
Making Transformers Memory-Bound Again

Karl Stratos

See the appendix for a background on the roofline model (Appendix A) and analyses of transformer kernels (Ap-
pendix B–E).

1 Token-Time

To reduce training “token-time” (i.e., time to process ntokens tokens), we can increase the MFU of linear layers
by increasing the batch size B—almost linearly until B ≈ d (Appendix C)—until we hit some sustained empirical
FLOP/s roof. At this point, training is compute-bound and there is no benefit of considering a larger batch size.
A single update with a batch size 2B will take as long as two updates with batch size B:

t(2B) ≈ 2t(B) B ≫ d

However, the story changes radically if the batch is partitioned into K shards (sequence-level). The per-device
batch size Bdevice = B/K is cut down by a factor of K, thus the device becomes memory-bound again, e.g.,

t(2Bdevice) ≈ t(Bdevice) Bdevice ≪ d

Hence we can keep reducing token-time by increasing K and B jointly.

2 Loss-Time

Although the above strategy reduces token-time, it may not reduce “loss-time” (i.e., time to reach a target loss,
this is what really matters). The bottleneck becomes the optimizer. For reasonable batch sizes, using the same
amount of data results in a similar final loss:

Loss (B,ntokens) ≈ Loss(B′, ntokens) ∀Bmin ≤ B,B′ ≤ B⋆ (1)

B⋆ is known as the “critical batch size”. However, for large (post-critical) batch sizes, the optimizer’s data efficiency
diminishes:

Loss (B,ntokens) > Loss(B′, ntokens) B > max(B′, B⋆)

Thus loss-time may not necessarily decrease even if we keep increasing the batch size and the number of devices
jointly (thus increasing MFU). This is why an optimizer that preserves data efficiency for large batch sizes is
appealing for large-scale training.

1



A Background

A kernel is a function implemented for hardware accelerators like GPUs and TPUs. Given an input with some size
N , it performs nF (N) FLOPs (i.e., +,−,×, /) and moves nB(N) bytes (between HBM and SRAM). We assume a
“sustained” setting in which the kernel processes a stream of inputs. Then the time to perform nF (N) FLOPs and
move nB(N) bytes on average can be viewed as the sustained compute/communication time per input, which we
will denote by tF (N) and tB(N) (in seconds). The sustained effective runtime per input is then

t(N) = max (tF (N), tB(N)) (2)

assuming perfect overlap between computation and memory traffic.1 (2) is thus bottlenecked by whichever of
compute/communication that takes longer.

Definition A.1. The kernel is compute-bound if tF (N) ≥ tB(N) and memory-bound if tF (N) < tB(N).

Intuitively, a memory-bound kernel wastes time by waiting around for data, making the effective runtime longer
than “necessary”. Therefore we are motivated to make tF (N) as large as possible relative to tB(N) (i.e., spend
more time in compute than communication). This is clearly meaningful only if all operations are meaningful.2

A.1 Roofline Model

Let π⋆ and β⋆ denote the peak FLOP/s and bytes/s (aka. HBM bandwidth) the device can handle in an ideal
setting. For example, NVIDIA A100 has π⋆ = 3.12 × 1014 (312 TFLOP/s) and β⋆ = 1.6 × 1012 (1.6 TB/s). We
want to make the kernel’s effective FLOP/s

P (N) :=
nF (N)

t(N)
=

nF (N)

max (tF (N), tB(N))
≤ π⋆ (3)

as close to π⋆ as possible. Note that even if the kernel is optimally implemented so that it truly performs π⋆ FLOP/s
and transfers β⋆ bytes/s, (3) is not necessarily tight. It depends on the compute vs communcation workloads, more
specifically

P (N) =
nF (N)

max (tF (N), tB(N))
=

nF (N)

max
(

nF (N)
π⋆ , nB(N)

β⋆

) = min

(
π⋆, β⋆ nF (N)

nB(N)

)
= min (π⋆, β⋆I(N)) (4)

where I(N) := nF (N)
nB(N) (FLOP/byte) is known as the arithmetic intensity (AI) of the kernel. Thus the effective

FLOP/s linearly increases in AI (with slope β⋆), until it reaches π⋆ and remains there. The transition point is
characterized by

β⋆I(N) = π⋆︸ ︷︷ ︸
effective FLOP/s matches the peak

⇔ I(N) =
π⋆

β⋆
=: I⋆︸ ︷︷ ︸

AI becomes “critical”

⇔ tF (N) = tB(N)︸ ︷︷ ︸
kernel becomes compute-bound

where I⋆ (critical AI) represents the FLOP-byte ratio when the device is optimally functioning (e.g., 195 FLOP/byte
for A100). This is typically depicted by plotting (4) as a piecewise-linear function of AI in log-log scale, e.g.,

1Without overlap, t(N) = tF (N) + tB(N). Real kernels often overlap to some extent using techniques like double-buffered/tiled
schedule, though falling short of perfect overlap for various reasons.

2For instance, we can trivially make a kernel compute-bound by repeatedly adding and subtracting 1 on SRAM, since it increase the
compute time without increasing the communication time, but the benefit of such a compute-bound kernel is meaningless (i.e., fully
exploiting the computational faculty of the device to do meaningless work).

2



10−1 100 101 102 103 104
109

1011

1013

1015

memory-bound compute-bound

FLOP/byte

F
L
O
P
/s

π⋆ = 1013 (10 TFLOP/s)

β⋆ = 1011 (100 GB/s)

I⋆ = 100

The empirical FLOP/s π(N) = nF (N)
tF (N) ≤ π⋆ and bandwidth β(N) = nB(N)

tB(N) ≤ β⋆ depend on many factors.3 In

all cases, it holds that P (N) ≤ min (π⋆, β⋆I(N)) where π⋆, β⋆ upper bound the effective FLOP/s (hence the name
roofline model). How close we approach the peak FLOP/s is measured by MFU (model FLOPs utilization):

MFU(N) :=
P (N)

π⋆
≤ min

(
1,

I(N)

I⋆

)
(5)

which is 100% iff the kernel’s AI is critical. In real-world large-scale distributed training, MFU is typically not
higher than 40% and as low as 20% due to various inefficiencies in small per-device batch sizes, layers with low AI
(e.g., attention), and inter-device communication (e.g., all-reduce to average gradients in data parallelism).

Takeaway. A kernel is compute-bound on a device (i.e., it performs peak FLOP/s) iff its arithemtic intensity I(N)
passes a device-specific threshold for some sufficiently large input size N . Otherwise, the kernel is memory-bound.

B GEMM

General matrix multiplication (GEMM) computes:

Z︸︷︷︸
d×D

= X︸︷︷︸
d×K

Y︸︷︷︸
K×D

A perfect kernel will load the entire X,Y to SRAM once:

PerfectGEMM(X,Y, output=Z)

• X ← READ(X)

• Y ← READ(Y )

• WRITE(Z,XY )

nF (d,K,D) = 2dDK

nB(d,K,D) = 2(dK +KD + dD)

I(d,K,D) =
1

1
D + 1

d + 1
K

(the factor of 2 in nB comes from the BF16 precision). The AI is optimal and strictly increasing in all input
dimensions (e.g., I(d) = 1

3d with d = D = K). But SRAM is severely limited (e.g., 164–192KB on A100), so the
perfect kernel only works on trivially small matrices.

B.1 Naive GEMM

A naive kernel will “give up” on optimizing the SRAM usage and compute each output cell Zi,j ∈ R independently
(e.g., separate CUDA thread), loading each input element every time it is needed:

3A primary factor is the input size N , which leaves tensor-core pipelines and HBM links idle if too small. Other factors include
non-FLOP operations like masking (reducing π(N)) and cache misses (reducing β(N)),

3



NaiveGEMM(X,Y, output=Z)

• For i = 1 . . . d and j = 1 . . . D in parallel (independent threads):

– z ← 0

– For k = 1 . . .K:

∗ xk ← READ(Xi,k)

∗ yk ← READ(Yk,j)

∗ z ← z + xk × yk

– WRITE(Zi,j , z)

nF (d,K,D) = 2dDK

nB(d,K,D) = 2(2dDK + dD)

I(d,K,D) =
1

2 + 1
K

∈ [0.33, 0.5)

Even though computation of all output cells is fully parallelized, AI is dismal (< 0.5) because we now read the
input many times: each Xi,k is read D times and each Yk,j is read d times.

B.2 Tiled GEMM

We can avoid re-reading while conserving memory by low-rank decomposition of Z = XY . Specifically, we partition
X,Y into Xk, Yk along the contracting dimension and compute Z =

∑
k XkYk. In this way, Xk, Yk can be loaded

exactly once to SRAM to calculate XkYk ∈ Rd×D then evicted. However, this still requires fitting Xk, Yk on SRAM.
We may further partition Z into “tiles”. For instance, if d = 2m, D = 3n, and K = 4l, we may chop up the output
matrix into 6 tiles (m× n) and compute each independently (e.g., seperate thread block):

[
X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

] 
Y1,1 Y1,2 Y1,3

Y2,1 Y2,2 Y2,3

Y3,1 Y3,2 Y3,3

Y4,1 Y4,2 Y4,3

 =

[
Z1,1 Z1,2 Z1,3

Z2,1 Z2,2 Z2,3

]
Z1,2︸︷︷︸
m×n

=

4∑
t=1

X1,t︸︷︷︸
m×l

Yt,2︸︷︷︸
l×n

An input tile now may need to be loaded multiple times (e.g., X1,1 is required for 3 output tiles), but even so
many times fewer than the naive kernel. A device further optimizes communication overhead by storing recently
used input tiles in an intermediate cache (L2) that is much larger than SRAM (e.g., 40MB on A100), where the
bandwidth of L2↔SRAM is many times faster than HBM↔L2:

TiledGEMM(X,Y, output=Z)

• For each output tile Ztile ∈ Rm×n in parallel (thread blocks):

– TZ ← 0m×n

– For each Xtile ∈ Rm×l and Ytile ∈ Rl×n serially (cooperative threads):

∗ TX ← READL2(Xtile) # if cache miss, load from HBM to L2

∗ TY ← READL2(Ytile) # if cache miss, load from HBM to L2

∗ sync() # ensure tiles are available in SRAM to all threads

∗ TZ ← TZ + TXTY

∗ sync() # ensure SRAM is not overwritten by any thread yet

– WRITE(Ztile, TZ)

nF (d,K,D) = 2dDK

nB(d,K,D) ≥ 2(dK +KD + dD)

I(d,K,D) ≤ 1
1
D + 1

d + 1
K

While it may not quite reach the optimal AI (e.g., due to L2 overhead and cache misses), the kernel is now practical,
making GEMM one of the most scalable operations on hardware accelerators. In this note, we assume GEMM is
perfect and reads the input matrices exactly once for simplicity.

B.2.1 Batching

More generally, the kernel can batch M independent matrix multiplications into a single GEMM:

Z︸︷︷︸
M×d×D

= X︸︷︷︸
M×d×K

Y︸︷︷︸
M×K×D

The kernel remains the same except that it operates on “cubes” Zcube ∈ Rp×m×n instead of tiles (i.e., it schedules
(M/p)× (d/m)× (D/n) such cubes to be processed by independent thread blocks). Since this increases both nF , nB

4



by a factor of M , AI remains constant in the batch size. The effective runtime of batched GEMM thus satisfies

t(M,d,K,D) = M × t(1, d,K,D)

assuming d,K,D are large enough to saturate the device by themselves. For instance, one batched GEMM of 100
giant matrices takes roughly the same time as serially computing the 100 giant matrix multiplications.4

Takeaway. Perfect GEMM has arithmetic intensity O(d) where d is any matrix dimension, thus easily compute-
bound for nontrivial matrices (e.g., d > 3I⋆ ≈ 600 on A100 with BF16). But batching does not increase arithmetic
intensity.

C Linear Layer

The linear layer has the parameter W ∈ Rd×Fd (omitting the bias) for some assymetry factor F > 0. The input is
a batch X ∈ RB×d of B vectors (e.g., token embeddings).

Forward.

Y︸︷︷︸
B×Fd

= X︸︷︷︸
B×d

W︸︷︷︸
d×Fd

nF (B, d, F ) = 2BFd2

nB(B, d, F ) = 2(Bd+ Fd2 +BFd)

I(B, d, F ) =
1

1
B + 1

dF

=
1

2
H(B, dF )

where dF = F
F+1d ∈ (0, d) and H(B, dF ) is the harmonic mean of B, dF > 0. Thus

1

2
min (B, dF ) ≤ I(B, d, F ) < min (B, dF )

scaling jointly in B and dF . However, it also continuously scales in one even if the other is fixed. For instance,

holding dF fixed, we have I(B, d, F ) =
(

B
B+dF

)
dF → dF as B → ∞.5

Backward. Given the gradient zY ∈ RB×Fd of the loss with respect to Y , the backward pass computes

zX︸︷︷︸
B×d

= zY︸︷︷︸
B×Fd

W⊤︸︷︷︸
Fd×d

zW︸︷︷︸
d×Fd

= X⊤︸︷︷︸
d×B

zY︸︷︷︸
B×Fd

nF (B, d, F ) = 4BFd2

nB(B, d, F ) = 4(Bd+ Fd2 +BFd)

I(B, d, F ) = same as forward

Note that zY is read twice. One may consider a fused backward kernel that reads zY once to double the AI, but
we will avoid complications that do not change the asymptotic behavior.

Backward with remat. Often to save memory, we “rematerialize” the input X in the backward pass instead of
saving it from the forward pass (i.e., activation checkpointing). Specifically, we compute

X = XprevWprev

which is used as input to the backward matmul zW = X⊤zY . Assuming the previous matrices have the same sizes,
the backward pass with remat increases the factor from 4 to 6 in nF , nB (but the AI remains the same).

D Attention Layer

The multi-head attention (MHA) layer has no learnable parameters. The input is a tuple of query, key, and
value tensors Q,K, V ∈ RNH×T×dH where N is the number of sequences, H is the number of heads, T is the
sequence length, and dH is the head dimension. We assume the typical case d = dHH (i.e., the model dimension is
partitioned across heads).

4This omits the kernel-launch overhead time tlaunch ≈ 5µs. With it, the unbatched overhead is
M(tlaunch+t(1,d,K,D))
tlaunch+t(M,d,K,D)

, which is ≈1

assuming tlaunch ≪ t (but M if tlaunch ≫ t).
5Do not confuse this with batching independent matmuls (Section B.2.1). Here, X ∈ RB×d grows in B, thus we are actually scaling

a matrix dimension.

5



Forward. The forward pass computes

O︸︷︷︸
NH×T×dH

=

(
QK⊤
√
dH

)
.softmax(dim=–1)︸ ︷︷ ︸
NH×T×T

V︸︷︷︸
NH×T×dH

It involves two batched GEMMs (batch size NH): one between T × dH and dH × T , and the other between T × T
and T × dH . Each requires 2NT 2d FLOPs, thus 4NT 2d FLOPs in total. Naively constructing the probability
tensor Π ∈ RNH×T×T requires moving O(NHT 2 +NTd) bytes, resulting in an AI of

Inaive(N,H, T, dH) = O

(
TdH

T + dH

)
= O (min(T, dH))

Instead, it is now standard to use tiled attention that loads the NH × T × d input matrices only once (e.g.,
FlashAttention), moving only O(NTd) bytes. This results in an AI of

Itiled(N,H, T, dH) = O(T )

Backward. Given the gradient zO ∈ RNH×T×dH of the loss with respect to O, the backward pass computes

zΠ = zOV
⊤ zK =

z⊤AQ√
dH

zV = Π⊤zO zQ =
zAK√
dH

zA = Π⊙ zΠ − (Π⊙ zΠ).sum(dim=–1)⊙Π

where A = QK⊤
√
dH

and Π = A.softmax(dim=–1). It involves four batched GEMMs each requiring 2NT 2d FLOPs,

thus 8NT 2d FLOPs in total. As in the forward pass, AI is O(T ) with a tiled kernel.

Backward with remat. We may save memory by rematerializing O in the backward pass. This requires re-
running the entire forward pass to obtain (Q,K, V ) 7→ O, increasing the FLOPs to 12NT 2d.

Summary. With tiled attention, forward/backward performs O(NT 2d) FLOPs and moves O(NTd) bytes, with

an AI of O(T ). Furthermore, it considers only
∑T

t=1 t = T (T + 1)/2 of the attention scores under causal masking,
so the number of FLOPs is ≈ 1

2 of the total count above, resulting in ≈ 2NT 2d for forward and ≈ 4NT 2d for
backward (or ≈ 6NT 2d with remat).6

E Transformer FLOPs

Given a batch X ∈ RN×T×d of B = NT token embeddings, the forward pass computes:

• For layer l = 1 . . . L:

– Attention

∗ 4 linear layers (d → d) on B tokens to compute the QKV and output

∗ 1 attention layer on NH sequences

– Gated feedforward

∗ 3 linear layers (two d → Fd, one Fd → d) on B tokens

• 1 linear layer (d → V ) on B tokens to compute the logits

6Causal masking does not reduce the byte traffic, so AI also falls by ≈ 1
2
(but remains O(T )).

6



The total number of FLOPs in the forward and backward pass on one batch is thus the sum of (with F = 4)

nF,G(N,T, d) = 6(16Ld2 + dV )B (GEMM) (6)

nF,A(N,T, d) = (6LTd)B (attention)

The attention overhead over GEMM is7

nF,A(N,T, d)

nF,G(N,T, d)
=

T

16d+ V
L

≈ T

17d

which can be significant (e.g., a quarter if T = 4d). In practice, attention does cause a large overhead in training
time.

E.1 Shortcut

Even so, it is common to approximate the total FLOPs by parameter GEMM FLOPs only, since they are still the
majority. Given nparams parameters and ntokens training tokens, this is8

nF ≈ (6 + [[remat]]2)× (nparams − [[unemb]]nemb)× ntokens (7)

Note that (6) is consistent with (7). If the cluster performs P FLOP/s, we can predict that training will take

ttrain ≈ nF

P
(8)

seconds. Since this excludes various communication costs (e.g., inter-device in distributed training) in addition to
attention, it tends to be a lower bound, but often surprisingly accurate. For instance, training a 500M model on
12.5B tokens performing 1.4 PFLOP/s will take about 10.2 hours (with rematerialization); training a 8.3B model
on 6T tokens performing 238 PFLOP/s will take about 20 days.

7We assume V ≈ Ld to be concrete (e.g., 30 layers for V = 30d).
8nparams can include elementwise parameters such as layer normalization scales and biases. Technically, these incur only 3 FLOPs

per parameter (i.e., each op causes only ∗). But they take up < 0.1% of the model size, so this counting error makes little difference.

7


	Token-Time
	Loss-Time
	Background
	Roofline Model

	GEMM
	Naive GEMM
	Tiled GEMM
	Batching


	Linear Layer
	Attention Layer
	Transformer FLOPs
	Shortcut


