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It is useful to view a matrix as representing a subspace. This is because it eliminates
redundancy. For instance, if columns correspond to different features of data, adding a
column that’s a scalar multiple of an exiting one doesn’t “improve” our data representa-
tion at all because the range of the matrix remains the same.

A key tool in comparing the ranges of a matrix pair is the concept of canonical angles
between subspaces. It is mentally helpful to assume a setting where we have N samples of
some object represented by d features in one view and d′ features in another. We assume
N ≥ max(d, d′) and organize these views as matrices X ∈ RN×d and Y ∈ RN×d′

. To be
fully general, let p = rank (X) and q = rank (Y ) with p ≥ q.

1 Canonical Correlations Between Matrices

Following [1], for i = 1 . . . q we will write σi(X,Y ) and call it the i-th canonical cor-
relation between X and Y to denote the cosine of the i-th canonical angle between
range (X) , range (Y ) ⊂ RN . Recall that the i-th canonical angle is the smallest angle
between any pair of nonzero vectors from range (X) and range (Y ) under the constraint
that they are view-wise orthogonal to vectors used to obtain the previous i − 1 canoni-
cal angles. Because the range is simply all possible linear combination of columns, this
problem can be posed as optimizing the column weights: for i = 1 . . . q, find

(ūi, v̄i) ∈ arg max
u∈Rd: Xu6=0

v∈Rd′ : Y v 6=0
〈Xu,Xuj〉=〈Y v,Y vj〉=0 ∀j<i

〈Xu,Y v〉
||Xu|| ||Y v||

(1)

whereupon the i-th canonical correlation is obtained as

σi(X,Y ) =
〈Xūi,Y v̄i〉
||Xūi|| ||Y v̄i||

∈ [0, 1]

Note that because we are maximizing, σi(X,Y ) corresponds to the cosine of an accute
angle between a vector in range (X) and a vector in range (Y ). Also, since the cosine
is invariant to scaling, we can consider without loss of generality the following simpler
objective equivalent to (1)

(ũi, ṽi) ∈ arg max
u∈Rd: ||Xu||=1

v∈Rd′ : ||Y v||=1
〈Xu,Xuj〉=〈Y v,Y vj〉=0 ∀j<i

〈Xu,Y v〉 (2)
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where we obtain σi(X,Y ) = 〈Xũi,Y ṽi〉.

As an exercise, it is useful to calculate the canonical correlations between X,Y ∈ R3×2

whose ranges form two planes with angle π/2 in R3. They must intersect (why?). Verify
that σ1(X,Y ) = 1 with solution unit vectors along the intersection and σ2(X,Y ) ≈ 0.707
with solution unit vectors orthogonal to the intersection. The last canonical correlation
can be viewed as a natural measure of difference between ranges.

The solution vectors themselves are interesting even though they are motivated simply as
instruments for calculating the canonical correlations. We call ai = Xũi and bi = Y ṽi the
i-th canonical vectors between X and Y . Their special property (besides being unit-
length) is that a>i bi = σi(X,Y ). In matrix form, we can organize A = X[ũ1 . . . ũq] and
B = Y [ṽ1 . . . ṽq] which are now both N × q orthonormal matrices. Note that range (B) =
range (Y ), so B is an orthonormal basis of range (Y ). But this is not just any orthonormal
basis (e.g., obtained by running Gram-Schmidt on the columns of Y )! It’s particular
orthonormal basis such that

A>B = diag (σ1(X,Y ) . . . σq(X,Y ))

It is easier to see the selectiveness of this subspace for range (A) ⊂ range (X) when p > q.
Suppose range (X) is a plane and range (Y ) is a line forming angle π/2 in R3. In this
case, there is only one canonical correlation with value σ1(X,Y ) ≈ 0.707. The canonical
vector b1 spans the entire range (Y ), but the canonical vector a1 spans a specific line in
range (X) that’s closest to range (Y ).

In general, we can pick m ≤ q columns Am, Bm ∈ RN×m of A and B corresponding
to the top m canonical correlations σ1(X,Y ) ≥ · · · ≥ σm(X,Y ). Then Am, Bm are
orthonormal bases of m-dimensional subspaces of range (X) , range (Y ) ⊂ RN that are
constructed according to the greedy canonical correlation maximization process above.
We will call these subspaces rank-m best-match subspaces between range (X) and
range (Y ).

2 How to Calculate Canonical Correlations

The q canonical correlations σ1(X,Y ) ≥ · · · ≥ σq(X,Y ) and the corresponding canonical
vectors A,B ∈ RN×q can be calculated in a rather roundabout manner by first obtain-
ing some orthonormal bases RX ∈ RN×p and RY ∈ RN×q of range (X) and range (Y ).
How we obtain RX , RY is not important (Gram-Schmidt, SVD, QR decomposition, etc.).
What is important is that because they are bases, their columns span all of the ranges.
Thus we can consider the following problem equivalent to (2) (note the changed dimen-
sions)

(ui, vi) ∈ arg max
u∈Rp: ||RXu||=1
v∈Rq : ||RY v||=1

〈RXu,RXuj〉=〈RY v,RY vj〉=0 ∀j<i

〈RXu,RY v〉
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and calculate σi(X,Y ) = 〈RXui, RY vi〉. But RX , RY are moreover orthonormal, and
this greatly simplifies the objective as

(ui, vi) ∈ arg max
u∈Rp: ||u||=1
v∈Rq : ||v||=1

u>uj=v>vj=0 ∀j<i

u>R>XRY v (3)

Hence from (3) we see that u1 . . . uq ∈ Rp and v1 . . . vq ∈ Rq are left/right singular
vectors of R>XRY ∈ Rp×q corresponding to the largest q singular values σ1(R>XRY ) ≥
· · · ≥ σq(R>XRY ). The i-th canonical correlation is given by

σi(X,Y ) = σi(R
>
XRY )

and orthonormal bases of rank-m best-match subspaces are given by

Am = RX [u1 . . . um] ∈ RN×m Bm = RY [v1 . . . vm] ∈ RN×m

3 Relation to Canonical Correlation Analysis

We assume that X ∈ RN×d and Y ∈ RN×d′
are full-rank: they have dimensions d and

d′. Let X̃ ∈ RN×d and Ỹ ∈ RN×d′
denote the matrices after centering (i.e., we subtract

the row average from every row). Since the matrices are full rank, a simple orthonormal

basis of range
(
X̃
)

is given by RX = X̃(X̃
>
X̃)−1/2 (likewise for Ỹ ). Thus we can find

orthonormal bases of rank-m best-match subspaces by computing the left Um ∈ Rd×m

and right Vm ∈ Rd′×m singular vectors of

R>XRY = (X̃
>
X̃)−1/2X̃Ỹ (Ỹ

>
Ỹ )−1/2 =: Ω

corresponding to singular values σ1(Ω) ≥ · · · ≥ σm(Ω). The i-th canonical correlation is
σi(Ω) and the orthonormal bases are

Am = X̃(X̃
>
X̃)−1/2Um ∈ RN×m Bm = Ỹ (Ỹ

>
Ỹ )−1/2Vm ∈ RN×m

These orthonormal bases are precisely the m-dimensional linear transformation of data
defined in CCA where we view rows of X,Y as samples of random variables. Thus CCA
is equivalent to finding rank-m best-match subspaces between the feature spans in two
views, after centering.
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