Numerical Precision for Deep Learning

Karl Stratos

1 Floats

We approximate R with 27 bitstrings b € {0, 1}B. A “normal” floating-point number, in short float', assumes
a partition of the bitstring b = (b1, 2, f) where 2z € {0,1}°\ {0, 1.} encodes the exponent and a significand (or
mantissa) f € {0,1}” encodes the fractional part. Given a base (or radix) 3 € {2, 10}, it computes

Fs(b) = (=1 x (14 fif "+ + f,B7F) x gE(3) 2 & {0, 1.} (1)
where Eg(z) € Z is a signed integer computed as

Eg(2) = (2185 4+ zem1B42.) — (81— 1) 2 & {01} (2)

e

%:11. Thus Eg(z) ranges from Epiy = 2— 71 t0 Epax = %

Thus (1) ranges from Ny, = BEmin t0 Npax = (%) BEmax . Since (1) divides any [3%, 37!] into AP uniformly
spaced values, we have fewer floats away from zero (e.g., the next float after 5P is 5P + 8 —1). Here is an illustration
from Wikipedia:

The first term, for z & {0,, 1.}, ranges from 1 to

Bitstrings with z € {0, 1.} are used for special cases. Under the IEEE 754 standards, a complete float system is
given by

(—1)" x (L4 fif~t+ -+ f,87P) x BB+ if 2 ¢ {0, 1.} (normal)
(=1 x (0+ f1B7 1+ + fpB7P) x fFminif 2 =0, and f # 0, (subnormal)
Fs(b) =< (=1)" x 0 if z =0, and f =0, (signed zeros) (3)
(—1)" x 0 if z=1. and f =0, (signed infinities)
NaN(f) if z=1. and f # 0, (NaNs)
The smallest subnormal magnitude is Syin = BEmin=P and the largest Smax = (% — 1) BEmin The signed
zeros work as expected in most cases (e.g., 0 = —0), but there are certain corner cases such as % # }0 (the former

evaluates to co while the latter to —oc). NaNs occur as outputs of illegal operations (e.g., 2, log(—1), co x 0) and
are categorized into either “signaling” (i.e., throw an exception) or “quiet” types based on the significand. NaNs
propagate: any operation involving a NaN generally outputs a NaN.

1.1 Rounding Errors

For simplicity, consider a positive real number 0 < & < Nyax. Let & denote the float closest to «. Then & € {z, 2y}
where z;, < zy are consecutive floats. Since zyy — x;, = 7P for some exponent t € [Ewyin, Fmax], the absolute

rounding error can be bounded as |z — &| < %Bt_p. But this bound becomes loose for large t. A more popular
T—T
xr

measure is the relative rounding error | ‘ which can be bounded as

T —T \x — g%| /3” p pt—p /5” p 1
= < < < = —_[37P = 4
x - 2x T 2x;, — 28t 2 €mach ()

X

The last term €y, 1S called machine epsilon representing the maximum error when rounding to 1.

INot to be confused with the float data type in C which specifically refers to the 32-bit floating-point format in binary base

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/IEEE_754

1.1.1 Exact rounding

IEEE 754 mandates ezact rounding. It means that the result of any float operation must be calculated exactly first,
then rounded. Exact rounding can be achieved by extended precision. For instance, CPUs have a part dedicated
to float operations (aka. float unit or FPU) that support extended precision. A popular format is the x86 extended
precision format that uses B = 80 bits. Unlike CPUs, GPUs may not support a specific extended precision format,
but they achieve IEEE 754 compliance through other means (e.g., performing intermediate calculations in higher
precision).

2 Floats in Binary Base

While floats (3) can be defined using any integer base 5 > 2, the binary base § = 2 is the dominant choice for
clear reasons like hardware efficiency, consistency with integer representation (which is binary), and better precision
(e.g., (4) is minimized with 8 = 2). An exception is when precision with respect to a specific nonbinary base is
paramount (e.g., 8 = 10 in finance). Using 5 = 2, we can simplify the constants as

(machine epsilon) Emach = 2~ P
(exponent range) Eonin =1 — Epax Foax =271 -1
(normal range) N = 28min Niax = (1 — €macp) 2Em 1
(subnormal range) Spin = 2Fmin=P Simax = (1 — 2€macn)25

We summarize some binary formats below. For readability, we approximate small or large values by powers of ten
(e.g., for float16 we have Spi, = 2724 ~ 5.96 x 1078).

Name B € b Emin Emax Smin Nmin Nmax €mach
float4 41 2 1 0 1105 1 3 0.25
float8 81 4 3 —6 7 | = 0.002 ~ 0.02 240 0.0625
E4M3 (non-compliant™) 8| 4 3 —6 7 | ~0.002 ~ 0.02 448* 0.0625
E5M2 81 5 2 —14 15 | =0.00002 =~ 0.00006 57344 0.125
float16 (half precision) 16| 5 10 —14 15 | ~ 1078 ~ 0.00006 65504 ~ 0.0005
bfloat16 6| 8 7] —126 127 | ~ 1074 ~ 10738 ~ 103 | ~0.004
float32 (single precision) |32 | 8 23| —126 127 | ~ 1074 ~ 10738 ~10%® | ~ 1078
float64 (double precision) | 64 | 11 52 | —1022 1023 | ~ 1073** ~1073% ~10%08 | ~ 10716

Double precision (float64) can express extreme values and is useful for precision-critical tasks such as gradient
checks (Appendix B). Single precision (float32) is often the default format in deep learning (e.g., PyTorch Float-
Tensors). Half precision (float16) halves the memory requirement, but its limited range is often ill-suited for model
training. In response, bfloat16 allocates more bits to the exponent to match the range of single precision. The
8-bit formats have only 2% = 256 numbers to represent R (e.g., this table). How to allocate the precious bits (i.e.,
8 = e + p) is task-dependent [9]. E4M3 increases the range of float8 by deviating from IEEE 754 (e.g., it has no
infinities) [11]. An even more extreme situation is 4-bit formats which have only 2* = 16 numbers. float4 is the
lowest-bit format that satisfies all IEEE 754 standards, but is pitifully limited. Recent works explore more useful
definitions of 4-bit or even lower-bit floats based on quantile quantization (Appendix D).

2.1 Quirky Examples

We compile a few examples in Python (64-bit floats) to illustrate the quirky behavior of float arithmetic.

format (0.1, ’.257) # 0.1000000000000000055511151 (64-bit)

format (np.float32(0.1), ’.25°) # 0.1000000014901161193847656

(0.1 + 0.2) + 0.3 == 0.1 + (0.2 + 0.3) # False

262144 + 0.01 == 262144 # False (64-bit)

np.float32(262144) + np.float32(0.01) == np.float32(262144) # True
np.zeros (1) == -np.zeros(1l) # True

np.ones (1) / np.zeros(1l) == np.ones(l) / -np.zeros(1l) # False (inf vs -inf)

np.sqrt((3 + 4 + 1 * 3) / 2) + np.nan + 7 * 3 + 1 # nan

The examples demonstrate that (1) decimal fractions are not precisely represented in binary base; (2) additions (and
multiplications) are not associative due to rounding errors; (3) adding large and small numbers is more susceptible
to rounding errors than numbers in a similar range; (4) NaNs propagate.

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Minifloat#Table_of_values

2.2 Non-Numerical Data Types

Numerical data types, such as floats for real numbers, allow us to directly control memory usage by choosing a
specific precision level for storing values. It is interesting to contrast them with non-numerical data types, such as
characters, which do not allow for such control. See Appendix C for an overview of how (Unicode) characters are
stored in memory.

3 Quantization

Let X be a set of B’-bit floats in range [Xmin, Xmax|- Pick B < B’ and Z be a set of 2Z numbers in range [Zmin; Zmax)
representing a B-bit data type (i.e., all representable values). A quantization is a function @ : X — Z. An
associated dequantization is a function D : Z — X such that x ~ D(Q(x)) for all x € X.

If Z is another IEEE-compliant float format, quantization can be as simple as bit shifting (e.g., in mixed-precision
training, Appendix A). For instance, to map float32 to bfloat16, we can simply keep the exponent bits (since
they both have e = 8) and truncate the significand to the right (“rounding toward zero”). For dequantization, we
just pad the significand with zeros. More explicitly,

Q(z) =z >> 16 D(z) =x<< 16

where >> and << are the bit-shift operators. In general, however, quantization scales and shifts the range of X' to
match the range of Z then finds nearest neighbors. Mathematically,

Q(z) = nearestz (E + b) (5)
S
D(z) =s(z =) (6)
Xmax - Xmin _ ZminXmax - Zmamein
5= Zmax - Zmin b= neaTGStZ (Xmax - Xmin) (7)

where (6) is obtained by solving for z in (5) (ignoring the lossy operation); (7) is obtained by solving the linear
system Xpmin = $(Zmin — b) and Xmax = $(Zmax — b). The scale s € R is represented as a Bj-bit float, where By is
the bit budget we specify for scales. The bias b € Z is a B-bit number and called the “zero point” since Q(0) = b
and D(b) = 0. If we choose the ranges to be symmetric, namely X, = Xpax = —Xmin and Zy = Ziax = —Zmin,
then b = 0 and (5-7) simplify to scale quantization:

Q(x) = nearest z (E) D(z) = sz s= (8)
s

In addition to eliminating the bias term, (8) quantizes zero exactly (i.e., Q(0) = D(0) = 0), a useful property in

deep learning. We can always take the absolute maximum X, = absmax(X’) to achieve a symmetric input range.

The target range depends on the data type: see the following table for examples.

Z min(Z) max(Z) | scale quant s b
B-bit signed integers —2B-1 9B-1_ yes al;;riiai(x) 0
B-bit unsigned integers 0 28 1 no max(gLiTln(X) —nearestuint(%m)
B-bit NormalFloat (App. D.1) -1 1 yes absmax(X) 0
The B-bit signed integers have the asymmetric range Z = {—25*1 2B 1} under two’s complement, so we

choose Z, = 2B~ — 1 to have a symmetric target range, throwing away the lowest value. In the rest of the note,
we will assume scale quantization for simplicity.

3.1 Precision-Memory Tradeoff

In practice, we partition X = X; U --- U X, and quantize each X; independently, introducing n < |X| scales
$1...8, € R that need to be stored in memory. Since X is typically a set of weight tensors corresponding to
different layers in deep learning (e.g., a 2D matrix in a linear layer, a 3D filter in a convolutional layer), natural
scaling schemes include:

e Tensor-wise: Each weight tensor is quantized independently.

https://wiki.python.org/moin/BitwiseOperators
https://en.wikipedia.org/wiki/Two%27s_complement

e Group-wise: A weight tensor is split into semantically coherent groups (e.g., heads in multi-head attention
[13], channels in a filter, rows/columns of a matrix), each of which is quantized independently.

e Block-wise: A weight tensor containing HM parameters is split into H blocks of size M (a hyperparameter),
each of which is quantized independently.

e Hybrid: A weight tensor is first split into groups (e.g., along a specified axis), then each group is split into
blocks of a specified size [14].

A benefit of block-wise scaling is that all quantization units have the same size, making it easy to calculate how
much memory we need. Specifically, if we quantize the tensor T into a B-bit data type using block size M; and
Bi-bit scales, the number of bits to store the quantized T is

|T| (B +]\le) 9)

where % is the additional bits per parameter. For example, quantizing a model from 32-bit to 8-bit with group

size 64 and 32-bit scales reduces the memory requirement by a factor of 3.76.

To further reduce memory, we can quantize the scales again (aka. double quantization) [3]. Since the scales are
all positive, they are mean-centered for symmetric quantization. If we quantize the (mean-centered) scales into a
Bs-bit data type (where By < Bj) using group size My and Bs-bit (meta-)scales, the number of bits to store the

double-quantized T is
B B
IT| x <B+2+ 2) (10)

M, MM,

For example, choosing By = 8, B3 = 32, and My = 256 improves the above memory reduction factor to 3.93.

3.2 Post-Training Quantization

Post-training quantization (PTQ) refers to quantizing the parameters of a trained model to reduce the model
size, enabling inference or finetuning with models too big to fit in available GPUs.? Rather than quantizing all
weights uniformly, we typically optimize the precision of each layer, most importantly the linear layer with a weight
matrix W € R4 (bias omitted). Let Ry(W) = Dg(Q4s(W)) denote the approximate reconstruction of W under a
quantization parameter ¢ € ®. The PT(Q optimization settings considered in the literature include:

min W — Ry(W)|[5 (dataless) (11)
€
min I XW — X Ry(W)|[% (output-calibrated) (12)
€
~ 2
glig HF(X, W)Y2 @ (W — Ry(W)) ‘ ‘F (sensitivity-calibrated) (13)
S

(11) just minimizes the reconstruction error. (12) minimizes the output error assuming an input X € RV¥*? (aka.
. o AL (W :
calibration set). (13) minimizes a weighted reconstruction error where F} 1 (X, W) = % Zz(ﬁ],})z (Appendix E).
Once ¢ has been optimized (per layer), we quantize each W into Wy = Qu(W) offline.® At inference time, we must
compute X D, (W) where W, must be dequantized on the fly. To improve efficiency, existing methods write custom

GPU kernels [4] (e.g., see Puzzle 12 by Sasha Rush) or precompile the operation [5].

PTQ can be combined with light-weight finetuning (PTQ-FT), popularly with the LoRA adapter [6]. The idea is
that the performance loss due to quantization can be recovered by learning a small set of additional weights. We
can approach this as a pipeline (i.e., do PTQ, then do LoRA while holding the quantized weights fixed [3]) or jointly
optimize quantization and LoRA [5]. The latter corresponds to switching Ry, (W) with Ry(W) + L1 Lo in (11-13)
where Ly € R¥" and Ly € R™*4 are the LoRA weights then optimizing ¢, L1, Lo together.

Most PTQ methods can be seen as some combination of the above settings. See Appendix F for a discussion of
specific methods.

2Dettmers and Zettlemoyer [1] empirically show when holding the final memory requirement constant, quantizing a large model to
B = 4 bits is better than quantizing a smaller model to B > 4 bits. But this is not helpful when the model to be quantized is fixed.

3In practice, this is more complicated because the quantization data type is often not natively supported in the programming
language. Thus W¢, typically in a low-bit int (if NF, we store the bin numbers, e.g., like this), is first converted to a supported format
(e.g., uint8) which is further packed into bytes for storage efficiency.

https://github.com/srush/Triton-Puzzles/blob/main/Triton-Puzzles.ipynb
https://github.com/HanGuo97/lq-lora/blob/aa5f44bb0c4534bcd03e968bd966bb561269d48e/models/quantization_utils_2.py#L233

References

[1] Dettmers, T. and Zettlemoyer, L. (2023). The case for 4-bit precision: k-bit inference scaling laws. In Interna-
tional Conference on Machine Learning, pages 7750-7774. PMLR.

[2] Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L. (2022). Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339.

[3] Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized
llms. arXiv preprint arXiw:2505.14314.

[4] Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. (2022). Gptq: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint arXiv:2210.17523.

[56] Guo, H., Greengard, P., Xing, E. P., and Kim, Y. (2023). Lqg-lora: Low-rank plus quantized matrix decomposition
for efficient language model finetuning. arXiv preprint arXiv:2311.12023.

[6] Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2022). LoRA:
Low-rank adaptation of large language models. In International Conference on Learning Representations.

[7] Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., Shen, S., Mahoney, M. W., and Keutzer, K. (2023).
Squeezellm: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629.

[8] Kunstner, F., Hennig, P., and Balles, L. (2019). Limitations of the empirical fisher approximation for natural
gradient descent. Advances in neural information processing systems, 32.

[9] Kuzmin, A., Van Baalen, M., Ren, Y., Nagel, M., Peters, J., and Blankevoort, T. (2022). Fp8 quantization: The
power of the exponent. Advances in Neural Information Processing Systems, 35, 14651-14662.

[10] Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and Han, S. (2023). Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint arXiv:2306.00978.

[11] Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P., Grisenthwaite, R., Ha, S., Heinecke, A., Judd,
P., Kamalu, J., et al. (2022). Fp8 formats for deep learning. arXiv preprint arXiv:2209.05433.

[12] Peng, H., Wu, K., Wei, Y., Zhao, G., Yang, Y., Liu, Z., Xiong, Y., Yang, Z., Ni, B., Hu, J., et al. (2023).
Fp8-lm: Training fp8 large language models. arXiv preprint arXiv:2310.18313.

[13] Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A., Mahoney, M. W., and Keutzer, K. (2020). Q-bert:
Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8815-8821.

eng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen, B., Liang, P., Ré, C., Stoica, 1., an ang, C.

14] Sh Y., Zh L, Y B., Li, Z., Ryabinin, M., Chen, B., Li P., R¢, C., Stoica, I d Zh C
(2023). Flexgen: High-throughput generative inference of large language models with a single gpu. In International
Conference on Machine Learning, pages 31094-31116. PMLR.

[15] Yoshida, D. (2023). Nf4 isn’t information theoretically optimal (and that’s good). arXiv preprint
arX1w:2306.06965 .

A Mixed-Precision Training

Mixed-precision training performs only precision-sensitive operations in float32 and the rest in bfloat16.* The
conversion is achieved by simply truncating and padding the significand. It is typical to also dynamically scale
precision-critical values so that they are more representable in fewer bits. In training, gradients are precision-critical,
and they can be scaled by scaling the loss immediately before backpropagation. A pseudocode of (automatic) mixed-
precision training with adaptive gradient scaling is given below, following the torch.amp library.

Input: Initial shift ¢ = 16
For each batch B in the training data iterator:

1. L + ComputeLossAMP(B) # Autocast based on operation types (e.g., 16 bits for matmul, 32 for log).
2. (2' x L).backward() # Compute the gradients of a scaled loss.
3. For each gradient g: g < 27" x g # Unscale the gradients.
4. If no inf/NaN appears in the gradients:

(a) Update the parameters.

(b) If no inf/NaN has appeared in any gradient for the past 2000 consecutive updates, set ¢ < ¢ + 1.

5. Otherwise: set ¢t <t — 1.

Recent work has proposed 8-bit formats for mixed-precision model training [12]. With such a small number of bits,
much more care is needed in scaling (e.g., per-tensor instead of global scaling).

B Gradient Checks

Let L : R — R be a loss viewed as a function of a single parameter 6 € R. Let gy + Grad(L,) denote the output
of an algorithm expected to compute L'(0) € R, the analytic gradient of L at 6 (e.g., backpropagation). A gradient
check compares gg to a numerical estimate of L’'(6), which can be obtained from the definition of a derivative:

D0) = i HOFI =IO LOTOZLO) o (1)

e—0+ € € ’

where € > 0 is some tiny value. Using the Taylor expansion L(6 + €) = L(#) + ¢L'(f) + $é2L" (c) where c € [0, 6 + ¢]
is some constant, we can calculate the numerical error

N cL (0 lAQL//

€ €

A better estimate is given by the two-sided version

_ LW+ -LO-9

i = = (15)
The symmetry of the approximation will yield an improvement. Since
1 1
L(0+¢) = L(0) + el (0) + §€2L”(9) + 663L’”(c’)
1 1
L(0—¢&) = L(0) — eL' () + 5é2L”(9) — 6&%’”(")

for some ¢/, ¢’ € R, defining C = L"' (/) + L"'(¢") we have
owe LO+E —L(O—¢) 2eL/(0) + 363C

gg,€ = ” = =

2€ 2¢

which shows that (15) is a much more accurate estimate of L'(6) than (14) for a small é. To account for different
scales, the gradient check typically tests the relative error

1
=L'(h) + 6€20 = |L'(0) — 96| = O(¢?)

~two

‘ge o < (16)
_ T Tl
max(|ge|, |35"])

4While either float16 or bfloat16 can be used for half precision, the latter seems clearly better suited since precision is not an issue
(i.e., it is assumed to be handled in float32).

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
https://pytorch.org/docs/stable/amp.html#autocast-op-reference

where 7 > 0 is some tolerance. If gg = L'() (i.e., the algorithm is implemented correctly), then (16) is O(€2) up to
scaling. For instance, if € = 107° then (16) can be as small as 1071% in an idealized scenario where the magnitude
of the gradient is about 1. In practice, 1077 is deemed safe: see the note here for details.

A gradient check is an interesting unit test because even the reference answer (i.e., numerical gradient estimate) is
not perfect. Clearly we wish to use an ¢ as small as possible since that determines the accuracy of the numerical
estimate, but it will cause numerical instability in (15) (or (14)) when it is too small. Similarly, if L'(6) is too small
then gg,fvg may underflow to zero, thus we may want to scale the loss aL(f) so that |g§"’V€° ~ 1. A great way to

combat these issues is to always use double precision, which is capable of expressing extreme values.

C Unicode Characters

The Unicode Standard defines a set U (“codespace”) of 1,114,112 characters (“code points”), meant to capture
all of the world’s major writing systems. The characters are enumerated in hexadecimal, starting from U+0000
to U+10FFFF.?> The characters are partitioned into 17 “planes” U = U; U --- U U7 identified by the first two
digits {00,...10} (so [Ux| = 16%). U; contains characters for almost all modern languages and is called the Basic
Multilingual Plane (BMP) (other planes are called supplementary). For historical reasons, some characters are
disallowed, leaving Usya1iq C U of 1,112,064 valid characters.

Naively, a Unicode character can be stored as an integer using 3 bytes (to express all > 1 million values). Instead,
we use a variable-length scheme called UTF-8. The encoding algorithm is given below (source: Wikipedia):6

Code point <> UTF-8 conversion

First code point | Last code point | Byte 1 Byte 2 Byte 3 Byte 4

' pol point| Byt v 4 4 BMP | L-byte (128) — ASCII
U+0000 U+007F | @XXXXXXX 2-byte (1,920) S Latin
U+0080 U+07FF | 110xXXxX | 1OXXXXXX 3-byte (61,440) > CJK
U+0800 U+FFFF | 1110xxxX | 1OXXXXXX | 1OXXXXXX Supp. | 4-byte (1,048,576) DO Emojis

U+010000 bly+10FFFF | 11110x 105X XXXX | 1TOXXXXXX [TOXXXXXX

The 256 possible values of a byte are typically expressed as 2 hexadecimal digits {00...FF} rather than an 8-bit
vector. Thus the final encoding of a Unicode character is a sequence of {2,4, 6,8} hexadecimal digits, as in

Unicode point | Expression | UTF-8 byte sequence (binary) UTF-8 byte sequence (hexadecimal)
U+0041 A 01000001 41
U+03B8 0 11001110 10111000 CE B8
U+CO0BO At 11101100 10000010 10110000 EC 82 B0
U+1F617 & 11110000 10011111 10011000 10010111 | FO 9F 98 97

Another quirk in UTF-8 encoding is that some code points function as combining marks. For instance, the expression
é can be achieved by either U+00E9 or [U+0065, U+0301] (corresponding to [e, “]).

C.1 BPE Tokenizer

A (Unicode) tokenizer is a tuple (V, E, D) where V = {1...V} is a vocabulary, E : YT — VT is an encoder, and
D : VT — U™ is a decoder such that

x = D(E(x)) Ve elu™ (17)

We want a small V and a short E(z) € V* (on average over x) while satisfying (17).” Examples include®

5By convention, the prefix “U+4” signals a Unicode character and at least four digits are written.

SNote that the encoding uses the prefixes 0, 110, 1110, 11110 in the first byte to signal the number of bytes, and the prefix 10 in other
bytes to signal the continuing byte. Any bit vector that does not conform to this format cannot be decoded to a Unicode character.
Also note that this encoding is not maximally space-efficient. For instance, the third digit in the 2-byte characters ranges between 8
and F and can be encoded using 3 bits, but it is encoded using 4 bits.

"In the context of language models, V is the size of the softmax and |E(z)| is the length of the input sequence, both of which are
critical performance bottlenecks.

8Note that the whitespace (and many manual tokenization schemes) has an unbounded V (“open” vocabulary). It can be bounded
in various ways (e.g., frequency-based cutoff), but then the tokenization becomes lossy.

https://cs231n.github.io/neural-networks-3/#gradcheck
https://en.wikipedia.org/wiki/UTF-8#Encoding

E(x) D(z) 14 |E(z)]
Character-level | z =2 z 1,114,112 ||
Byte-level z = bytes(z) z.decode(‘utf-8’) 256 [bytes(z)|
Whitespace z = x.split() ¢ 2 .join(z) 00 |z.split()]
BPE z = EncodeBPE(V,z) V~!(z).decode(‘utf-8’) User specified |EncodeBPE(V,z)|

In particular, a byte-pair encoding (BPE) tokenizer assumes that V is a ranked list of byte sequences such that
1. {1...256} C V (i.e., all byte values are in the vocabulary)
2. fred{l... 256}” with n > 2 has rank r in V, then 7 = 7y for some 71,75 € V with ranks ri,ro < 7.

Under this assumption, any Unicode character sequence can be tokenized as follows.

EncodeBPE
Input: V, z c U+
Output: z € YIPYes@I=m where m > 0 is the number of merges

1. z < bytes(z)
2. While there is a bigram in z that belongs to V, merge the one with the smallest rank.

3. Return z.

Given a budget V > 256, we can train a BPE tokenizer from a corpus x € U™ by solving

V* = argmin |[EncodeBPE(V, z)| (18)
V: V<V

TrainBPE
Input: V > 256, x € U with |bytes(z)| >V
Output: V* in (18)
1. z < bytes(z), V + (1,...,256)
2. While |V| < V, merge the most frequent bigram in z (efficiently computable, e.g., with a heap) and add it as the
next element in V.

3. Return V* < V.

C.1.1 Pre-tokenization.

One important detail not shown above is a “pre-tokenization” step. Rather than allowing merges anywhere in the
input x € U, we first split it into segments or “words” w = (wy ...wr) € (UT)T. This is done to reflect natural
boundaries including but not limited to space (e.g., using the regex pattern popularized by GPT-2). For instance:

x = “I’ll buy 3 apples...”
w = [LLI”? “711777 “ buy777 “ 377’ [43 a,ppleS”? “...”]

Note that the space is preserved so that we recover x simply by concatenating w. Then, we only consider merging
the byte sequences within a word. This can be viewed as exercising our prior of semantic boundaries. For instance,
we will have “apple”, “ apple”, and “ apples” in V, but not “3 apples” which is intuitively less reusable.

Pre-tokenization is also important to make merging efficient. The above algorithms have the runtime O(|z|m) where
m is the number of merges since each merge requires scanning the entire input x to update the bigram statistics (it
is not clear how to do this more efficiently). However, with pre-tokenization, we can (1) first create a set of distinct
word types by pre-tokenizing x once, and (2) at each merge only scan through this set instead of the entire input.
Thus the runtime is O(|z| + Mm) where M < |z| is the number of distinct word types. Since each word type is
independent, we can parallelize the merges across word types.

C.1.2 A note on decoding.

A BPE tokenizer satisfies (17) because the encoder can tokenize any Unicode character sequence. The encoder
decides how to partition the input sequence (within word boundaries), then maps each byte subsequence to the
corresponding ID in V. The decoder has no work; it simply calls the UTF-8 decoding function on the concatenation
of the partitioned byte sequences.

https://github.com/openai/tiktoken/blob/c0ba74c238d18b4824c25f3c27fc8698055b9a76/tiktoken/_educational.py#L207

However, BPE does not guarantee that every token in V is a valid UTF-8 character, since it simply merges the most
frequent pairs during training. Thus it is technically possible for a language model to predict a sequence z € VT
that cannot be decoded to UTF-8 expressions. But this essentially never happens with any reasonably well-trained
model (and we can enforce valid outputs in beam search if necessary).

D Quantile Quantization

An “information-theoretically optimal” quantization scheme with respect to a distribution pop over € R (in our
case, = represents a model weight) using B bits is one that partitions R so that each of K = 28 bins contains an
equal probability mass. Each bin is assigned some representative value (e.g., midpoint). Recall that if ¢ is the k-th

K-quantile, it means
k
= < = —
Foop(tr) xf;{)p (x < ty) K

where Fpop is the cumulative distribution function (e.g., the median is the first 2-quantile). If Fp,op is invertible,

k
=t ()

Instead of using the raw K-quantiles as quantization values, we may use the K midpoints of the (K + 1)-quantiles
as a more faithful approximation of the midpoints of the K-partition:

—1 k -1 ([k+1
Foop (K+1> + Fpop <K+1>
2

= Vk=1...K (19)

D.1 NormalFloat (NF)

Estimating the quantiles of an unknown distribution from samples (of weights) is susceptible to large errors for
outliers. The authors of QLoRA instead assume that pop = A/(0,1) [3]. They propose a quantization scheme called
4-bit NormalFloat (NF4) based on the following 17 probabilities:

0 0.5 1

| f+\ o o o o o o

% @%@@J‘%ﬁ,

¢ ¢
The offset is chosen as § = %(3—12 + %) (i.e., average half length of 15-th and 16-th segment lengths). Then 8 evenly
spaced values between [d, 3] (blue points) and 9 evenly spaced values between [4,1 — 4] (red points) are chosen.
These probabilities are mapped to a € R® and b € R through F./_/%O,l) :[0,1] — R where a; = FJ_fzo,U((S) = —bg
and ag = by = 0. Discarding the duplicate zeros, we have ¢ = (a,b(2 :)) € R6. The final values of NF4, ¢"** € R1®
are obtained as ¢'7* = —% . They are

% max; c;
&= 1, —0.6962, —0.5251, —0.3949, —0.2844, —0.1848, —0.0910, 0,
0.0796, 0.1609, 0.2461, 0.3379, 0.4407, 0.5626, 0.7230, 1)

2B-1 and

More generally, given B bits and an offset §, NF considers an even partition of [4, 3] and [3,1 — 4] into
28-1 4 1 probabilities, which are then converted by FA?%O 1 and normalized to final values in [—1, 1]. For instance,

the 3-bit NormalFloat (NF3) values, using the same offset as NF4 [5], are given by
¢ = (-1, —0.4786, —0.2171, 0, 0.1609, 0.3379, 0.5626, 1)

NormalFloat is motivated by the finding that the weight of an LLM is empirically distributed as a Gaussian
w ~ N(0,w?). Thus if we scale w' = 1w we have w' ~ N(0,1) and NF can indeed bin the weights optimally.
However, in practice we partition the model parameters as blocks of M values, and quantize each block w € RM
into w by scale quantization (8), namely

_ . . NF w;
w; = ; nn(z) = arg min - 20
i Gnn(s) () k:gl..,2B qy absmax(w) ()
The dequantization from w is given by w = absmax(w)w. Because the scaling uses the absolute maximum of the
block, not a constant, the distribution is not Gaussian and depends on the block size M. It is possible to use the
correct quantiles [15].

https://github.com/HanGuo97/lq-lora/blob/aa5f44bb0c4534bcd03e968bd966bb561269d48e/models/quantization_utils.py#L11

E Sensitivity-Based Quantization

Kim et al. [7] consider the task of finding a B-bit quantization W of weight W e RIxd’ (i.e., each float W; ; is

clustered to one of the 27 bins) so that the training loss L(W) is minimized. Taking the vectorized views w, w, we
seek to minimize

L(w) =~ L(w) + VL(w)(®w — w) +

N |

(@ — w) T V2L(w) (@ — w)

where VL(w) =~ 0 in PTQ. Since the Hessian matrix is not typically computed in a standard deep learning frame-
work, we estimate V2L(w) ~ 4 Zfil(VLi(w))(VLi(w))T = F where L;(w) is the loss on the i-th of N samples.
(ﬁ is unfortunately known as the empirical Fisher matrix even though it is not a consistent estimator of the true
Fisher information matrix, and it is often used for approximating the Hessian even though the relationship between
Hessian and Fisher is only vaguely established under certain conditions [8].) Further using a diagonal approximation
of , we can write the problem as

~)2
argminHFl/zG)(W—W)H (21)
w F

F PTQ Examples
F.1 LLM.int8()

LLM. int8() is a dataless PTQ method focused on quantized matrix multiplication (matmul) [2]. It does not require
training; it simply loads a trained transformer-based model, quantizes the 32- or 16-bit weight W € RIxd" of every
linear layer to 8-bit integers W € Z%*? | then estimates the original linear operation XW where X € RV*? ig the
input matrix. To estimate X W, it chooses to quantize X to X € Z%*4 and compute matmul in integer, rather than
dequantizing W and computing matmul in float. To see how this is done, consider tensor-wise scaling which defines
W = round(s;;/ W) and X = round(sy' X) for some sy, sx > 0. Then

XW = (sxX)(swW) =sxsw XW (22)

float integer matmul

Typically XW is computed in a higher-bit integer format to avoid rounding errors (e.g., accumulate int8 values
in int32). While (22) can exploit integer arithmetic, it also incurs the overhead of quantizing X (in both inference
speed and precision).

To improve precision, LLM. int8() proposes a form of group-wise scaling called “vector-wise” which scales each row
of X and each column of W separately (i.e., treating matrix multiplication as Nd’' dot products). Under vector-wise
scaling, (22) becomes

XW =~ (diag (ux) X)(Wdiag (uw)) = ux gy @ (23)

float integer matmul

for some uy € RY and up € RY. LLM.1int8() is also one of the first works that report the “outlier” feature
phenomenon in LLMs, namely that when language models become sufficiently large (starting around 6B parameters)
some feature dimensions (i.e., columns of X) have large magnitude dominating the behavior of the model. The outlier
features are excluded from quantization as follows, using some threshold « (e.g., 6):

O={h=1...d: X, > «for some i € [N]} O, ={1...d}\O
XW =X[;,O|lW[0,:]+ X[:,0,]W[O,,] (24)

The first is computed in the original float format; only the second term is computed by (23). This means that we
have to keep W[0O,:] € RI®I*4 in full float, but outlier features remain rare (e.g., |O] < 7 up to OPT-13B) so the
decomposition is relatively cheap while significantly improving precision.

F.2 AWQ

AWQ is an output-calibrated PTQ method (12) that learns additional feature scales by a simple grid-search heuristic
to minimize the output error [10]. Let R(W) ~ W denote the approximate reconstruction of the linear weight

10

W € R4 after quantization and dequantization (AWQ uses group-wise scaling). Given an input X € RT7*? AWQ
introduces additional scaling parameters 3 € R? learned by

. . -1 . 2
st X Xdiag (8)" R(diag (9) W) (25)
The main idea is that there exists some § such that it does not affect the quantization error of R(diag(8)W)
compared to R(W). This holds empirically for two reasons. First, the average rounding error (5) tends to be always
uniformly distributed between 0 and 1/2 regardless of the argument. Second, the quantization parameters (7) are
only affected by extremal values in a quantization group and may remain unchanged, particularly when the rows
of W are sparsely scaled and with clipping. But the error is now amplified by Xdiag (6)71 instead of X, resulting
in a §-fold reduction in relative error. The column scaling has the effect of eliminating the outlier features, which
would otherwise have to be computed separately as in (24) for better precision.

Since R is not differentiable (though one can presumably consider straight-through estimation), AWQ crudely
optimizes (25) by setting £, = absmax(X(:, h))® where the optimal value « € [0, 1] is selected over a grid size of
20. Once g is chosen, the downscaling operation diag (ﬁ)_1 can be absorbed into the weight of the previous layer
and quantized offline.

F.3 QLoRA

QLoRA is a PTQ-FT pipeline [3]. The model weights are quantized to NF4 offline (with block-wise scaling) and the
computation happens in bfloat16. More specifically, QLoRA computes for each linear layer [3]:

Ybfloath — beloathDequant(Dequant(cgloatBZ’ CgloatS), WNF4) + beloath Lll)floatlngfloatlfi (26)

finetuned

A similar approach has been taken by GPTQ-LoRA which uses GPTQ (an output-calibrated PTQ method for
low-bit integer quantization [4]) for the first term.

QLoRA proposes NormalFloat (Appendix D.1) and double quantization (Section 3.1). It also proposes paged opti-
mizers that allocate paged memory for optimizer states which are automatically moved to CPU RAM when GPU
runs out of memory (e.g., due to a long sequence length), then paged back to GPU memory when the memory is
needed in the update step.

F.4 LQ-LoRA

LQ-LoRA performs QLoRA (26) with a better initialization [5]. Instead of quantizing W € RIxd o T indepen-
dently of the LoRA weights L1, Lo, it proposes to use a LoRA-aware initialization such that W s~ W + L1 L. Under
the sensitivity calibration loss (13), the joint optimization problem can be framed as

min

~ o~ 2
_ PO w20 (W = (W + Li)|| (27)
WEQdXdI, L, eRdxT, LzeRrxd’ F

where Q4% is the space of all matrices that are losslessly quantizable to B-bit NF. (We may set ﬁ(X7 W) = laxar
if we have no calibration set X.) LQ-LoRA uses an alternating minimization algorithm to approximately minimize
(27).

1. Holding W fixed, the general weighted squared loss (27) is still (NP-)hard. Instead of doing a local search,
LQ-LoRA assumes that F(X,W)'/2 = uvT for some u € R? and v € R?. Then (27) becomes

min ||diag (u) (W — Ly Ly)diag (v) — diag (u) L, Lydiag (v)||% (28)
L]E]Rdxr, L2€Rr><d’

Since this is unconstrained, letting K; = diag (u) L; and K, = diag (v) LJ , we can instead solve

min Hdiag (u) (W — Ly Ls)diag (v) — K'lKér | ’i, (29)
K1ERdXT, KzERd/XT

then recover Ly = diag (u)” ' Ky and Ly = K diag (v) . A solution of (29) is given by K; = U,/ and
K> = V,2V? where U, X, V, is the rank-r SVD of diag (u) (W — L Ly)diag (v). For the approximation step,
LQ-LORA uses the row/column means of F(X,W) as u,v (instead of the optimal rank-1 SVD).

11

2. Holding Ly, Lo fixed, (27) becomes

[FOCW)Y2 0 (W = LiLa) —W)Hi (30)

min
Wegdxd
This is approximately minimized by W= D(Q(W — Ly Ls)).
Additionally, LQ-LoRA optimizes the double quantization configuration (B, Ba, Bs, My, M) (B, By, Bs are the tar-
— 2
get bitwidths, M;, My are the block sizes (10)) for each layer to minimize the quantization errors ‘ ‘W — (W + L1Ly) ‘F

while satisfying the bit budget. This can be done with an off-the-shelf integer linear programming solver.

12

	Floats
	Rounding Errors
	Exact rounding

	Floats in Binary Base
	Quirky Examples
	Non-Numerical Data Types

	Quantization
	Precision-Memory Tradeoff
	Post-Training Quantization

	Mixed-Precision Training
	Gradient Checks
	Unicode Characters
	BPE Tokenizer
	Pre-tokenization.
	A note on decoding.

	Quantile Quantization
	NormalFloat (NF)

	Sensitivity-Based Quantization
	PTQ Examples
	LLM.int8()
	AWQ
	QLoRA
	LQ-LoRA

