The Poisson Distribution

Karl Stratos

1 Definition

The **Poisson distribution** with parameter $\lambda > 0$, denoted by $\text{Poi}(\lambda)$, is a distribution over $\mathbb{N}_0 := \{0, 1, 2, ...\}$ such that the probability of any $k \in \mathbb{N}_0$ is

$$\operatorname{Poi}(\lambda)(k) = \frac{\lambda^k}{e^{\lambda}k!} \tag{1}$$

To remember this formula, first remember the Taylor series of e^x at $x = \lambda$ and divide both sides by e^{λ} ,

$$1 = \frac{1}{e^{\lambda}} + \frac{\lambda}{e^{\lambda}} + \frac{\lambda^2}{e^{\lambda}2!} + \frac{\lambda^3}{e^{\lambda}3!} + \cdots$$

Since the terms are positive and sum to 1, they form a valid distribution over \mathbb{N}_0 .

1.1 Interpretation

 $X \sim \text{Poi}(\lambda)$ represents the number of heads in infinitely many independent random coin tosses where $\mathbf{E}[X] = \lambda$ (aka. rate). Formally, let Bin(n, p) denote the binomial distribution over $k \in \mathbb{N}_0$,

$$\operatorname{Bin}(n,p)(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Since $Z \sim \text{Bin}(n, p)$ is equivalent to $Z = \sum_{i=1}^{n} Z_i$ where $Z_i \sim \text{Ber}(p)$ independently, we have $\mathbf{E}[Z] = np$. Now we fix $\lambda = np$ as constant take a limit on $n \to \infty$, which implies that $p = \frac{\lambda}{n} \to 0^+$. We can show that (Lemma A.1)

$$\operatorname{Poi}(\lambda)(k) = \lim_{n \to \infty} \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)(k)$$
 (2)

Since $\mathbf{E}[Z] = np$ and $\operatorname{Var}(Z) = np(1-p)$, we can also infer from (2) that $\mathbf{E}[X] = \lambda$ and $\operatorname{Var}(X) = \lambda$. Here are some plots from Wikipedia:

2 Properties

If $X_1 \ldots X_N$ where $X_i \sim \text{Poi}(\lambda_i)$ independently, then (Lemma A.2)

$$\sum_{i=1}^{N} X_i \sim \operatorname{Poi}\left(\sum_{i=1}^{N} \lambda_i\right) \tag{3}$$

This property can be used to justify a normal approximation of the Poisson variable (which is visually evident in the plot above).

Lemma 2.1. Let $X_{\lambda} \sim \text{Poi}(\lambda)$. As $\lambda \to \infty$, we have

$$X_{\lambda} \stackrel{\text{approx.}}{\sim} \mathcal{N}(\lambda, \lambda)$$
 (4)

Proof. WLOG we assume λ is a whole number. By (3), we can reparamterize $X_{\lambda} = \sum_{i=1}^{\lambda} X_i$ where $X_i \sim \text{Poi}(1)$ independently. By the central limit theorem, $\frac{1}{\lambda}X_{\lambda} \overset{\text{approx.}}{\sim} \mathcal{N}(1, \frac{1}{\lambda})$ or $X_{\lambda} \overset{\text{approx.}}{\sim} \mathcal{N}(\lambda, \lambda)$ as $\lambda \to \infty$.

Application 2.2 (Stirling's approximation¹).

$$n! \to \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \text{ as } n \to \infty$$
 (5)

Proof. By Lemma 2.1,

$$\begin{array}{lll} \mathrm{Poi}(n)(k) \approx \mathcal{N}(n,n)(k) & \Leftrightarrow & \frac{n^k}{e^n k!} \approx \frac{1}{\sqrt{2\pi n}} e^{\frac{(k-n)^2}{n}} \\ & \Rightarrow & \frac{n^n}{e^n n!} \approx \frac{1}{\sqrt{2\pi n}} \\ & \Leftrightarrow & n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \end{array} \tag{by choosing } k = n)$$

where the approximation becomes exact as $n \to \infty$.

Corollary 2.3. $\ln(n!) = n \ln n - n + O(\ln n)$

References

Robbins, H. (1955). A remark on stirling's formula. The American mathematical monthly, 62(1), 26-29.

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}}$$

For instance, with n = 10 we have $1 \le \frac{n!}{\sqrt{2\pi n \left(\frac{n}{e}\right)^n}} \le 1.0084$.

¹A non-asymptotic generalization is given by Robbins (1955): for all $n \in \mathbb{N}$,

A Lemmas

Lemma A.1.

$$\lim_{n \to \infty} \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)(k) = \frac{\lambda^k}{e^{\lambda}k!}$$

Proof. We have

$$\operatorname{Bin}\left(n,\frac{\lambda}{n}\right)(k) = \binom{n}{k}\frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k} = \frac{n(n-1)\cdots(n-k+1)}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}\frac{\lambda^{k}}{k!}$$

Thus by the usual property of a limit,

$$\lim_{n \to \infty} \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)(k) = \left(\lim_{n \to \infty} \frac{n(n-1)\cdots(n-k+1)}{n^k}\right) \left(\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^{n-k}\right) \frac{\lambda^k}{k!}$$

The first limit clearly converges to 1. More formally, distributing the denominator to the k terms in the numerator, and distributing the limit, we have

$$\lim_{n \to \infty} \frac{n(n-1)\cdots(n-k+1)}{n^k} = \lim_{n \to \infty} \left(1 - \frac{1}{n^k}\right) \cdots \lim_{n \to \infty} \left(1 - \frac{k-1}{n^k}\right) = 1$$

For the second limit, we have

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{n-k} = \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{-k} = \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = \frac{1}{e^{\lambda}}$$

where the last equality follows from the limit definition of e^{λ} .²

Lemma A.2. Let $X \sim \text{Poi}(\alpha)$ and $Y \sim \text{Poi}(\beta)$ be independent. Then $X + Y \sim \text{Poi}(\alpha + \beta)$.

Proof. We show that $Pr(X + Y = k) = \frac{(\alpha + \beta)^k}{e^{\alpha + \beta}k!}$:

$$Pr(X + Y = k) = \sum_{i=1}^{k} Pr(X = i \land Y = k - i)$$

$$= \sum_{i=1}^{k} Pr(X = i) Pr(Y = k - i)$$

$$= \sum_{i=1}^{k} \left(\frac{\alpha^{i}}{e^{\alpha}i!}\right) \left(\frac{\beta^{k-i}}{e^{\beta}(k-i)!}\right)$$

$$= \frac{1}{e^{\alpha+\beta}} \sum_{i=1}^{k} \frac{\alpha^{i}\beta^{k-i}}{i!(k-i)!}$$

$$= \frac{1}{e^{\alpha+\beta}k!} \sum_{i=1}^{k} \frac{k!}{i!(k-i)!} \alpha^{i}\beta^{k-i}$$

$$= \frac{1}{e^{\alpha+\beta}k!} (\alpha+\beta)^{k} \qquad (binomial theorem)$$

²It can also be derived directly. Let
$$u = \ln(1 - \lambda/n)$$
 where as $n \to \infty$, we have $u \to 0^-$. We also have $n = \lambda/(1 - e^u)$. Then

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = \lim_{n \to \infty} \exp\left(n \ln\left(1 - \frac{\lambda}{n}\right)\right) = \lim_{u \to 0^-} \exp\left(\frac{\lambda u}{1 - e^u}\right) = \exp\left(\lambda \left(\lim_{u \to 0^-} \frac{u}{1 - e^u}\right)\right) \stackrel{*}{=} \exp\left(\lambda \left(\lim_{u \to 0^-} \frac{1}{-e^u}\right)\right) = e^{-\lambda}$$
where $\stackrel{*}{=}$ uses Bernoulli's rule.