# The Poisson Distribution 

Karl Stratos

## 1 Definition

The Poisson distribution with parameter $\lambda>0$, denoted by $\operatorname{Poi}(\lambda)$, is a distribution over $\mathbb{N}_{0}:=\{0,1,2, \ldots\}$ such that the probability of any $k \in \mathbb{N}_{0}$ is

$$
\begin{equation*}
\operatorname{Poi}(\lambda)(k)=\frac{\lambda^{k}}{e^{\lambda} k!} \tag{1}
\end{equation*}
$$

To remember this formula, first remember the Taylor series of $e^{x}$ at $x=\lambda$ and divide both sides by $e^{\lambda}$,

$$
1=\frac{1}{e^{\lambda}}+\frac{\lambda}{e^{\lambda}}+\frac{\lambda^{2}}{e^{\lambda} 2!}+\frac{\lambda^{3}}{e^{\lambda} 3!}+\cdots
$$

Since the terms are positive and sum to 1 , they form a valid distribution over $\mathbb{N}_{0}$.

### 1.1 Interpretation

$X \sim \operatorname{Poi}(\lambda)$ represents the number of heads in infinitely many independent random coin tosses where $\mathbf{E}[X]=\lambda$ (aka. rate). Formally, let $\operatorname{Bin}(n, p)$ denote the binomial distribution over $k \in \mathbb{N}_{0}$,

$$
\operatorname{Bin}(n, p)(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Since $Z \sim \operatorname{Bin}(n, p)$ is equivalent to $Z=\sum_{i=1}^{n} Z_{i}$ where $Z_{i} \sim \operatorname{Ber}(p)$ independently, we have $\mathbf{E}[Z]=n p$. Now we fix $\lambda=n p$ as constant take a limit on $n \rightarrow \infty$, which implies that $p=\frac{\lambda}{n} \rightarrow 0^{+}$. We can show that (Lemma A.1)

$$
\begin{equation*}
\operatorname{Poi}(\lambda)(k)=\lim _{n \rightarrow \infty} \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)(k) \tag{2}
\end{equation*}
$$

Since $\mathbf{E}[Z]=n p$ and $\operatorname{Var}(Z)=n p(1-p)$, we can also infer from (2) that $\mathbf{E}[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$. Here are some plots from Wikipedia:


## 2 Properties

If $X_{1} \ldots X_{N}$ where $X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$ independently, then (Lemma A.2)

$$
\begin{equation*}
\sum_{i=1}^{N} X_{i} \sim \operatorname{Poi}\left(\sum_{i=1}^{N} \lambda_{i}\right) \tag{3}
\end{equation*}
$$

This property can be used to justify a normal approximation of the Poisson variable (which is visually evident in the plot above).

Lemma 2.1. Let $X_{\lambda} \sim \operatorname{Poi}(\lambda)$. As $\lambda \rightarrow \infty$, we have

$$
\begin{equation*}
X_{\lambda} \stackrel{\text { approx. }}{\sim} \mathcal{N}(\lambda, \lambda) \tag{4}
\end{equation*}
$$

Proof. WLOG we assume $\lambda$ is a whole number. By (3), we can reparamterize $X_{\lambda}=\sum_{i=1}^{\lambda} X_{i}$ where $X_{i} \sim \operatorname{Poi}(1)$ independently. By the central limit theorem, $\frac{1}{\lambda} X_{\lambda} \stackrel{\text { approx. }}{\sim} \mathcal{N}\left(1, \frac{1}{\lambda}\right)$ or $X_{\lambda} \stackrel{\text { approx. }}{\sim} \mathcal{N}(\lambda, \lambda)$ as $\lambda \rightarrow \infty$.
Application 2.2 (Stirling's approximation ${ }^{1}$ ).

$$
\begin{equation*}
n!\rightarrow \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

Proof. By Lemma 2.1,

$$
\begin{array}{rlrl}
\operatorname{Poi}(n)(k) \approx \mathcal{N}(n, n)(k) & \Leftrightarrow & \frac{n^{k}}{e^{n} k!} \approx \frac{1}{\sqrt{2 \pi n}} e^{\frac{(k-n)^{2}}{n}} \\
& \Rightarrow & \frac{n^{n}}{e^{n} n!} \approx \frac{1}{\sqrt{2 \pi n}} & \quad(\text { by choosing } k=n) \\
& \Leftrightarrow & n! & \approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
\end{array}
$$

where the approximation becomes exact as $n \rightarrow \infty$.
Corollary 2.3. $\ln (n!)=n \ln n-n+O(\ln n)$

## References

Robbins, H. (1955). A remark on stirling's formula. The American mathematical monthly, 62(1), 26-29.

[^0]For instance, with $n=10$ we have $1 \leq \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}} \leq 1.0084$.

## A Lemmas

## Lemma A.1.

$$
\lim _{n \rightarrow \infty} \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)(k)=\frac{\lambda^{k}}{e^{\lambda} k!}
$$

Proof. We have

$$
\operatorname{Bin}\left(n, \frac{\lambda}{n}\right)(k)=\binom{n}{k} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k}=\frac{n(n-1) \cdots(n-k+1)}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k} \frac{\lambda^{k}}{k!}
$$

Thus by the usual property of a limit,

$$
\lim _{n \rightarrow \infty} \operatorname{Bin}\left(n, \frac{\lambda}{n}\right)(k)=\left(\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{n^{k}}\right)\left(\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n-k}\right) \frac{\lambda^{k}}{k!}
$$

The first limit clearly converges to 1 . More formally, distributing the denominator to the $k$ terms in the numerator, and distributing the limit, we have

$$
\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{n^{k}}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n^{k}}\right) \cdots \lim _{n \rightarrow \infty}\left(1-\frac{k-1}{n^{k}}\right)=1
$$

For the second limit, we have

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n-k}=\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n} \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{-k}=\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=\frac{1}{e^{\lambda}}
$$

where the last equality follows from the limit definition of $e^{\lambda} .^{2}$
Lemma A.2. Let $X \sim \operatorname{Poi}(\alpha)$ and $Y \sim \operatorname{Poi}(\beta)$ be independent. Then $X+Y \sim \operatorname{Poi}(\alpha+\beta)$.
Proof. We show that $\operatorname{Pr}(X+Y=k)=\frac{(\alpha+\beta)^{k}}{e^{\alpha+\beta} k!}$ :

$$
\begin{aligned}
\operatorname{Pr}(X+Y=k) & =\sum_{i=1}^{k} \operatorname{Pr}(X=i \wedge Y=k-i) \\
& =\sum_{i=1}^{k} \operatorname{Pr}(X=i) \operatorname{Pr}(Y=k-i) \\
& =\sum_{i=1}^{k}\left(\frac{\alpha^{i}}{e^{\alpha} i!}\right)\left(\frac{\beta^{k-i}}{e^{\beta}(k-i)!}\right) \\
& =\frac{1}{e^{\alpha+\beta}} \sum_{i=1}^{k} \frac{\alpha^{i} \beta^{k-i}}{i!(k-i)!} \\
& =\frac{1}{e^{\alpha+\beta} k!} \sum_{i=1}^{k} \frac{k!}{i!(k-i)!} \alpha^{i} \beta^{k-i} \\
& =\frac{1}{e^{\alpha+\beta} k!}(\alpha+\beta)^{k}
\end{aligned}
$$

(binomial theorem)

[^1]where $\stackrel{*}{=}$ uses Bernoulli's rule.


[^0]:    ${ }^{1}$ A non-asymptotic generalization is given by Robbins (1955): for all $n \in \mathbb{N}$,

    $$
    \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n}}
    $$

[^1]:    ${ }^{2}$ It can also be derived directly. Let $u=\ln (1-\lambda / n)$ where as $n \rightarrow \infty$, we have $u \rightarrow 0^{-}$. We also have $n=\lambda /\left(1-e^{u}\right)$. Then
    $\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=\lim _{n \rightarrow \infty} \exp \left(n \ln \left(1-\frac{\lambda}{n}\right)\right)=\lim _{u \rightarrow 0^{-}} \exp \left(\frac{\lambda u}{1-e^{u}}\right)=\exp \left(\lambda\left(\lim _{u \rightarrow 0^{-}} \frac{u}{1-e^{u}}\right)\right) \stackrel{*}{=} \exp \left(\lambda\left(\lim _{u \rightarrow 0^{-}} \frac{1}{-e^{u}}\right)\right)=e^{-\lambda}$

