 1/2 | 1/2 1 1/2
MF 0 1/2 1 0 0 0 0 1/2 0

Table 1: Examples of scale-invariant parameterizations that ensure stability at initialization (6-8) and in subsequent
steps (21-24), using momentumless Adam with full alignment.

for some constant C' > 0. The change in weight AW; = —OPT (W) depends on the optimizer, e.g.,

(SGD) AW, = —Cd~ W/ = AW, ; = ©(d~ (o))
(Adam) AW, = —Cd™“'sign(W)) = AWy =O(d™) (12)
(Adafactor) AW, = —Cd~“RMS(W,)sign(W;) = AW, 5 = O(d~ )

For simplicity we will assume (12) and parameterize the update scale as
RMS(Ah;) =0O(d™™) (13)

for some r; > 0. Maintaining stability requires r; > 0 for all [ (updates do not grow with width). Since Ah; =
d=%col(AW)) and thus Ah; ; = ©(d~(%0+<0)) under (12), we must first have

r1:a0+0020 (14)

Forl=1...L+1, we have Ah;y1 = d~%“(W,Ah;+ AW, h;+ AW;Ah;). To measure each term’s alignment strength,
we impose the a posteriori forms

RMS(W,Aly) = ©(d* x RMS(W;) x RMS(Ah,)) (15)
RMS(AWlhl) = @(dal X RMS(AW[) X RMS(hl)) (16)
RMS(AW,AR) = ©(d“ x RMS(AW;) x RMS(Ah,)) (17)

where wy, oy, u; € [0,1] are invariant to scale and thus capture only interaction.! For (16) and (17), we know
retrospectively that oy, u; € [1/2,1] with g = w; = 1 under full alignment and «; = u; = 1/2 under no alignment
(see (30)). Thus a sufficient condition to ensure ;43 >0forl=1...L+11s

d= x (15) = O(d™™ x d** x d™" x d™™) = O(1) & a b+ —w >0 (18)
d™% x (16) = O(d™" x d* x d=° x d°) = O(1) & a+c—a >0 (19)
d™ x (17) = O(d™™ x d“ x d~“ x d~") = O(1) & a+e+rn—u>0 (20

where (18) simplifies to 1/2 4+ r; —w; > 0 for I = 1...L by (7). Assuming full alignment, and assuming r; > 0 is
maintained iteratively { = 1...L + 1, we can intersect the conditions (14) and (18-20) against (6-8) to have

ag+co >0 (21)
a+c>1 Vi=1...L+1 (22)

w < 1/2 Vi=1...L (23)

ar4+1 +br+1 > max(1/2,wr41) (24)

Since w; is not configurable, assuming (23) is a clean sufficient assumption to achieve stability. However, the readout
layer allows for some wiggle room. muP assumes the worst-case dependence wy,+1 = 1 and uses ar+1 = bp4+1 = 1/2
to satisfy (24). Everett et al. (2024) relax the assumption to wr,+1 = 1/2 and demonstrate empirical scale invariance.
Example parameterizations that satify these conditions are reproduced in Table 1.

1 More formally we may write, e.g., w; = limg_, oo logy %RZMASTA)M) in probability.



1.2.1 Equivalence classes
Pick any parameterization (a;, by, ¢;) satisfying (6-8) and (21-24). Pick any scalar 6; € R and redefine
a; < a;+0; by« b —0; c—c—0;

It is clear that the conditions still hold. Thus one stable parameterization defines an infinite family of equivalent
parameterizations. In particular, in Table 1 we see that SP = NTK and muP = MF.

1.3 Subsequent Steps

The above conditions maintain RMS(h;) = ©(1) for all [. The Adam update does not modify the asymptotic size
of the weights and gradients. Thus assuming that the interaction scales wy, oy, u; € [0, 1] remain stable throughout
training, stability is maintained inductively for a constant number of steps 7' = O(1).

2 Attention

Attention is used to extend the bigram language model (1) to n-grams. All inputs maintain independent MLP
structures except in the attention layer parameterized by per-head weights Wy, Wy, W, € R#xd and W, € R4xdx
The score between a pair of activations h, hpast € R? is computed by

dy
1
q= Wq h k= W hpast S = —F qik;
~ N~ N~ \/dH Zz:;
dp xd 41 duxd dx1

With stable initialization (6-8), the variance of both ¢ and k is ©(1).2 Thus Var (s) = (1/dg) Z?jl 0(1)0(1) =06(1)
(conditioning on h, hpagt) thanks to the explicit scale factor proposed in the original transformer paper.®? Given
a sequence of past activations X € R?*™ and a distribution p € R (computed using these scores), the per-head
output is computed by

n
V=W, X =lv...v,] 0:ijvj
dyg xd dxn j=1

where o; = E[v;] implies Var (0;) = ©(1). The final output combines H such heads o!)...o1) € R4 by

H
Ofinal = Z W(h) O(h)
\0,_/\/
k=1 gy dux1

Since Var (W,) = ©(1/d), we have Var (ofina1;) = ©(1) assuming the number of heads growing in width H = 0(d).
This output ognai € RY is fed into the next MLP layer. Thus the whole network remains stable at initialization even
with attention layers, and any scale-invariant parameterization that ensures the activation change stays constant
(e.g., scaling the learning rates for attention weights properly) will maintain this stability.

References

Everett, K. E., Xiao, L., Wortsman, M., Alemi, A. A., Novak, R., Liu, P. J., Gur, I., Sohl-Dickstein, J., Kaelbling,
L. P., Lee, J., and Pennington, J. (2024). Scaling exponents across parameterizations and optimizers. In Forty-first
International Conference on Machine Learning.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249-256.
JMLR Workshop and Conference Proceedings.

Yang, G. and Hu, E. J. (2020). Feature learning in infinite-width neural networks. arXiv preprint arXiv:2011.14522.

2In fact, a popular practice now is to have an explicit RMSNorm applied to ¢ and k (“QK-norm”) which guarantees this stability.
3Typically dg = ©(1) is a fixed constant (e.g., we match d = dg H by only changing the number of heads H), so technically this
explicit scaling is not necessary for the purpose of width invariance.



A Standard Parameterization (SP)

An L-layer transformer without attention and normalization is a bigram language model with weights Wy ... Wy,
where W; € R4+1%X4  We view training as a function of the hidden widths d; .. .d L+1, SO we can omit elementwise
nonlinearity (Appendix C). Given a bigram z,y € {0, 1}V as one-hot vectors, the forward and backward passes for
the cross-entropy loss compute

ho = 4o = softmax(hr42) — y (25)
hig1=Wihy Yl=0...L+1 hy=W,hj, Vi=L+1...1
W/ =hj b/ VI=L+1...0

A.1 Initialization

We assume that the weights W, ; ; are sampled iid from a symmetric zero-mean distribution with variance 012 > 0.
Let Var (X) denote the variance of a single entry of X when all entries have the same variance. Then in the first
forward and backward passes (Lemma D.1)

Var (hy) = of
Var (h;) = o7_,d;_1Var (hy_1) Vi=2...L+2
Var( IL+1) = U%HE[”hILHHQ}
Var (h}) = ofd;1 Var (hj, ;) Vi=L...1
Var (W£+1) = Var (hr41) E[(h/L+2,i>2]
Var (W}) = Var (hi) Var (ly) Vi=L...1
Var (Wéu) = [[z; = 1]]Var (h})

The logit gradient hf,, € [-1,1]" is width-invariant, so E[(h},,,,)?] = ©(1) and E[[|h7, ,[]*] = ©(1).

A.1.1 Hidden layers

Using ‘712 =1/d; for I =1... L+ 1 prevents exploding variance in activations, yielding

Var (h;) = o Vi=1...L+2 (26)
On the other hand, using 07 = 1/d;;; for [ = L...1 prevents exploding variance in gradients, yielding

Var (b)) = ©(0%_,1) Vi=L...1 (27)

A popular tradeoff is to use the average width o7 = 2/(d; + dj41) (Glorot and Bengio, 2010) for [ = 1...L, but in
practice it does not matter since typically dy ... dr+1 grow proportionally (e.g., dj+1 = ¢;d; where ¢; is some constant
factor like 4 or 1/4). Thus in the asymptotic regime, we assume d = dy = ---dy+; WLOG and use o7 = 1/d for
l=1...L.

A.1.2 Embedding and readout layers

Note that J%H triggers a tradeoff: using U%_H = 1/d stabilizes the logits hy, 2 (26) but shrinks the activation gradi-
ents (27). The choices of of and 0% 41 together control Var (W}). Table 2 lists elementwise variances under different
choices of 0§ and 07, (no RMSNorm). With tied embeddings Wy = W, ., the gradient will be accumulated and
will not affect the asymptotic behavior, but we have no choice but to use o3 = o7 ;.

A.1.3 Bonus: RMSNorm

In real transformers, we apply X — RMSNorm(X) = X/RMS(X) between layers, making the activations unit-
variance for any X in the forward pass. But the normalization layer also annihilates the component of the gradient
parallel to X (i.e., we cannot learn from the magnitude, which was not used) and scales it by 1/RMS(X) in the
backward pass (Lemma D.2). For illustration, consider incorporating RMSNorm as h; = RMSNorm(W;_1h;_1) for
all layers except [ = L + 2. It turns out that (Lemma D.3)



RMSNorm || 07 021 [ F-- hopr | hoge | Wpwo | Pppy - Bh [ Wiy | Wi .. W [ W§
1 1/d 1 1 1 1/d 1 1/d 1/d
v 1 1 1 1/d 1 1/d 1/d
1/d  1/d 1/d 1/d | 1/d 1/d 1/d 1/ | 1/d

v 1 1 1 1/d 1 1/d 1

1 1 1 d 1 1 1 1 1

v 1 d 1 1 1 1 1

Table 2: Elementwise variances (asymptotic in the hidden width d) under different choices of 0§ and o7 ., at
initialization. We use the first-order approximation Var (hIL+2) ~ @(U%HdLHVar(hLH)) when hpys =~ 0. When
RMSNorm is v/, we assume h; = RMSNorm(W;_1h;—1) for all layers except I = L + 2. Most studies assume the
first row for SP (25), which makes activations unit order without RMSNorm.

1. The RMS cancels the width propagation for activation gradients, so their variance is preserved for any 012.
2. Unfortunately, the weight gradients are still affected, so we should still use 6 =1/d for i =1...L.

The resulting variances shown in Table 2 (RMSNorm v/).

A.2 Post-Initialization

We use RMS to measure per-element size more generally in training steps (e.g., it coincides with the square-root of
Table 2 in the first step in the infinite-width regime). Maintaining RMS during training depends on

e The initial weight variance o7, which determines the initial RMS

e The choice of optimizer OPT and learning rate n;, which determines the per-step weight update AW, = —n,0;
where Oy = OPT(W)/) is a transformation of the gradient

Since the gradients depend on activations, maintaining the ©(1) width-dependence of activations is key. The new
activation after one training step is hYY = (W + AW,)(h; + Ahy), so we have

AR = —nOg,.i ;=1
ARy = Wiy + (=mOh}*™) Vi=1...L+1 (28)
S~ — —,—

@ ©)

The idea is we can choose 7; appropriately for the given OPT to make these elementwise O(1). At I = 0 we can

ensure RMS(AARYY) = O(1) by setting 19 = ©(1/0p). Unfortunately in (28), @ is not controllable by the learning
rate. To make analysis tractable, we enforce the following conditions.

Condition A.1. ||W;||, =©(1) for I =1...L + 1 throughout training.
Condition A.2. RMS(W;Ah;) =©(1) for l =1...L + 1 throughout training.

Condition A.1 is relatively mild given that it holds at initialization.* Condition A.2, however, is not easily justifiable.
Note that for [ =1...L, Condition A.1 implies Condition A.2 since

W, Ah
RMS(W;AR) — 1AMl

1A
< ||
T [[Will, Jd

where we inductively assume RMS(Ah;) = O(1) (i.e., |[Ahy||, = v/d). This breaks at [ = L+ 1 since dj41 = dr 42 =
V = O(1) so that the bound becomes ©(v/d). We will come back to this issue in muP (Appendix B) and assume
both Condition A.1 and A.2 hold for SP.

= 0(1)0(1) = 6(1) Vi=1...L (29)

4We invoke without proof the fact that an iid sub-Gaussian random matrix B € R™*™ with zero mean and variance 1/m satisfies
[|B|ly = 14 +/n/m as n,m — oo, which is 2 for i =1...L and 1 for [ = L + 1 in the case B = W} at initialization. We assume that
subsequent updates are small enough to maintain ||W;||, = ©(1).



A.2.1 Learning rates (LLN vs CLT)

@ has the entry @1 = —mA;; where 4;; = Z?Zl Ol,i,jhf‘,‘;‘” measures the update-activation alignment. Let
i = (1/d) Z?Zl E[Oy,;,;h;'$"] and assume ||Cov((Ol,i7jhﬁ§W)]d-:1)||2 = O(1) (the mean may still grow in d). Then

Ay = du; + Op(Vd) (30)
where O, is big-O in probability. So there are two cases:

o ;i #0= Ay = O(d): Set = O(1/d) to make (2) = O(1).

i g
e ;i =0= A ,; =0O(Vd): Set n = O(1/V/d) to make @i =0(1).

These cases are so-called “LNN vs CLT” because (30) can be written as A; ;/d = .;+O,(1/v/d) which corresponds

to the law of large numbers and A;;/v/d = O,(1) which corresponds to the central limit theorem. Note that

alignment is not static; it seems inevitable that alignment will emerge during training given that weights and
activations coevolve. But committing to one specific assumption allows us to prove concrete results like the following.

Example A.1. Assume 03 =1 and 07 =1/d for [ =1...L + 1. Assume momentumless Adam for OPT. Assume
Condition A.1 and A.2 hold. Set

no = O(1)

= {@(1/d) if Adam is aligned Vel i1

O(1/V/d) if Adam is not aligned

Then the initial RMS is maintained for all training steps (Lemma D.4).

B muP

muP (Yang and Hu, 2020) relaxes Condition A.2 for [ = L + 1 and instead assumes the full upper bound:
RMS(Wp41Ahp41) = ©(Vd) (31)

One justification for (31) is that W}, = h_,h] , involves the logit gradient k), , whose mean is never zero, so
AW 1 will accumulate rank-1 components uhz 41 causing Wi and Ahy; to be aligned. Since this component
(@ in (28)) is not controllable by the learning rate, the only choice we have in order to make RMS(Ahr12) = ©(1)
is to scale the readout layer by 1/ V/d. This changes the forward and backward passes as

hivo = (1/Vd)Wriihrs T = (VAW k4,
W£+1 = (1/\@)h/1:+2h;:r+1

The gradients shrink by v/d, but it does not matter for magnitude-invariant optimizers like Adam for training
purposes. Nonetheless, muP also scales the embedding layer by v/d to have

hy = VdWoz W{ = Vdhhg

while at the same time changing o3 from 1 to 1/d to preserve the forward pass. This has the effect of restoring the
gradient scale for embeddings. Unlike SP, muP’s parameter multipliers force different LR exponents: with Adam,
take 79 = nr41 = 1/v/d and ny, = 1/d if aligned, n, = 1/+/d if not aligned. With these, the muP RMS scales in
Table 3 are maintained for any fixed number of training steps, under the same interaction assumptions as in the
general framework (Table 1).

C Omitting Elementwise Nonlinearity
Let ¢1 ... ¢r+2 denote elementwise functions. The forward pass computes activations hj ...hpyo from hg = x by

u = W_1h_; € R%
h = ¢y(w) € R® (32)



Model o8 03y [ hi-hpin [ Ahpyo [ R o [ W B [Wl [ WL W] [ W,
SP (Condition A.2) 1 1/d 1 1 1 1/Vd 1 1/vd 1/Vd
SP (31) 1 1/d 1 Vd 1 1/Vd 1 1/vVd | 1/vd
SP+readout (31) 1 1/d 1 1 1 1/d 1/V/d 1/d 1/d
SP-+emb/readout (31) || 1/d  1/d 1 1 1 1/d 1/vd 1/d 1/Vd

Table 3: Asymptotic RMS that needs to be maintained under different models. The Ahp o column denotes the
logit change per training step, which stays invariant with SP under Condition A.2 but grows as square-root width
V/d when relaxed to (31). Scaling the readout layer by 1/ V/d fixes the logit issue but also shrinks the gradients by
Vd. Scaling the embedding layer by v/d and shrinking the variance accordingly preserves the forward pass while
upscaling the embedding gradient (muP).

The gradient wrt. the logits is h} ., = softmax(hr42) —y € [~1,1]V. By the chain rule, the gradients wrt.
hp41...hy and Wi ... Wy are computed as

U = Gy (wig1) © hyyy € R+ (33)

W= WTuf,, € R

W/ = ujy b € RIwxh

We assume that ¢; is A-Lipschitz |¢;(a) — ¢ (b)| < Ala — b| for some constant A > 0. Then |¢)| < A (this holds at
kinks using sub-gradients), so when we view (32) and (33) as functions of the widths d; ...dL12, we have

hii = ¢i(uri) = ¢1(0) + O(uy )

UEH,Z‘ = ¢2+1(Ul+1,i) X h2+1,i = 0O( 2+1,i)

All common activation functions are Lipschitz (ReLU/tanh/identity A = 1, sigmoid A = 1/4) and also usually
satisfy ¢;(0) =0 so

hy = O(Wi—1hi—1)
hi = O(WlTh2+1)

(i.e., ¢; does not change the asymptotic behavior of the input in either the forward nor the backward pass).

D Lemmas
Lemma D.1. In the first forward and backward pass,
e (Activations): E[h] = 04, and Cov (h;) = o2 | E[||h_1||*]1g, for I =1...L+2.

e (Logit gradient): E[h} ,] = (1/V)1y —y. A first-order approximation of Cov (h/, ,,) = Cov (softmax(hr2))
around hrio = Oy is 0’%+1E[||hL+1||2]((1/V2)IV — (1/VH1y1]).

e (Activation gradients): E[h]] = 04, and Cov (h]) = o7E[||h},[|*1g, for I = L+1...1.

o (Weight gradients): E[W/] = 0q,,,xq, and Var(W/, ;) = E[(h;

11 |BE,] for | = L4 1...0 with zero
correlation except within the columns of W7} 11

Proof. (Activations): E[h] = E[W;_1hi_1] = E[W;_1]E[h_1] = 04 since W;_y L h;_; at initialization and
E[I/Vlfl,i,j] = 0. Then Cov (hl) = E[hlhl—r} = E[V[/lflhlflhl—r_lwl—il] has ZkytE[VVlfl,i,lefl,j,t]E[hlfl,khlfl,t]
as the (4, j)-th entry, which is zero unless i = j since the rows of W;_; are independent. The i-th diagonal entry is
>k E[V[/lz—l,i,k]E[th—l,k] = 012—1E[||hl71”2] (which is g at [ = 1).

(Logit gradient): Let p = softmax(hz2). Conditioned on any hzy1, the coordinates of hy o = Wry1hri1 € RV



are iid (since the rows of Wiy are iid), in particular exchangeable. This implies E[p;] = 1/V.° Thus E[h}_,] =
Elp] —y = (1/V)1y —y. Since Cov (h],,) = Cov (p) and the covariance of random variables bounded in [0, 1]
cannot exceed 1/4, each entry is accordingly bounded. Let J := Vpsoftmax(h)|n—o, = (1/V)I — (1/V?)1y 1],
denote the Jacobian of softmax at 0y . Then the first-order approximation of softmax around Oy evaluated at hz 4o
is p=(1/V)1ly + Jhrys. Then Cov (hf,) = Cov (p) = Cov (p) = JCov (hp42) J ' = U%HE[HhLHHZ}JJT where
JIT = 1)V Iy — (1/V3)1y1].

(Activation gradients): Let }Nll+1 denote an iid copy of h;41 sampled by independently re-drawing :VVO e WLH and
re-computing forward/backwa}rd (“ghost”). Clezjrly hi+1 and h;yq are equal in distribution but h;4+; L Wi, thus
E[n)] = EW,"hj,,] = E[W,"h},,] = E[WZ]TE[h;H}N: Odi' The covariance is then Covghii,th) = E[h} by ;] =
2ot BWk Wi jhisq whign o] = 200 e EIWik Wil i ] = 25 BIWLk, Wi s B[Ry yhiyq ). This is zero

if i # j and o7E[||h, ]|?] otherwise.

(Weight gradients): We also have hyy1 L hy by construction, thus E[W}] = E[h),  h] = E[ﬁgﬂhl—r] =E[h),]E[l]".
But E[hy] = 04, if I > 1 and E[R]] = 04, from above, so E[W/] = 04,,,xq, for all I = 0...L + 1. Then
Cov(W/; s Wige) = EBIW/; Wiyl = Elhyy higy whihid] = Elhygy by pheghee] = Bl hig oJB ).
This is zero if j # ¢ (since E|hy jh ] =0), or 1 € {0... L} and i # k (since E[hj,, ;b ;] = 0). O

Lemma D.2. Let

v = RMSNorm(u) := RMLS(u) =Vdu

where @ = u/ ||u]| (we omit epsilon and fix gating to 1 for simplicity). Then
e v = RMSNorm(cu) for all ¢ > 0 with RMS(v) = 1 and ||v|| = V/d.

e Let gin, = ‘g—f denote the incoming gradient and gou; = g—ﬁ the outgoing gradient. Then

g
Jout = RMS(U)

where gifl is the component of g;, perpendicular to w.

Proof. The first statement is obvious. The second statement follows from the Jacobian:

VRMSNorm(u) = m([ —au')

Lemma D.3. Let hg = z € {0, 1}V and define the forward pass

u; = Wi_1hj_1 h; = RMSNorm(u;) Vi=1...L+1

hpyo=Wriihr g
Then for all 0§ ...07,, > 0 with 67 | = Q(1/d), in the infinite-width regime:
e Var(hj)=1fori=1...L+1 and Var (hr42) = Q(1).
e E[||h] 5l?] =©(1), Var (W], ;) = ©(1), and Var (h}_,) = O(c},,).

5More formally, hr 12 = Phy o for any permutation matrix P € {0,1}. Given any i,j, we can pick any P such that P; ; = 1 and
have

E[p;]=E

eXp((PhL+2)i) :| _E |: exp(hL+2,j) — E[p]]

Sk exp((Phiy2)k) Y1 exp(hrizr)
Thus E[p;] = 7 for some constant w > 0 for ¢ =1...V. Since E[ZY=1 pi] = ZY=1 E[p;] = Vm = 1, we must have 7 = 1/V. Note that

this bypasses the argument that E[softmax(hy,42)] = softmax(E[hr+2]) (not true in general) and Jensen’s inequality (exact only for
constants and linear functions).



e Var (h)) = O(c},,) and Var (W/) = @(U:ng) forl=1"L...1
l

e Var (Wj) = @(%)

0
Proof. The forward pass is obvious. The backward pass for the cross-entropy loss is
Y o = softmax(hr42) —y
/L+1 = WLT+1h/L+2 W1£+1 = +2hL+1
hy =W, ), W/ =uj b Vi=L...0
where u) = g—fl forl=1...L+1is given by (Lemma D.2)

"
/ hl

U, = m h;/ = (Id — ’(_Llﬂl—r) h;

At initialization Var (h]') = ©(Var (h})).% Critically, since u; = W;_1h;_1 has identically distributed entries with
zero mean for [ = L 4+ 1...1 at initialization, we may treat the RMS as constant variance in the infinite-width
regime:

Var (u1) = Var (Woz) = o} ifl=1
V.

RMS(u;)* =
(w) {Var (u;) = Var (Wi_1hj—1) = 0f_jdVar (hy_1) = o} (d ifl>2

This implies for [ = L...1:

Var (h]) = Var (W, ul,,) = Var ( iy ) _ Var (W,"hily,) _ ofdVar (b,
1) = =

W — ) — V 11
U RMS (uip1) RMS (u/11)? o2d ar (hi'1)
thus Var (h)) = Var (h},,) = ©(0% ;). Likewise for | = L...1:

Var (b, h)')  Var (h},,) Var (hl) Var (hy/,) _6 (O’%+1)

Var (W/) = Var (u,,h; ) = =
ar (W) ar (ujy by ) = RMS (u11)? o?d o?d ofd

Finally, for the relevant column of W}, the variance is

ar /I 0'2 1
Var (Wy) = Var (u;) = R\1</ISE ; @< ‘L’3+>

O

Lemma D.4. Assume 0 =1 and 07 =1/d for l =1...L+ 1. Assume momentumless Adam for OPT. Assume
Condition A.1 and A.2 hold. Set

©(1/d)  if Adam is aligned
=0(1 = l=1...L+1 4
o =0 n {@(1/\/&) otherwise v * (34)
Then the following invariants hold at all training steps:
RMS(Wy) = ©(1) (35)
RMS(W;) = ©(1/Vd) Vi=1...L+1 (36)
RMS(h;) = ©(1) Vi=1...L+2 (37)
RMS(h7 y,) = ©(1) (38)
RMS(h}) = ©(1/Vd) Vi=L+4+1...1 (39)
RMS(W7,,) = ©(1) (40)
RMS(W/) = ©(1/Vd) Vi=L...0 (41)
|12 = ||m)1? — (@] h))% = E[||8)|*] = El||k}]|°] — El(@] k})2] = (d — 1)Var(h]) = Var (h}) = (1 — 1/d)Var(h}).



Proof. Since RMS coincides with standard deviation for variables with zero-mean iid elements (exact in the infinite-
width regime, w.h.p. in general), the base case (i.e., the initial forward/backward pass) is immediate from the given
initialization by taking the square-root of the first row of Table 2.

Assume (36-41) hold and consider a new forward/backward pass. Adam specifies AW, ; ; = —mnsign(W, ;) =
O(m). We have AWy ; ; = ©(1) and thus Wy ; ; + AWy ; j = ©(1) +©O(1) = O(1) per element, so (35) is maintained.
For [ = 1...L+ 1, we have AW, ;; = ©(n;) where 1, is ©(1/d) or ©(1/v/d). In either case, W ;; + AW, ; =
O(1/Vd) + ©(n;) = ©(1/+/d) per element (since 1/v/d > 1/d), so (36) is maintained.

Likewise for the activations, it is sufficient to show Ah; is of the same order as h; per element (i.e., ©(1)). At
I =1 we have Ahy = AWya = col(AW,) where AWy ; ; = O(1), so we are done. For I =1...L + 1, assume that

Ahy; = O(1) (equivalently ||Aly||, = ©(V/d)) and consider
Ahl+1 = Wi Ah; + AWlh?ew
S~ N—
For the first term, we have RMS(u) = ©(1) from Condition A.2. For the second term, we have

O(nid) if p s #0

vi = =L = —m(dp + Op(\/a)) - {6(771\/&) otherwise

where O, is big-O in probability. By our choice of the learning rate (34), this is ©(1) always. Thus (37) is
maintained.

For the activation gradients, (38) is trivial since b}, € [~1,1]V. For l =L+ 1...1, since hj = W, h], we have

Wil [P ],
Vd

which uses Condition A.1 and [|hj,,[l2 = ©(1) inductively (||h7,,ll2 = ©(1) since V' is constant). Thus hj, =
O(1/+/d) and (39) is maintained.

RMS(h)) < = 0(1)0(1/Vd) = ©(1/Vd)

For the weight gradients W/ = hj,,h, we make similar arguments. At I = L + 1 we have |[W]  [lr <
17, oll2llhrsille = ©(1)O(Vd) = ©(v/d) and thus RMS(W; ) = ©(Vd/v/d) = ©(1). Note that RMS(W}_ ) =
O(|W}.1llr/Vd) again because V is constant. For [ = L...0 we have |[W/||p < ||hj|2lllull2 = ©(1)O(Vd) =
O(V/d) and thus RMS(W}) = ©(v/d/d) = ©(1/+/d). So (40) and (41) are maintained.

Lemma D.5. Under (1) and (2), (3-5) hold.
Proof. For the forward pass, the base case is

Var (hi;) = Var (d~*col;(Wy)) = d~2% Var (Wy) = d~(0tbo)
Forl=1...L+ 1, using the fact that W; and h; are independent at initialization,

d d
Var (hit14) = Var [ d=% Z Wiihij | = d—32m ZVar (Wii;) Var (h ;) = dt—2(atb) vy (hij)
Jj=1 j=1
— gi—2(atb) g(1-1)=2(, 25 antb)

= dl—Q(ZZZO ak+by)

For the backward pass, since V' = ©(1) and hf ,, ; € [~1, 1], the base case is

14 14
Var (h'LJrl’i) = Var | d~ %+ ZWL+1,j,ih/lJ+2,j = g~ 2(@rt1t+bri) gy Z h/L+2,j _ @(d—2(0L+1+bL+1))

j=1 =1

10



Forl=1L...1,

d
Var (hy ;) = Var | d™ Y Wi jhiy
j=1
d ~ ~
= Var [ d™" Z Wby, (hi44 is a ghost variable as defined in the proof of Lemma D.1)
j=1
d ~
=d*Var [ > Wi ihiy
j=1

d
= d 2 ZVar (W15,:) Var <~2+1,j) (since hy41 and W; are independent and elementwise iid)
j=1
_ d172(al+bl)dL7l72(Z,le+1 ar+bi)

_ d(L'H)—l—?(Z;le ap+by)
Likewise for the weight gradients, the base case is

Var (W},,) = Var (diaL“illL_,'_Q’ihL_,_l’j) — 420 Var (ﬁ’Hz,i) Var (hp1.7)

L+1

_ @(d—2aL+1dL—2(Z£:0 (lk"rbk)) _ @(dL_Q((Zk:o ak+bk)—bL+1))
Forl=1L...1,
Var (V[/l’ﬂ-’j) = Var (dialﬁ;_,’_l’ihl,j)
= d?“Var (ﬁfﬂz) Var (hy,;)

— g2 o JEAD =D =2(TE ) antbi) o g(1=1)=2(0 25 ar+br)

— gL+ -2(( Pl aptbi)—by)
Finally for [ = 0,

! _ —a / —
Var (Wo,z',j) = Var (d Ohl,ixj) = {dzaosz( Poraktby) — gL—2((Zxky as+be)—bo)  if zj=1

11
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