Notes on k-Means

Karl Stratos

1 Problem

Let Q C R? be a closed convex set. Given points X C Q and an integer k, we aim to
compute k “centers” M C (2 that minimize
min D (z, p) (1)
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where D : 2 x Q@ — [0,00) is a (not necessarily symmetric) distortion function.
Appendix A gives examples of D. Dasgupta (2008) shows that minimizing (1) over
M is NP-hard for D(z,y) := ||z —y||5 and k = 2.

2 Algorithm

A heuristic for minimizing (1) can be derived as follows. Define a k-partition {C*},e m
of X associated with centers M where

CH .= {a: €X: p=argmin D (%H/)} (2)
pem

We assume that a tie D (x, u) = D (z, ') is broken arbitrarily.
Proposition 2.1. For each center p € M, let

v* := arg min D (z,v) (3)
veQ QJGZC“

and let N' = {v": ue M}. Then

in D < in D
min D (z,v) < min, (2, 1)
TeEX zeX
A proof is given in Appendix B. Thus given some initial k centers, we can repeatedly
compute a k-partition of X’ based on (2) and new centers based on (3) to monotonically

improve (1) until local convergence.

The resulting algorithm, shown in Figure 1, is often called k-means because for a
wide class of distortion functions called Bregman divergences, v* in (3) for cluster
C* is simply the mean of C* (see Proposition A.1). Thus we calculate “k means” of
{C*},em in each iteration.

The runtime of the algorithm is O(T |X| kd), but note that we can easily parallelize
cluster assignment and center computation to reduce the runtime to O(T |X| kd/T)
where 7 is the number of threads. In practice, we also need to handle an issue with
empty clusters (see Appendix C).



k-means
Input: points X C €, initial k centers M?) C Q, distortion D : QxQ — [0, c0), number
of iterations T'

1. Fort=1...T,

(a) Calculate a k-partition {C*} of X where

pemM=1)

C'<+QqzeX: p= argmin D (z,u)
uleM(t—l)

(b) Calculate new k centers M) = {1/" cpe ./\/l(t_l)} where

V" « arg min D (z,v
s 2 Plny)

zECH
Output: M) C Q such that
min D (z,u) < min D (z, )
vex hEMD wex HEM®)

Figure 1: The k-means clustering algorithm.

3 Guarantees

In this section, for clarity we only consider the squared Euclidean distance D(x,y) :=
llz —y H§ (with domain = R?) and use the following notation with respect to fixed
X C R? and k. Denote the cost of proposed k centers M C R? by

. 2
cost (M) == ) min [lz —ull;
TzeX K

and denote the optimal k centers by M* := argmin y(cga. |pq)=r cost (M). The bad
news is that k-means has no guarantee on the optimality of its output.

Proposition 3.1. Let B be any constant. Then we can construct X and M©) such
that no matter how large T is,

cost (M(T)> > Bcost (M™)

where M) is the output of k-means(X, MO ||z — y||§ ,T).

A construction proving Proposition 3.1 is well-known and thus omitted. The good
news is that it is possible to combat degenerate cases by randomizing the choice of
initial centers. Arthur and Vassilvitskii (2007) propose a good randomized strategy
called “k-means+-+" which is given in Figure 2. They show that k-means++ produces
centers that are at most a factor of log k worse than the optimal centers in expectation!

Theorem 3.1 (Arthur and Vassilvitskii, 2007). Let X C R? be any points. If M7 is
the output of k-means++(X), then

E [cost (M™)] < O(log k) cost (M*)

where the expectation is with respect to the randomness of k-means++.



k-means—+-+
Input: points X C R?, number of centers k

1. Draw p1 ~ X uniformly at random, and let M* + {u1}.
2. Fort=2...k,

(a) Draw p; ~ X with probability
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and let M+ M1 U {u;}.
Output: M* C R? such that

E Z min ||z — u||?
min, 2 = gl

reX

< . . _ 2
< O(logk) min (Z min ||z ul2>
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Figure 2: The k-means++ algorithm.

A key part of the proof is that when a center is randomly selected from the points X
themselves, it is worse than the optimal center only by a constant factor. A useful
tool for showing this is the bias-variance decomposition of the expected squared error:
for any constant x € R? and random variable Z € R¢,

Ellv-2}] =|o-EZI}+E[|Z- EZ]]
———— -
bias of x

squared error of x variance of Z

The result is easy to show for a single cluster.

Lemma 3.2. Let C C R? be a nonempty set. If Z is drawn from C uniformly at
random, then

~2uin 3" e~ 1
min p | [lz — 2|l
zeC
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Proof. The minimizer is given by the mean 2* = (1/[C|) Y. .- » = E[Z], and
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=Y lle— B2} + [CIE [ 2 - B2
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Lemma 3.2 applies immediately to the first center p; selected by k-means+-+. Let
z1 € M* denote the mean of the cluster that p; belongs to. Then since u; is a
uniformly random draw from that cluster, p; is worse than z; only by a factor of 2
in expectation.



Here is a sketch of the proof. We can decompose the expected cost E [cost (M™)] of
the centers selected by k-means++ into a sum of k£ components corresponding to the
t = 1...k iterations of the algorithm. At ¢-th component, we have a term that is a
constant multiple of the optimal value associated with M* (e.g., as in Lemma 3.2),
plus a term that accounts for the suboptimality of the 1...¢t — 1 previous centers.
This expression ends up taking the following form:

E [cost (M™T)] < 8cost (M) <1+1+ % +...F ;)

< 8cost (M™) (2 + log k)

where we used the upper bound 1+ log k on the harmonic sum 1+ (1/2)+- -+ (1/k).
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A Choices of Distortion

We describe some well-known choices of the distortion function D underlying k-means.

A.1 Bregman Divergence

Given a closed convex set §2, let F': 2 — R be a smooth and strictly convex function.
The Bregman divergence Dp : Q x Q — [0, 00) associated with F' is defined as

Drp(2,y) == F(x) = F(y) = (VF(y),x — y) Vr,y € Q

That is, it is the error of the first-order Taylor approximation of F'(x) at y. While it
is not a metric (e.g., it does not satisfy the triangle inequality or symmetry), it has
certain desirable properties including:

e Dp(xz,y) > 0 for all z,y € Q, with equality if and only if x = y. This follows
because F' is strictly convex.

e Dp(x,y) is strictly convex in = € 2 for any fixed y € Q.

But the most useful property for k-means is that the solution of (3) is given by the
mean for any choice of F.

Proposition A.1 (Banerjee et al., 2005). Let C C Q be a nonempty set with the
mean p© = (1/|C)) ¥ cc@. If Dp : Q2 x Q — [0,00) is a Bregman divergence, then

pC = arg min ZDF x, 1)
HEQ zeC

Proof. We have ¢ € Q since Q is closed and convex. Pick any p € € and note that

Z Dp (z,pu) — Z Dy (os,uc)
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=Y F(u®) = F(p) = (VF(p),z — p) + (VF (u°) ,z — )
zeC

— [CIF (u€) = |CI F() = |C1{VF (), i€ = )

=|C| Dp (4%, p) 2 0
with equality if and only if p = u©. [
Here are some choices of 2 and F': 2 — R that induce popular Bregman divergences.
Example A.1 (Squared Euclidean distance). Let Q = R¢ and F(z) := ||x||§ Then
for all x,y € Q,

Dr(z,y) = [lll; = llyll; — 2{y.2 — )
= [lall3 + [lyll5 — 2(z, 9) = [l= = ylI3

Example A.2 (KL divergence). Let @ = A% and F(p) := Y%, p;logp; (i.e., the
negative entropy of a random variable X with p; = P(X =14)). Then for all p,q € Q,

szlogpz Zqzlong Z(1+logqi)(pi—q¢)
i=1
d

= pi(logp; —log g;) — <sz Z%) Dy, (plla)

i=1



A.2 Non-Bregman Distortion

We can consider distortion functions that are not Bregman divergences such as the
Manhattan and Euclidean distances on R¢. The Manhattan distance is the differ-
ence in /; norm and has a closed-form solution for (3).

Proposition A.2. Let C C R¢ be a nonempty set. Let € € R? denote a vector such
that 5¢ is the median of {x; : € C}. Then

3 = argmin 3 ||z~ yll,
yeRr? xzecC
We omit the proof, but the intuition is that the stationary condition of the objective
o= > 1 Vi=1...d
z€C: y; >x; z€C: y;<x;

is satisfied by taking the median. The Euclidean distance is the (non-squared)
difference in Iy norm. The minimizer of distortion for a nonempty C' C R?,
c

79 == argmin Y _ [lz -y,
yeR? o

is called the geometric median of C. There is no closed-form solution for ¢,
but an iterative algorithm such as Weiszfeld’s algorithm can be used to optimize the
objective. Since the objective is strictly convex, there is no issue of local optimum.

B Proof of Proposition 2.1

Proposition For each center y € M, let
cH = {:17 € X : p=argmin D(x,u')}
pnem

v# ;= arg min g D (z,v)
veQ TECH

and let N = {v*: pu € M}. Then

min D (z,v) < > min D ()
reX TEX

Proof. In the following, we write
CcY = {x € X: v=argmin D(.TJ/)}
v'eN

for each v € A/. Then
in D = D
min D(w,p) = 3 > D(wp)

zeX HEM zeCH
> Z Z D (z,v") (by definition)
peM zeCH
> D ) = i
>SS D)= X mip Do)
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C Empty Clusters

In order to compute (3), we need C* to be nonempty. For instance, under a Bregman
divergence D we must compute

1
A E
V_|C/‘| X
TzECH

where an empty C* causes division by zero! Unfortunately, empty clusters can be cre-
ated during the algorithm, especially if initial centers are bad: see http://www.ceng.
metu.edu.tr/~tcan/ceng465_f1314/Schedule/KMeansEmpty.html. Some ways to
handle this problem in practice are:

e When a center with an empty cluster is created, replace it with a random point.

e Restart the algorithm with a different choice of centers.



