
Numerical Precision for Deep Learning

Karl Stratos

1 Floats

We approximate R with 2B bitstrings b ∈ {0, 1}B . A “normal” floating-point number, in short float1, assumes
a partition of the bitstring b = (b1, z, f) where z ∈ {0, 1}e \ {0e, 1e} encodes the exponent and a significand (or
mantissa) f ∈ {0, 1}p encodes the fractional part. Given a base (or radix) β ∈ {2, 10}, it computes

Fβ(b) = (−1)b1 ×
(
1 + f1β

−1 + · · ·+ fpβ
−p

)
× βEβ(z) z ̸∈ {0e, 1e} (1)

where Eβ(z) ∈ Z is a signed integer computed as

Eβ(z) =
(
z1β

e−1 + · · ·+ ze−1β + ze
)
− (βe−1 − 1) z ̸∈ {0e, 1e} (2)

The first term, for z ̸∈ {0e, 1e}, ranges from 1 to βe−1
β−1 . Thus Eβ(z) ranges from Emin = 2−βe−1 to Emax = βe−1+β−2

β−1 .

Thus (1) ranges from Nmin = βEmin to Nmax =
(

βp+1−1
βp(β−1)

)
βEmax . Since (1) divides any [βi, βi+1] into βp uniformly

spaced values, we have fewer floats away from zero (e.g., the next float after βp is βp+β−1). Here is an illustration
from Wikipedia:

Bitstrings with z ∈ {0e, 1e} are used for special cases. Under the IEEE 754 standards, a complete float system is
given by

Fβ(b) =



(−1)b1 ×
(
1 + f1β

−1 + · · ·+ fpβ
−p

)
× βEβ(z) if z ̸∈ {0e, 1e} (normal)

(−1)b1 ×
(
0 + f1β

−1 + · · ·+ fpβ
−p

)
× βEmin if z = 0e and f ̸= 0p (subnormal)

(−1)b1 × 0 if z = 0e and f = 0p (signed zeros)

(−1)b1 ×∞ if z = 1e and f = 0p (signed infinities)

NaN(f) if z = 1e and f ̸= 0p (NaNs)

(3)

The smallest subnormal magnitude is Smin = βEmin−p and the largest Smax =
(

βp+1−1
βp(β−1) − 1

)
βEmin . The signed

zeros work as expected in most cases (e.g., 0 = −0), but there are certain corner cases such as 1
0 ̸=

1
−0 (the former

evaluates to ∞ while the latter to −∞). NaNs occur as outputs of illegal operations (e.g., 0
0 , log(−1), ∞× 0) and

are categorized into either “signaling” (i.e., throw an exception) or “quiet” types based on the significand. NaNs
propagate: any operation involving a NaN generally outputs a NaN.

1.1 Rounding Errors

For simplicity, consider a positive real number 0 < x ≤ Nmax. Let x̂ denote the float closest to x. Then x̂ ∈ {xL, xU}
where xL < xU are consecutive floats. Since xU − xL = βt−p for some exponent t ∈ [Emin, Emax], the absolute
rounding error can be bounded as |x− x̂| ≤ 1

2β
t−p. But this bound becomes loose for large t. A more popular

measure is the relative rounding error
∣∣x−x̂

x

∣∣ which can be bounded as∣∣∣∣x− x̂

x

∣∣∣∣ = |x− x̂|
x

≤ βt−p

2x
≤ βt−p

2xL
≤ βt−p

2βt
=

1

2
β−p =: ϵmach (4)

The last term ϵmach is called machine epsilon representing the maximum error when rounding to 1.

1Not to be confused with the float data type in C which specifically refers to the 32-bit floating-point format in binary base

1

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/IEEE_754

1.1.1 Exact rounding

IEEE 754 mandates exact rounding. It means that the result of any float operation must be calculated exactly first,
then rounded. Exact rounding can be achieved by extended precision. For instance, CPUs have a part dedicated
to float operations (aka. float unit or FPU) that support extended precision. A popular format is the x86 extended
precision format that uses B = 80 bits. Unlike CPUs, GPUs may not support a specific extended precision format,
but they achieve IEEE 754 compliance through other means (e.g., performing intermediate calculations in higher
precision).

2 Floats in Binary Base

While floats (3) can be defined using any integer base β ≥ 2, the binary base β = 2 is the dominant choice for
clear reasons like hardware efficiency, consistency with integer representation (which is binary), and better precision
(e.g., (4) is minimized with β = 2). An exception is when precision with respect to a specific nonbinary base is
paramount (e.g., β = 10 in finance). Using β = 2, we can simplify the constants as

(machine epsilon) ϵmach = 2−(p+1)

(exponent range) Emin = 1− Emax Emax = 2e−1 − 1

(normal range) Nmin = 2Emin Nmax = (1− ϵmach)2
Emax+1

(subnormal range) Smin = 2Emin−p Smax = (1− 2ϵmach)2
Emin

We summarize some binary formats below. For readability, we approximate small or large values by powers of ten
(e.g., for float16 we have Smin = 2−24 ≈ 5.96× 10−8).

Name B e p Emin Emax Smin Nmin Nmax ϵmach

float4 4 2 1 0 1 0.5 1 3 0.25
float8 8 4 3 −6 7 ≈ 0.002 ≈ 0.02 240 0.0625
E4M3 (non-compliant∗) 8 4 3 −6 7 ≈ 0.002 ≈ 0.02 448∗ 0.0625
E5M2 8 5 2 −14 15 ≈ 0.00002 ≈ 0.00006 57344 0.125
float16 (half precision) 16 5 10 −14 15 ≈ 10−8 ≈ 0.00006 65504 ≈ 0.0005
bfloat16 16 8 7 −126 127 ≈ 10−45 ≈ 10−38 ≈ 1038 ≈ 0.004
float32 (single precision) 32 8 23 −126 127 ≈ 10−45 ≈ 10−38 ≈ 1038 ≈ 10−8

float64 (double precision) 64 11 52 −1022 1023 ≈ 10−324 ≈ 10−308 ≈ 10308 ≈ 10−16

Double precision (float64) can express extreme values and is useful for precision-critical tasks such as gradient
checks (Appendix B). Single precision (float32) is often the default format in deep learning (e.g., PyTorch Float-
Tensors). Half precision (float16) halves the memory requirement, but its limited range is often ill-suited for model
training. In response, bfloat16 allocates more bits to the exponent to match the range of single precision. The
8-bit formats have only 28 = 256 numbers to represent R (e.g., this table). How to allocate the precious bits (i.e.,
8 = e + p) is task-dependent [8]. E4M3 increases the range of float8 by deviating from IEEE 754 (e.g., it has no
infinities) [10]. An even more extreme situation is 4-bit formats which have only 24 = 16 numbers. float4 is the
lowest-bit format that satisfies all IEEE 754 standards, but is pitifully limited. Recent works explore more useful
definitions of 4-bit or even lower-bit floats based on quantile quantization (Appendix C).

2.1 Quirky Examples

We compile a few examples in Python (64-bit floats) to illustrate the quirky behavior of float arithmetic.

format (0.1, ’.25’) # 0.1000000000000000055511151 (64-bit)

format(np.float32 (0.1), ’.25’) # 0.1000000014901161193847656

(0.1 + 0.2) + 0.3 == 0.1 + (0.2 + 0.3) # False

262144 + 0.01 == 262144 # False (64-bit)

np.float32 (262144) + np.float32 (0.01) == np.float32 (262144) # True

np.zeros (1) == -np.zeros (1) # True

np.ones (1) / np.zeros (1) == np.ones (1) / -np.zeros (1) # False (inf vs -inf)

np.sqrt ((3 + 4 + 1 * 3) / 2) + np.nan + 7 * 3 + 1 # nan

The examples demonstrate that (1) decimal fractions are not precisely represented in binary base; (2) additions (and
multiplications) are not associative due to rounding errors; (3) adding large and small numbers is more susceptible
to rounding errors than numbers in a similar range; (4) NaNs propagate.

2

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Minifloat#Table_of_values

3 Quantization

Let X be a set of B′-bit floats in range [Xmin, Xmax]. Pick B < B′ and Z be a set of 2B numbers in range [Zmin, Zmax]
representing a B-bit data type (i.e., all representable values). A quantization is a function Q : X → Z. An
associated dequantization is a function D : Z → X such that x ≈ D(Q(x)) for all x ∈ X .

If Z is another IEEE-compliant float format, quantization can be as simple as bit shifting (e.g., in mixed-precision
training, Appendix A). For instance, to map float32 to bfloat16, we can simply keep the exponent bits (since
they both have e = 8) and truncate the significand to the right (“rounding toward zero”). For dequantization, we
just pad the significand with zeros. More explicitly,

Q(x) = Binary(x)[: −16] D(z) = cat(Decimal(z), 016)

In general, however, quantization scales and shifts the range of X to match the range of Z then finds nearest
neighbors. Mathematically,

Q(x) = nearestZ

(x
s
+ b

)
(5)

D(z) = s(z − b) (6)

s =
Xmax −Xmin

Zmax − Zmin
b = nearestZ

(
ZminXmax − ZmaxXmin

Xmax −Xmin

)
(7)

where (6) is obtained by solving for x in (5) (ignoring the lossy operation); (7) is obtained by solving the linear
system Xmin = s(Zmin − b) and Xmax = s(Zmax − b). The scale s ∈ R is represented as a B1-bit float, where B1 is
the bit budget we specify for scales. The bias b ∈ Z is a B-bit number and called the “zero point” since Q(0) = b
and D(b) = 0. If we choose the ranges to be symmetric, namely X∗ = Xmax = −Xmin and Z∗ = Zmax = −Zmin,
then b = 0 and (5-7) simplify to scale quantization:

Q(x) = nearestZ

(x
s

)
D(z) = sz s =

X∗

Z∗
(8)

In addition to eliminating the bias term, (8) quantizes zero exactly (i.e., Q(0) = D(0) = 0), a useful property in
deep learning. We can always take the absolute maximum X∗ = absmax(X) to achieve a symmetric input range.
The target range depends on the data type: see the following table for examples.

Z min(Z) max(Z) scale quant s b

B-bit signed integers −2B−1 2B−1 − 1 yes absmax(X)
2B−1−1

0

B-bit unsigned integers 0 2B − 1 no max(X)−min(X)
2B−1

−nearestuint(min(X)
s)

B-bit NormalFloat (App. C.1) −1 1 yes absmax(X) 0

The B-bit signed integers have the asymmetric range Z =
{
−2B−1 . . . 2B−1 − 1

}
under two’s complement, so we

choose Z∗ = 2B−1 − 1 to have a symmetric target range, throwing away the lowest value. In the rest of the note,
we will assume scale quantization for simplicity.

3.1 Precision-Memory Tradeoff

A single float s is used to scale all x ∈ X . This implies a fundamental tradeoff between precision and memory in the
nature of X . Suppose X is the set of several billion floats representing the parameters of an LLM. If we quantize
the whole X , we only need to introduce one extra float but the precision will be poor. If we quantize each x ∈ X
separately, we can achieve lossless quantization (e.g., use the scale sx = x

z) but we introduce billions of extra floats,
clearly defeating the purpose of quantization.

In practice, we define a partition X = X1 ∪ · · · ∪ Xn and quantize each Xi separately. Since X is typically a set of
tensors T in deep learning, natural scaling options are

Xi =


T (tensor-wise)

T.reshape(−1,M)[j, :] (group-wise)

T.reshape(−1)[k : k +M] (block-wise)

(9)

where M is an integer that divides |T | and j, k are some indices. Grouping always takes M groups from each tensor.
Blocking keeps the block size constant |Xi| = M , which is useful for measuring how much additional memory is

3

https://en.wikipedia.org/wiki/Two%27s_complement

allocated in quantization. Specifically, if we quantize the tensor T into a B-bit data type using group size M1 and
B1-bit scales, the number of bits to store T is precisely

|T | ×
(
B +

B1

M1

)
(10)

where B1

M1
is the additional bits per parameter. To further reduce memory, we can quantize the scales again (aka.

double quantization) [2]. If we quantize the scales into a B2-bit data type (where B2 < B1) using group size M2

and B3-bit (meta-)scales, the number of bits to store T becomes

|T | ×
(
B +

B2

M1
+

B3

M1M2

)
(11)

3.2 Post-Training Quantization

Post-training quantization (PTQ) refers to quantizing the parameters of a trained model (under some quanti-
zation units (9)) to reduce the model size, enabling inference or finetuning with models too big to fit in available
GPUs. Rather than quantizing all weights uniformly, we typically optimize the precision of each layer, most im-
portantly the linear layer with a weight matrix W ∈ Rd×d′

(bias omitted). Let Rϕ(W) = Dϕ(Qϕ(W)) denote the
approximate reconstruction of W under a quantization parameter ϕ ∈ Φ. The PTQ optimization settings considered
in the literature include:

min
ϕ∈Φ

||W −Rϕ(W)||2F (dataless) (12)

min
ϕ∈Φ

||XW −XRϕ(W)||2F (output-calibrated) (13)

min
ϕ∈Φ

∣∣∣∣∣∣F̂ (X,W)1/2 ⊙ (W −Rϕ(W))
∣∣∣∣∣∣2
F

(sensitivity-calibrated) (14)

(12) just minimizes the reconstruction error. (13) minimizes the output error assuming an input X ∈ RN×d (aka.

calibration set). (14) minimizes a weighted reconstruction error where F̂j,k(X,W) = 1
N

∑
i(

∂Li(W)
∂Wj,k

)2 (Appendix D).

Once ϕ has been optimized (per layer), we quantize each W into ĎWϕ = Qϕ(W) offline.2 At inference time, we
must compute XDϕ(ĎWϕ) where ĎWϕ must be dequantized on the fly. To improve efficiency, existing methods write
custom CUDA extensions [3] or precompile the operation [4].

PTQ can be combined with light-weight finetuning (PTQ-FT), popularly with the LoRA adapter [5]. The idea
is that the performance loss due to quantization can be recovered by learning a small set of additional weights.
We can approach this as a pipeline (i.e., do PTQ, then do LoRA while holding the quantized weights fixed [2]) or
jointly optimize quantization and LoRA [4]. The latter corresponds to switching Rϕ(W) with Rϕ(W) + L1L2 in

(12–14) where L1 ∈ Rd×r and L2 ∈ Rr×d′
are the LoRA weights then optimizing ϕ,L1, L2 together.

Most PTQ methods can be seen as some combination of the above settings. See Appendix E for a discussion of
specific methods.

References

[1] Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L. (2022). Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339 .

[2] Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized
llms. arXiv preprint arXiv:2305.14314 .

[3] Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. (2022). Gptq: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint arXiv:2210.17323 .

[4] Guo, H., Greengard, P., Xing, E. P., and Kim, Y. (2023). Lq-lora: Low-rank plus quantized matrix decomposition
for efficient language model finetuning. arXiv preprint arXiv:2311.12023 .

2In practice, this is more complicated because the quantization data type is often not natively supported in the programming
language. Thus ĎWϕ, typically in a low-bit int (if NF, we store the bin numbers, e.g., like this), is first converted to a supported format
(e.g., uint8) which is further packed into bytes for storage efficiency.

4

https://github.com/HanGuo97/lq-lora/blob/aa5f44bb0c4534bcd03e968bd966bb561269d48e/models/quantization_utils_2.py#L233

[5] Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2022). LoRA:
Low-rank adaptation of large language models. In International Conference on Learning Representations.

[6] Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., Shen, S., Mahoney, M. W., and Keutzer, K. (2023).
Squeezellm: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629 .

[7] Kunstner, F., Hennig, P., and Balles, L. (2019). Limitations of the empirical fisher approximation for natural
gradient descent. Advances in neural information processing systems, 32.

[8] Kuzmin, A., Van Baalen, M., Ren, Y., Nagel, M., Peters, J., and Blankevoort, T. (2022). Fp8 quantization:
The power of the exponent. Advances in Neural Information Processing Systems, 35, 14651–14662.

[9] Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and Han, S. (2023). Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint arXiv:2306.00978 .

[10] Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P., Grisenthwaite, R., Ha, S., Heinecke, A., Judd,
P., Kamalu, J., et al. (2022). Fp8 formats for deep learning. arXiv preprint arXiv:2209.05433 .

[11] Peng, H., Wu, K., Wei, Y., Zhao, G., Yang, Y., Liu, Z., Xiong, Y., Yang, Z., Ni, B., Hu, J., et al. (2023).
Fp8-lm: Training fp8 large language models. arXiv preprint arXiv:2310.18313 .

[12] Yoshida, D. (2023). Nf4 isn’t information theoretically optimal (and that’s good). arXiv preprint
arXiv:2306.06965 .

A Mixed-Precision Training

Mixed-precision training performs only precision-sensitive operations in float32 and the rest in bfloat16.3 The
conversion is achieved by simply truncating and padding the significand. It is typical to also dynamically scale
precision-critical values so that they are more representable in fewer bits. In training, gradients are precision-
critical, and they can be scaled by scaling the loss immediately before backpropagation. A pseudocode of (automatic)
mixed-precision training with adaptive gradient scaling is given below, following the torch.amp library.

Input: Initial shift t = 16
For each batch B in the training data iterator:

1. L← ComputeLossAMP(B) # Autocast based on operation types (e.g., 16 bits for matmul, 32 for log).

2. (2t × L).backward() # Compute the gradients of a scaled loss.

3. For each gradient g: g ← 2−t × g # Unscale the gradients.

4. If no inf/NaN appears in the gradients:

(a) Update the parameters.

(b) If no inf/NaN has appeared in any gradient for the past 2000 consecutive updates, set t← t+ 1.

5. Otherwise: set t← t− 1.

Recent work has proposed 8-bit formats for mixed-precision model training [11]. With such a small number of bits,
much more care is needed in scaling (e.g., per-tensor instead of global scaling).

B Gradient Checks

Let L : R→ R be a loss viewed as a function of a single parameter θ ∈ R. Let gθ ← Grad(L, θ) denote the output
of an algorithm expected to compute L′(θ) ∈ R, the analytic gradient of L at θ (e.g., backpropagation). A gradient
check compares gθ to a numerical estimate of L′(θ), which can be obtained from the definition of a derivative:

L′(θ) := lim
ϵ→0+

L(θ + ϵ)− L(θ)

ϵ
≈ L(θ + ϵ̂)− L(θ)

ϵ̂
=: ĝoneθ,ϵ̂ (15)

3While either float16 or bfloat16 can be used for half precision, the latter seems clearly better suited since precision is not an issue
(i.e., it is assumed to be handled in float32).

5

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
https://pytorch.org/docs/stable/amp.html#autocast-op-reference

where ϵ̂ > 0 is some tiny value. Using the Taylor expansion L(θ+ ϵ̂) = L(θ) + ϵ̂L′(θ) + 1
2 ϵ̂

2L′′(c) where c ∈ [θ, θ+ ϵ̂]
is some constant, we can calculate the numerical error

ĝoneθ,ϵ̂ =
L(θ + ϵ̂)− L(θ)

ϵ̂
=

ϵ̂L′(θ) + 1
2 ϵ̂

2L′′(c)

ϵ̂
= L′(θ) +

1

2
ϵ̂L′′(c) ⇒

∣∣L′(θ)− ĝoneθ,ϵ̂

∣∣ = O(ϵ̂)

A better estimate is given by the two-sided version

ĝtwo
θ,ϵ̂ :=

L(θ + ϵ̂)− L(θ − ϵ̂)

2ϵ̂
(16)

The symmetry of the approximation will yield an improvement. Since

L(θ + ϵ̂) = L(θ) + ϵ̂L′(θ) +
1

2
ϵ̂2L′′(θ) +

1

6
ϵ̂3L′′′(c′)

L(θ − ϵ̂) = L(θ)− ϵ̂L′(θ) +
1

2
ϵ̂2L′′(θ)− 1

6
ϵ̂3L′′′(c′′)

for some c′, c′′ ∈ R, defining C = L′′′(c′) + L′′′(c′′) we have

ĝtwo
θ,ϵ̂ =

L(θ + ϵ̂)− L(θ − ϵ̂)

2ϵ̂
=

2ϵ̂L′(θ) + 1
3 ϵ̂

3C

2ϵ̂
= L′(θ) +

1

6
ϵ̂2C ⇒

∣∣L′(θ)− ĝtwo
θ,ϵ̂

∣∣ = O(ϵ̂2)

which shows that (16) is a much more accurate estimate of L′(θ) than (15) for a small ϵ̂. To account for different
scales, the gradient check typically tests the relative error∣∣∣gθ − ĝtwo

θ,ϵ̂

∣∣∣
max(|gθ| , |ĝtwo

θ,ϵ̂ |)
≤ τ (17)

where τ > 0 is some tolerance. If gθ = L′(θ) (i.e., the algorithm is implemented correctly), then (17) is O(ϵ̂2) up to
scaling. For instance, if ϵ̂ = 10−5 then (17) can be as small as 10−10 in an idealized scenario where the magnitude
of the gradient is about 1. In practice, 10−7 is deemed safe: see the note here for details.

A gradient check is an interesting unit test because even the reference answer (i.e., numerical gradient estimate) is
not perfect. Clearly we wish to use an ϵ̂ as small as possible since that determines the accuracy of the numerical
estimate, but it will cause numerical instability in (16) (or (15)) when it is too small. Similarly, if L′(θ) is too small
then ĝtwo

θ,ϵ̂ may underflow to zero, thus we may want to scale the loss αL(θ) so that |ĝtwo
θ,ϵ̂ | ≈ 1. A great way to

combat these issues is to always use double precision, which is capable of expressing extreme values.

C Quantile Quantization

An “information-theoretically optimal” quantization scheme with respect to a distribution pop over x ∈ R (in our
case, x represents a model weight) using B bits is one that partitions R so that each of K = 2B bins contains an
equal probability mass. Each bin is assigned some representative value (e.g., midpoint). Recall that if tk is the k-th
K-quantile, it means

Fpop(tk) := Pr
x∼pop

(x ≤ tk) =
k

K

where Fpop is the cumulative distribution function (e.g., the median is the first 2-quantile). If Fpop is invertible,

tk = F−1
pop

(
k

K

)
Instead of using the raw K-quantiles as quantization values, we may use the K midpoints of the (K + 1)-quantiles
as a more faithful approximation of the midpoints of the K-partition:

qk =
F−1
pop

(
k

K+1

)
+ F−1

pop

(
k+1
K+1

)
2

∀k = 1 . . .K (18)

6

https://cs231n.github.io/neural-networks-3/#gradcheck

C.1 NormalFloat (NF)

Estimating the quantiles of an unknown distribution from samples (of weights) is susceptible to large errors for
outliers. The authors of QLoRA instead assume that pop = N (0, 1) [2]. They propose a quantization scheme
called 4-bit NormalFloat (NF4) based on the following 17 probabilities:

0 10.5

δ δ

The offset is chosen as δ = 1
2 (

1
32 +

1
30) (i.e., average half length of 15-th and 16-th segment lengths). Then 8 evenly

spaced values between [δ, 1
2] (blue points) and 9 evenly spaced values between [12 , 1 − δ] (red points) are chosen.

These probabilities are mapped to a ∈ R8 and b ∈ R9 through F−1
N (0,1) : [0, 1] → R where a1 = F−1

N (0,1)(δ) = −b9
and a8 = b1 = 0. Discarding the duplicate zeros, we have c = (a, b(2 :)) ∈ R16. The final values of NF4, qNF4 ∈ R18,
are obtained as qNF4i = ci

maxj cj
. They are

qNF4 = (−1, −0.6962, −0.5251, −0.3949, −0.2844, −0.1848, −0.0910, 0,

0.0796, 0.1609, 0.2461, 0.3379, 0.4407, 0.5626, 0.7230, 1)

More generally, given B bits and an offset δ, NF considers an even partition of [δ, 1
2] and [12 , 1 − δ] into 2B−1 and

2B−1 + 1 probabilities, which are then converted by F−1
N (0,1) and normalized to final values in [−1, 1]. For instance,

the 3-bit NormalFloat (NF3) values, using the same offset as NF4 [4], are given by

qNF3 = (−1, −0.4786, −0.2171, 0, 0.1609, 0.3379, 0.5626, 1)

NormalFloat is motivated by the finding that the weight of an LLM is empirically distributed as a Gaussian
w ∼ N (0, ω2). Thus if we scale w′ = 1

ωw we have w′ ∼ N (0, 1) and NF can indeed bin the weights optimally.
However, in practice we partition the model parameters as blocks of M values, and quantize each block w ∈ RM

into w̄ by scale quantization (8), namely

w̄i = qnn(i) nn(i) = argmin
k=1...2B

∣∣∣∣qNFk − wi

absmax(w)

∣∣∣∣ (19)

The dequantization from w̄ is given by ŵ = absmax(w)w̄. Because the scaling uses the absolute maximum of the
block, not a constant, the distribution is not Gaussian and depends on the block size M . It is possible to use the
correct quantiles [12].

D Sensitivity-Based Quantization

Kim et al. [6] consider the task of finding a B-bit quantization Ŵ of weight W ∈ Rd×d′
(i.e., each float Wi,j is

clustered to one of the 2B bins) so that the training loss L(Ŵ) is minimized. Taking the vectorized views ŵ, w, we
seek to minimize

L(ŵ) ≈ L(w) +∇L(w)(ŵ − w) +
1

2
(ŵ − w)⊤∇2L(w)(ŵ − w)

where ∇L(w) ≈ 0 in PTQ. Since the Hessian matrix is not typically computed in a standard deep learning frame-

work, we estimate ∇2L(w) ≈ 1
N

∑N
i=1(∇Li(w))(∇Li(w))

⊤ = F̂ where Li(w) is the loss on the i-th of N samples.

(F̂ is unfortunately known as the empirical Fisher matrix even though it is not a consistent estimator of the true
Fisher information matrix, and it is often used for approximating the Hessian even though the relationship between
Hessian and Fisher is only vaguely established under certain conditions [7].) Further using a diagonal approximation

of F̂ , we can write the problem as

argmin
Ŵ

∣∣∣∣∣∣F̂ 1/2 ⊙ (W − Ŵ)
∣∣∣∣∣∣2
F

(20)

7

https://github.com/HanGuo97/lq-lora/blob/aa5f44bb0c4534bcd03e968bd966bb561269d48e/models/quantization_utils.py#L11

E PTQ Examples

E.1 LLM.int8()

LLM.int8() is a dataless PTQ method focused on quantized matrix multiplication (matmul) [1]. It does not require
training; it simply loads a trained transformer-based model, quantizes the 32- or 16-bit weight W ∈ Rd×d′

of every
linear layer to 8-bit integers ĎW ∈ Zd×d′

, then estimates the original linear operation XW where X ∈ RN×d is the
input matrix. To estimate XW , it chooses to quantize X to sX ∈ Zd×d′

and compute matmul in integer, rather than
dequantizing ĎW and computing matmul in float. To see how this is done, consider tensor-wise scaling (9) which
defines ĎW = round(s−1

W W) and sX = round(s−1
X X) for some sW , sX > 0. Then

XW ≈ (sX sX)(sW ĎW) = sXsW︸ ︷︷ ︸
float

sXĎW︸︷︷︸
integer matmul

(21)

Typically sXĎW is computed in a higher-bit integer format to avoid rounding errors (e.g., accumulate int8 values in
int32). While (21) can exploit integer arithmetic, it also incurs the overhead of quantizing X (in both inference
speed and precision).

To improve precision, LLM.int8() proposes “vector-wise” scaling which scales each row of X and each column of
W separately (i.e., treating matrix multiplication as Nd′ dot products). Under vector-wise scaling, (21) becomes

XW ≈ (diag (uX) sX)(ĎWdiag (uW)) = uXu⊤
W︸ ︷︷ ︸

float

sXĎW︸︷︷︸
integer matmul

(22)

for some uX ∈ RN and uW ∈ Rd′
. LLM.int8() is also one of the first works that report the “outlier” feature

phenomenon in LLMs, namely that when language models become sufficiently large (starting around 6B parameters)
some feature dimensions (i.e., columns of X) have large magnitude dominating the behavior of the model. The
outlier features are excluded from quantization as follows, using some threshold α (e.g., 6):

O = {h = 1 . . . d : Xi,h > α for some i ∈ [N]} O⊥ = {1 . . . d} \O
XW = X[:,O]W [O, :] +X[:,O⊥]W [O⊥, :] (23)

The first is computed in the original float format; only the second term is computed by (22). This means that we
have to keep W [O, :] ∈ R|O|×d in full float, but outlier features remain rare (e.g., |O| ≤ 7 up to OPT-13B) so the
decomposition is relatively cheap while significantly improving precision.

E.2 AWQ

AWQ is an output-calibrated PTQ method (13) that learns additional feature scales by a simple grid-search heuristic
to minimize the output error [9]. Let R(W) ≈ W denote the approximate reconstruction of the linear weight
W ∈ Rd×d′

after quantization and dequantization (under some quantization units (9), AWQ uses grouping). Given
an input X ∈ RT×d, AWQ introduces additional scaling parameters β ∈ Rd learned by

min
β∈Rd: βh≥1 ∀h

∣∣∣∣∣∣XW −Xdiag (β)
−1

R(diag (β)W)
∣∣∣∣∣∣2 (24)

The main idea is that there exists some β such that it does not affect the quantization error of R(diag (β)W)
compared to R(W). This holds empirically for two reasons. First, the average rounding error (5) tends to be always
uniformly distributed between 0 and 1/2 regardless of the argument. Second, the quantization parameters (7) are
only affected by extremal values in a quantization group and may remain unchanged, particularly when the rows
of W are sparsely scaled and with clipping. But the error is now amplified by Xdiag (β)

−1
instead of X, resulting

in a β-fold reduction in relative error. The column scaling has the effect of eliminating the outlier features, which
would otherwise have to be computed separately as in (23) for better precision.

Since R is not differentiable (though one can presumably consider straight-through estimation), AWQ crudely
optimizes (24) by setting βh = absmax(X(:, h))α where the optimal value α ∈ [0, 1] is selected over a grid size of

20. Once β is chosen, the downscaling operation diag (β)
−1

can be absorbed into the weight of the previous layer
and quantized offline.

8

E.3 QLoRA

QLoRA is a PTQ-FT pipeline [2]. The model weights are quantized to NF4 offline (with block-wise scaling) and the
computation happens in bfloat16. More specifically, QLoRA computes for each linear layer [2]:

Y bfloat16 = Xbfloat16Dequant(Dequant(cfloat321 , cfloat82),W NF4) +Xbfloat16 Lbfloat16
1 Lbfloat16

2︸ ︷︷ ︸
finetuned

(25)

A similar approach has been taken by GPTQ-LoRA which uses GPTQ (an output-calibrated PTQ method for
low-bit integer quantization [3]) for the first term.

QLoRA proposes NormalFloat (Appendix C.1) and double quantization (Section 3.1). It also proposes paged
optimizers that allocate paged memory for optimizer states which are automatically moved to CPU RAM when
GPU runs out of memory (e.g., due to a long sequence length), then paged back to GPU memory when the memory
is needed in the update step.

E.4 LQ-LoRA

LQ-LoRA performs QLoRA (25) with a better initialization [4]. Instead of quantizing W ∈ Rd×d′
to Ŵ indepen-

dently of the LoRA weights L1, L2, it proposes to use a LoRA-aware initialization such that W ≈ Ŵ +L1L2. Under
the sensitivity calibration loss (14), the joint optimization problem can be framed as

min
Ŵ∈Qd×d′ , L1∈Rd×r, L2∈Rr×d′

∣∣∣∣∣∣F̂ (X,W)1/2 ⊙ (W − (Ŵ + L1L2)
∣∣∣∣∣∣2
F

(26)

where Qd×d′
is the space of all matrices that are losslessly quantizable to B-bit NF. (We may set F̂ (X,W) = 1d×d′

if we have no calibration set X.) LQ-LoRA uses an alternating minimization algorithm to approximately minimize
(26).

1. Holding Ŵ fixed, the general weighted squared loss (26) is still (NP-)hard. Instead of doing a local search,

LQ-LoRA assumes that F̂ (X,W)1/2 = uv⊤ for some u ∈ Rd and v ∈ Rd′
. Then (26) becomes

min
L1∈Rd×r, L2∈Rr×d′

||diag (u) (W − L1L2)diag (v)− diag (u)L1L2diag (v)||2F (27)

Since this is unconstrained, letting K1 = diag (u)L1 and K2 = diag (v)L⊤
2 , we can instead solve

min
K1∈Rd×r, K2∈Rd′×r

∣∣∣∣diag (u) (W − L1L2)diag (v)−K1K
⊤
2

∣∣∣∣2
F

(28)

then recover L1 = diag (u)
−1

K1 and L2 = K⊤
2 diag (v)

−1
. A solution of (28) is given by K1 = UrΣ

1/2
r and

K2 = VrΣ
1/2
r where UrΣrVr is the rank-r SVD of diag (u) (W − L1L2)diag (v). For the approximation step,

LQ-LORA uses the row/column means of F̂ (X,W) as u, v (instead of the optimal rank-1 SVD).

2. Holding L1, L2 fixed, (26) becomes

min
Ŵ∈Qd×d′

∣∣∣∣∣∣F̂ (X,W)1/2 ⊙
(
(W − L1L2)− Ŵ

)∣∣∣∣∣∣2
F

(29)

This is approximately minimized by Ŵ = D(Q(W − L1L2)).

Additionally, LQ-LoRA optimizes the double quantization configuration (B,B2, B3,M1,M2) (B,B2, B3 are the tar-

get bitwidths,M1,M2 are the block sizes (11)) for each layer to minimize the quantization errors
∣∣∣∣∣∣W − (Ŵ + L1L2)

∣∣∣∣∣∣2
F

while satisfying the bit budget. This can be done with an off-the-shelf integer linear programming solver.

9

	Floats
	Rounding Errors
	Exact rounding

	Floats in Binary Base
	Quirky Examples

	Quantization
	Precision-Memory Tradeoff
	Post-Training Quantization

	Mixed-Precision Training
	Gradient Checks
	Quantile Quantization
	NormalFloat (NF)

	Sensitivity-Based Quantization
	PTQ Examples
	LLM.int8()
	AWQ
	QLoRA
	LQ-LoRA

