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1 Problem

Let Ω ⊆ Rd be a closed convex set. Given points X ⊂ Ω and an integer k, we aim to
compute k “centers” M⊂ Ω that minimize∑

x∈X
min
µ∈M

D (x, µ) (1)

where D : Ω × Ω → [0,∞) is a (not necessarily symmetric) distortion function.
Appendix A gives examples of D. Dasgupta (2008) shows that minimizing (1) over

M is NP-hard for D(x, y) := ||x− y||22 and k = 2.

2 Algorithm

A heuristic for minimizing (1) can be derived as follows. Define a k-partition {Cµ}µ∈M
of X associated with centers M where

Cµ :=

{
x ∈ X : µ = arg min

µ′∈M
D (x, µ′)

}
(2)

We assume that a tie D (x, µ) = D (x, µ′) is broken arbitrarily.

Proposition 2.1. For each center µ ∈M, let

νµ := arg min
ν∈Ω

∑
x∈Cµ

D (x, ν) (3)

and let N = {νµ : µ ∈M}. Then∑
x∈X

min
ν∈N

D (x, ν) ≤
∑
x∈X

min
µ∈M

D (x, µ)

A proof is given in Appendix B. Thus given some initial k centers, we can repeatedly
compute a k-partition of X based on (2) and new centers based on (3) to monotonically
improve (1) until local convergence.

The resulting algorithm, shown in Figure 1, is often called k-means because for a
wide class of distortion functions called Bregman divergences, νµ in (3) for cluster
Cµ is simply the mean of Cµ (see Proposition A.1). Thus we calculate “k means” of
{Cµ}µ∈M in each iteration.

The runtime of the algorithm is O(T |X | kd), but note that we can easily parallelize
cluster assignment and center computation to reduce the runtime to O(T |X | kd/τ)
where τ is the number of threads. In practice, we also need to handle an issue with
empty clusters (see Appendix C).
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k-means
Input: points X ⊂ Ω, initial k centersM(0) ⊂ Ω, distortion D : Ω×Ω→ [0,∞), number
of iterations T

1. For t = 1 . . . T ,

(a) Calculate a k-partition {Cµ}µ∈M(t−1) of X where

Cµ ←

{
x ∈ X : µ = arg min

µ′∈M(t−1)

D
(
x, µ′

)}

(b) Calculate new k centers M(t) =
{
νµ : µ ∈M(t−1)

}
where

νµ ← arg min
ν∈Ω

∑
x∈Cµ

D (x, ν)

Output: M(T ) ⊂ Ω such that∑
x∈X

min
µ∈M(T )

D (x, µ) ≤
∑
x∈X

min
µ∈M(0)

D (x, µ)

Figure 1: The k-means clustering algorithm.

3 Guarantees

In this section, for clarity we only consider the squared Euclidean distance D(x, y) :=

||x− y||22 (with domain Ω = Rd) and use the following notation with respect to fixed
X ⊂ Rd and k. Denote the cost of proposed k centers M⊂ Rd by

cost (M) :=
∑
x∈X

min
µ∈M

||x− µ||22

and denote the optimal k centers by M∗ := arg minM⊂Rd: |M|=k cost (M). The bad
news is that k-means has no guarantee on the optimality of its output.

Proposition 3.1. Let B be any constant. Then we can construct X and M(0) such
that no matter how large T is,

cost
(
M (T )

)
≥ B cost (M∗)

whereM(T ) is the output of k-means(X ,M(0), ||x− y||22 , T ).

A construction proving Proposition 3.1 is well-known and thus omitted. The good
news is that it is possible to combat degenerate cases by randomizing the choice of
initial centers. Arthur and Vassilvitskii (2007) propose a good randomized strategy
called “k-means++” which is given in Figure 2. They show that k-means++ produces
centers that are at most a factor of log k worse than the optimal centers in expectation!

Theorem 3.1 (Arthur and Vassilvitskii, 2007). Let X ⊂ Rd be any points. IfM+ is
the output of k-means++(X ), then

E
[
cost

(
M+

)]
≤ O(log k) cost (M∗)

where the expectation is with respect to the randomness of k-means++.
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k-means++
Input: points X ⊂ Rd, number of centers k

1. Draw µ1 ∼ X uniformly at random, and let M+ ← {µ1}.
2. For i = 2 . . . k,

(a) Draw µi ∼ X with probability

minµ∈M+ ||x− µ||22∑
x′∈X minµ∈M+ ||x′ − µ||22

∀x ∈ X

and let M+ ←M+ ∪ {µi}.

Output: M+ ⊂ Rd such that

E

[∑
x∈X

min
µ∈M+

||x− µ||22

]
≤ O(log k) min

M⊂Rd:
|M|=k

(∑
x∈X

min
µ∈M

||x− µ||22

)

Figure 2: The k-means++ algorithm.

A key part of the proof is that when a center is randomly selected from the points X
themselves, it is worse than the optimal center only by a constant factor. A useful
tool for showing this is the bias-variance decomposition of the expected squared error:
for any constant x ∈ Rd and random variable Z ∈ Rd,

E
[
||x− Z||22

]
︸ ︷︷ ︸

squared error of x

= ||x−E [Z]||22︸ ︷︷ ︸
bias of x

+E
[
||Z −E [Z]||22

]
︸ ︷︷ ︸

variance of Z

The result is easy to show for a single cluster.

Lemma 3.2. Let C ⊂ Rd be a nonempty set. If Z is drawn from C uniformly at
random, then

E

[∑
x∈C
||x− Z||22

]
= 2 min

z∈C

∑
x∈C
||x− z||22

Proof. The minimizer is given by the mean z∗ = (1/ |C|)
∑
x∈C x = E[Z], and

E

[∑
x∈C
||x− Z||22

]
=
∑
x∈C
||x−E[Z]||22 + |C|E

[
||Z −E[Z]||22

]
=
∑
x∈C
||x−E[Z]||22 +

∑
x∈C
||x−E[Z]||22

= 2
∑
x∈C
||x− z∗||22

Lemma 3.2 applies immediately to the first center µ1 selected by k-means++. Let
z1 ∈ M∗ denote the mean of the cluster that µ1 belongs to. Then since µ1 is a
uniformly random draw from that cluster, µ1 is worse than z1 only by a factor of 2
in expectation.
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Here is a sketch of the proof. We can decompose the expected cost E [cost (M+)] of
the centers selected by k-means++ into a sum of k components corresponding to the
t = 1 . . . k iterations of the algorithm. At t-th component, we have a term that is a
constant multiple of the optimal value associated with M∗ (e.g., as in Lemma 3.2),
plus a term that accounts for the suboptimality of the 1 . . . t − 1 previous centers.
This expression ends up taking the following form:

E
[
cost

(
M+

)]
≤ 8 cost (M∗)

(
1 + 1 +

1

2
+ . . .+

1

k

)
≤ 8 cost (M∗) (2 + log k)

where we used the upper bound 1+log k on the harmonic sum 1+(1/2)+ · · ·+(1/k).
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A Choices of Distortion

We describe some well-known choices of the distortion function D underlying k-means.

A.1 Bregman Divergence

Given a closed convex set Ω, let F : Ω→ R be a smooth and strictly convex function.
The Bregman divergence DF : Ω× Ω→ [0,∞) associated with F is defined as

DF (x, y) := F (x)− F (y)− 〈∇F (y), x− y〉 ∀x, y ∈ Ω

That is, it is the error of the first-order Taylor approximation of F (x) at y. While it
is not a metric (e.g., it does not satisfy the triangle inequality or symmetry), it has
certain desirable properties including:

• DF (x, y) ≥ 0 for all x, y ∈ Ω, with equality if and only if x = y. This follows
because F is strictly convex.

• DF (x, y) is strictly convex in x ∈ Ω for any fixed y ∈ Ω.

But the most useful property for k-means is that the solution of (3) is given by the
mean for any choice of F .

Proposition A.1 (Banerjee et al., 2005). Let C ⊂ Ω be a nonempty set with the
mean µC := (1/ |C|)

∑
x∈C x. If DF : Ω× Ω→ [0,∞) is a Bregman divergence, then

µC = arg min
µ∈Ω

∑
x∈C

DF (x, µ)

Proof. We have µC ∈ Ω since Ω is closed and convex. Pick any µ ∈ Ω and note that∑
x∈C

DF (x, µ)−
∑
x∈C

DF

(
x, µC

)
=
∑
x∈C

F
(
µC
)
− F (µ)− 〈∇F (µ), x− µ〉+ 〈∇F

(
µC
)
, x− µC〉

= |C|F
(
µC
)
− |C|F (µ)− |C| 〈∇F (µ), µC − µ〉

= |C|DF

(
µC , µ

)
≥ 0

with equality if and only if µ = µC .

Here are some choices of Ω and F : Ω→ R that induce popular Bregman divergences.

Example A.1 (Squared Euclidean distance). Let Ω = Rd and F (x) := ||x||22. Then
for all x, y ∈ Ω,

DF (x, y) = ||x||22 − ||y||
2
2 − 2〈y, x− y〉

= ||x||22 + ||y||22 − 2〈x, y〉 = ||x− y||22

Example A.2 (KL divergence). Let Ω = ∆d−1 and F (p) :=
∑d
i=1 pi log pi (i.e., the

negative entropy of a random variable X with pi = P (X = i)). Then for all p, q ∈ Ω,

DF (p, q) =

d∑
i=1

pi log pi −
d∑
i=1

qi log qi −
d∑
i=1

(1 + log qi)(pi − qi)

=

d∑
i=1

pi (log pi − log qi)−

(
d∑
i=1

pi −
d∑
i=1

qi

)
= DKL (p||q)
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A.2 Non-Bregman Distortion

We can consider distortion functions that are not Bregman divergences such as the
Manhattan and Euclidean distances on Rd. The Manhattan distance is the differ-
ence in l1 norm and has a closed-form solution for (3).

Proposition A.2. Let C ⊂ Rd be a nonempty set. Let δC ∈ Rd denote a vector such
that δCi is the median of {xi : x ∈ C}. Then

δC = arg min
y∈Rd

∑
x∈C
||x− y||1

We omit the proof, but the intuition is that the stationary condition of the objective∑
x∈C: yi≥xi

1 =
∑

x∈C: yi<xi

1 ∀i = 1 . . . d

is satisfied by taking the median. The Euclidean distance is the (non-squared)
difference in l2 norm. The minimizer of distortion for a nonempty C ⊂ Rd,

γC := arg min
y∈Rd

∑
x∈C
||x− y||2

is called the geometric median of C. There is no closed-form solution for γC ,
but an iterative algorithm such as Weiszfeld’s algorithm can be used to optimize the
objective. Since the objective is strictly convex, there is no issue of local optimum.

B Proof of Proposition 2.1

Proposition For each center µ ∈M, let

Cµ :=

{
x ∈ X : µ = arg min

µ′∈M
D (x, µ′)

}
νµ := arg min

ν∈Ω

∑
x∈Cµ

D (x, ν)

and let N = {νµ : µ ∈M}. Then∑
x∈X

min
ν∈N

D (x, ν) ≤
∑
x∈X

min
µ∈M

D (x, µ)

Proof. In the following, we write

Cν :=

{
x ∈ X : ν = arg min

ν′∈N
D (x, ν′)

}
for each ν ∈ N . Then∑

x∈X
min
µ∈M

D(x, µ) =
∑
µ∈M

∑
x∈Cµ

D (x, µ)

≥
∑
µ∈M

∑
x∈Cµ

D (x, νµ) (by definition)

≥
∑
µ∈M

∑
x∈Cνµ

D (x, νµ) =
∑
x∈X

min
ν∈N

D(x, ν)
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C Empty Clusters

In order to compute (3), we need Cµ to be nonempty. For instance, under a Bregman
divergence D we must compute

νµ =
1

|Cµ|
∑
x∈Cµ

x

where an empty Cµ causes division by zero! Unfortunately, empty clusters can be cre-
ated during the algorithm, especially if initial centers are bad: see http://www.ceng.
metu.edu.tr/~tcan/ceng465_f1314/Schedule/KMeansEmpty.html. Some ways to
handle this problem in practice are:

• When a center with an empty cluster is created, replace it with a random point.

• Restart the algorithm with a different choice of centers.
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