Notes on Information Theory

Karl Stratos

(Work in progress)

1 Source Coding Theorem

We want to encode \mathcal{X}^{N} into $\{0,1\}^{B}$ where \mathcal{X} is a finite set of symbols. By the pigeonhole principle, we need $B \geq N \log |\mathcal{X}|$ to guarantee a lossless encoding of $|\mathcal{X}|^{N}$ possible sequences. ${ }^{1}$ But suppose the sequence is a random variable $X \sim$ pop N where pop is a distribution over \mathcal{X}. Can we achieve an "almost lossless" encoding using fewer bits? By the usual interpretation of entropy, $B=H\left(\mathbf{p o p}^{N}\right)=N H(\mathbf{p o p})$ bits should be sufficient.

More formally, we consider a probabilistic compression of \mathcal{X}^{N}. Let $S_{\delta}(N)$ denote a subset of \mathcal{X}^{N} such that

$$
\begin{equation*}
\operatorname{Pr}\left(X \in S_{\delta}(N)\right) \geq 1-\delta \tag{1}
\end{equation*}
$$

As $\delta \rightarrow 0^{+}$, it contains all "practical" sequences and $\log \left|S_{\delta}(N)\right|$ measures how many bits we need to encode $X \sim$ pop N without much loss of information.

1.1 Asymptotic Equipartition Principle

How small can $S_{\delta}(N)$ be? To answer this question, we first characterize the most typical realizations of X, because they will be size-efficient in capturing X. The crucial observation is that for a sequence $x \in \mathcal{X}^{N}$ drawn according to the generative process (i.e., $x_{1} \ldots x_{N} \in \mathcal{X}$ are iid samples of pop),

$$
\lim _{N \rightarrow \infty}\left(-\frac{1}{N} \log \operatorname{Pr}(X=x)\right)=H(\text { pop })
$$

Thus as N gets bigger, more sequences $x \in \mathcal{X}^{N}$ will have a normalized negative log probability close to H (pop). This motivates defining a typical set as

$$
\begin{equation*}
T_{c}(N):=\left\{x \in \mathcal{X}^{N}: \left.\left\lvert\,-\frac{1}{N} \log \operatorname{Pr}(X=x)-H(\text { pop })\right. \right\rvert\,<c\right\} \tag{2}
\end{equation*}
$$

for some $c>0$. It follows from the weak law of large numbers (Tool B.3)

$$
\begin{equation*}
\operatorname{Pr}\left(X \in T_{c}(N)\right) \geq 1-\frac{\sigma^{2}}{N c^{2}} \tag{3}
\end{equation*}
$$

where $\sigma^{2}=\operatorname{Var}\left(-\log \mathbf{p o p}\left(X_{i}\right)\right)$. At the same time, the definition (2) implies that any $x \in T_{c}(N)$ has a probability bounded as

$$
\begin{equation*}
2^{-N(H(\mathbf{p o p})+c)}<\operatorname{Pr}(X=x)<2^{-N(H(\mathbf{p o p})-c)} \tag{4}
\end{equation*}
$$

This is not surprising: typical sequences should be similarly probable, and no single sequence should hoard too much probability mass. (4) further implies that $T_{c}(N)$ cannot be too large. Specifically, since $\left|T_{c}(N)\right| 2^{-N(H(\mathbf{p o p})+c)}<1$, we must have

$$
\begin{equation*}
\left|T_{c}(N)\right|<2^{N(H(\mathbf{p o p})+c)} \tag{5}
\end{equation*}
$$

The fact that, asymptotically in $N \rightarrow \infty, T_{c}(N)$ captures $X \in \mathcal{X}^{N}$ with only $2^{N H(\mathbf{p o p})}$ sequences roughly having the same probability $2^{-N H(\mathbf{p o p})}$ is referred to as the asymptotic equipartition principle.

[^0]
1.2 Optimal Compression

We can now answer how small can $S_{\delta}(N)$ be. Let $S_{\delta}^{\star}(N)$ denote a smallest $S_{\delta}(N)$. Since we can choose $c_{\delta}(N)=$ $\sigma(\delta N)^{-1 / 2}$ to have by (3)

$$
\begin{equation*}
\operatorname{Pr}\left(X \in T_{c_{\delta}(N)}\right) \geq 1-\delta \tag{6}
\end{equation*}
$$

whatever $S_{\delta}^{\star}(N)$ is, it has to be at least as small as $T_{c_{\delta}(N)}(N)$. Furthermore,

$$
\begin{aligned}
\left|S_{\delta}^{\star}(N)\right| & \leq\left|T_{c_{\delta}(N)}(N)\right| & & \\
& <2^{N\left(H(\mathbf{p o p})+c_{\delta}(N)\right)} & & (\text { by }(5)) \\
& <2^{N(H(\mathbf{p o p})+\epsilon)} & & \left(\text { for any } \epsilon>0, \text { as long as } N \text { is sufficiently large to drive } c_{\delta}(N)<\epsilon\right)
\end{aligned}
$$

We have proved the following lemma.
Lemma 1.1. Pick any $\epsilon>0$ and $0<\delta<1$. There is some $N_{0} \in \mathbb{N}$ such that for all $N>N_{0}$

$$
\begin{equation*}
\left|S_{\delta}^{\star}(N)\right|<2^{N(H(\mathbf{p o p})+\epsilon)} \tag{7}
\end{equation*}
$$

By picking $\epsilon \rightarrow 0^{+}$and $\delta \rightarrow 0^{+}$, we have that if N is sufficeintly large, choosing $2^{N H(\mathbf{p o p})}$ (typical) sequences is sufficient to practically guarantee capturing $X \sim$ pop N.

1.3 Any Compression

We can also show how big any $S_{\delta}(N)$ needs to be. Pick any $\epsilon>0$ and $0<\delta<1$. For all sufficiently large N

$$
\begin{equation*}
\left|S_{\delta}(N)\right|>2^{N(H(\mathbf{p o p})-\epsilon)} \tag{8}
\end{equation*}
$$

This happens mainly because

- For a large N, most sequences in $S_{\delta}(N)$ must also be in $T_{c}(N)$ by (3).
- But the probability of any $x \in T_{c}(N)$ is at most $2^{-N(H(\mathbf{p o p})-c)}$ by (4).
- So $S_{\delta}(N)$ needs at least $O\left(2^{N H(\mathbf{p o p})}\right)$ elements to fulfill $\operatorname{Pr}\left(X \in S_{\delta}(N)\right) \geq 1-\delta$.

See the proof of Lemma C. 3 for details. By picking $\epsilon \rightarrow 0^{+}$and $\delta \rightarrow 1^{-}$, we have that if N is sufficiently large, we can never capture any $X \sim \mathbf{p o p}^{N}$ using fewer than $2^{N H(\mathbf{p o p})}$ sequences.

1.4 A Combined Statement

We can combine (7) and (8) as: for any $\epsilon>0$ and $0<\delta<1$, for all sufficiently large N (Theorem C.4)

$$
\begin{equation*}
\left.\left.\left|\frac{1}{N} \log \right| S_{\delta}^{\star}(N) \right\rvert\,-H(\text { pop }) \right\rvert\,<\epsilon \tag{9}
\end{equation*}
$$

In particular, pick $\epsilon \rightarrow 0^{+} .{ }^{2}$ Then (9) holds for some large N and the "code rate" $\frac{1}{N} \log \left|S_{\delta}^{\star}(N)\right| \approx H($ pop $)$ is constant in δ. Thus it does not matter what δ is in the limit $N \rightarrow \infty$. Even if we are willing to lose almost all the information (i.e., δ is close to 1), we need the code rate of at least H (pop) when N is sufficiently large. On the positive side, if we want to preserve almost all the information (i.e., δ is close to 0), we still need the code rate of only H (pop) when N is sufficiently large.

[^1]Visual proof. We set pop to be a random distribution over $\mathcal{X}=\{1,2,3,4\}$. Given any N and δ, we can compute the size of $S_{\delta}^{\star}(N)$ by including most likely sequences $x \in \mathcal{X}^{N}$ (i.e., has the highest $\left.\prod_{i=1}^{N} \mathbf{p o p}\left(x_{i}\right)\right)$ until $S_{\delta}^{\star}(N) \geq 1-\delta$. The following plots the code rate as a function of $0<\delta<1$ for different values of N, as illustrated also in MacKay (2003).

References

Cover, T. M. and Thomas, J. A. (2006). Elements of information theory. John Wiley \& Sons.
MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.

A Binomial Coefficient

Analyzing an error-correcting code frequently involves the binomial coefficient: for $0 \leq k \leq n$,

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

is the number of ways to select k out of n items (unordered). It is also the coefficient of $x^{n-k} y^{k}$ in $(x+y)^{n}$ by the binomial theorem:

$$
(x+y)^{n}=\sum_{k=1}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

Pascal's triangle states that, arranging $n=0,1,2, \ldots$ as rows and $k=0, \ldots, n$ as elements of the n-th row, we have

$$
\binom{n}{k}=\binom{n-1}{k-1}+\left(\begin{array}{c}
1 \\
1-1 \\
k
\end{array}\right) \quad \begin{gathered}
1 \\
14321 \\
1446441 \\
1510 \quad 1051
\end{gathered}
$$

with the base case $\binom{0}{0}=1$ (and 0 for all entries with $k<0$). From the recurrence it is clear that

$$
k^{\star}=\underset{k \in\{0, \ldots, n\}}{\arg \max }\binom{n}{k} \in\left\{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil\right\}
$$

The ratio between $\binom{n}{k^{\star}}$ and the next maximum $\binom{n}{k^{\star} \pm 1}$ tends to 1 as $n \rightarrow \infty$,

$$
\frac{\binom{n}{k^{\star}}}{\binom{n}{k^{\star} \pm 1}}=\frac{\left(\frac{n}{2}+1\right)!\left(\frac{n}{2}-1\right)!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}=1+\frac{2}{n}
$$

A. 1 Information Theoretic Approximation

Using the fact that the binomial distribution $B\left(n, \frac{k}{n}\right)$ (which involves the binomial coefficient) is normalized, we can show (Lemma C.1):

$$
\begin{equation*}
\frac{1}{n+1} 2^{n H_{2}\left(\frac{k}{n}\right)} \leq\binom{ n}{k} \leq 2^{n H_{2}\left(\frac{k}{n}\right)} \tag{10}
\end{equation*}
$$

where $H_{2}(p):=H(\operatorname{Ber}(p))$ for any $p \in[0,1]$. A sharper bound exists for $0<k<n$:

$$
\begin{equation*}
\sqrt{\frac{n}{8 k(n-k)}} 2^{n H_{2}\left(\frac{k}{n}\right)} \leq\binom{ n}{k} \leq \sqrt{\frac{n}{\pi k(n-k)}} 2^{n H_{2}\left(\frac{k}{n}\right)} \tag{11}
\end{equation*}
$$

which follows from (a non-asympototic version of) Stirling's approximation; see Lemma 17.5.1 in Cover and Thomas (2006) for a proof. Thus we may approximate

$$
\begin{equation*}
\binom{n}{k} \approx 2^{n H_{2}\left(\frac{k}{n}\right)} \tag{12}
\end{equation*}
$$

By (11), their ratio satisfies

$$
\frac{\binom{n}{k}}{2^{n H_{2}\left(\frac{k}{n}\right)}}=\Theta\left(\sqrt{\frac{n}{k(n-k)}}\right)
$$

In particular, choosing $k=\frac{n}{2}$ (assuming n is even) and using the fact that $H_{2}\left(\frac{1}{2}\right)=1$,

$$
\begin{equation*}
\frac{\binom{n}{\frac{n}{2}}}{2^{n}}=\Theta\left(\sqrt{\frac{1}{n}}\right) \tag{13}
\end{equation*}
$$

B Analytical Tools

Tool B. 1 (Chebyshev's inequality 1). For a nonnegative random variable $X \geq 0$ and a positive constant $c>0$:

$$
\begin{equation*}
\operatorname{Pr}(X \geq c) \leq \frac{\mathbf{E}[X]}{c} \tag{14}
\end{equation*}
$$

Proof. It is derived directly from the definition of $\mathbf{E}[X]$.
Tool B. 2 (Chebyshev's inequality 2). For a random variable $X \in \mathbb{R}$ and a positive constant $c>0$:

$$
\begin{equation*}
\operatorname{Pr}\left((X-\mathbf{E}[X])^{2} \geq c\right) \leq \frac{\operatorname{Var}(X)}{c} \tag{15}
\end{equation*}
$$

Proof. It is a corollary of Tool B. 1 with $Y=(X-\mathbf{E}[X])^{2} \geq 0$ as the nonnegative random variable satisfying $\mathbf{E}[Y]=\operatorname{Var}(X)$.
Tool B. 3 (Weak law of large numbers ${ }^{3}$). Let $X_{1} \ldots X_{N} \in \mathbb{R}$ be iid random variables with a mean $\mu \in \mathbb{R}$ and a variance $\sigma^{2}>0$. For any positive constant $c>0$:

$$
\begin{equation*}
\operatorname{Pr}\left(\left(\frac{1}{N} \sum_{i=1}^{N} X_{i}-\mu\right)^{2} \geq c\right) \leq \frac{\sigma^{2}}{N c} \tag{16}
\end{equation*}
$$

Proof. It is a corollary of Tool B. 2 with $\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ as the random variable satisfying $\mathbf{E}[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{N}$.

C Lemmas

Lemma C.1. For $0 \leq k \leq n$,

$$
\frac{1}{n+1} 2^{n H_{2}\left(\frac{k}{n}\right)} \leq\binom{ n}{k} \leq 2^{n H_{2}\left(\frac{k}{n}\right)}
$$

Proof. We consider the binomial distribution $B(n, p)$ with $p=\frac{k}{n}$. For the upper bound, we note

$$
1 \geq B(n, p)(k)=\binom{n}{k} p^{k}(1-p)^{n-k}=\binom{n}{k} 2^{n\left(\frac{k}{n} \log p+\frac{n-k}{n} \log (1-p)\right)}=\binom{n}{k} 2^{-n H_{2}\left(\frac{k}{n}\right)}
$$

For the lower bound, since $n p=k$ is an integer, the mode of $B(n, p)$ is $n p$ (see Wikipedia). Then

$$
1=\sum_{k=0}^{n} B(n, p)(k) \leq(n+1)\binom{n}{n p} p^{n p}(1-p)^{n-n p}=(n+1)\binom{n}{k} p^{k}(1-p)^{n-k}=(n+1)\binom{n}{k} 2^{-n H_{2}\left(\frac{k}{n}\right)}
$$

Lemma C.2. Pick any $0<p<\frac{1}{2}$ and even $N \in \mathbb{N}$. Let $X \sim \operatorname{Ber}\left(\frac{1}{2}\right)$ and $Z \in\{0,1\}^{N}$ where

$$
Z_{i}=\left\{\begin{array}{ll}
X & \text { with probability } 1-p \\
\neg X & \text { with probability } p
\end{array} \quad \forall i=1 \ldots N,\right. \text { independently }
$$

Then for any $Z=z$,

$$
\begin{equation*}
x^{\star}=\underset{x \in\{0,1\}}{\arg \max } \operatorname{Pr}(X=x \mid Z=z)=\operatorname{Vote}(z) \tag{17}
\end{equation*}
$$

where $\operatorname{Vote}(z)=\mathbb{1}\left(>\frac{N}{2}\right.$ bits in z are 1$)$. Furthermore,

$$
\begin{equation*}
\operatorname{Pr}(\operatorname{Vote}(Z) \neq X) \approx(4 p(1-p))^{N / 2} \tag{18}
\end{equation*}
$$

The approximation becomes exact as $p \rightarrow 0$ and $N \rightarrow \infty$.

[^2]Proof. For (17), by Bayes' rule and the uniformity of X,

$$
x^{\star}=\underset{x \in\{0,1\}}{\arg \max } \operatorname{Pr}(Z=z \mid X=x)= \begin{cases}1 & \text { if } \operatorname{Pr}(Z=z \mid X=1)>\operatorname{Pr}(Z=z \mid X=0) \\ 0 & \text { otherwise }\end{cases}
$$

Since $Z_{1} \ldots Z_{N}$ are independent, $\operatorname{Pr}(Z=z \mid X=x)=p^{\text {count }_{\neg x}(z)}(1-p)^{\operatorname{count}_{x}(z)}$. Thus

$$
\begin{array}{clc}
x^{\star}=1 & \Leftrightarrow & p^{\operatorname{count}_{0}(z)}(1-p)^{\operatorname{count}_{1}(z)}>p^{\operatorname{count}_{1}(z)}(1-p)^{\operatorname{count}_{0}(z)} \\
& \Leftrightarrow & \left(\frac{p}{1-p}\right)^{\operatorname{count}_{0}(z)-\operatorname{count}_{1}(z)}>1 \\
& \Leftrightarrow & \operatorname{count}_{0}(z)-\operatorname{count}_{1}(z)<0 \\
& \Leftrightarrow & \operatorname{Vote}(z)=1
\end{array}
$$

using the fact that $0<p<\frac{1}{2}$. For (18), $\operatorname{Vote}(Z) \neq X$ iff at least $\frac{N}{2}(\pm 1)$ of the bits flip X. Thus

$$
\begin{aligned}
\operatorname{Pr}(\operatorname{Vote}(Z) \neq X) & =\operatorname{Bin}(N, p)\left(\frac{N}{2}\right)+\operatorname{Bin}(N, p)\left(\frac{N}{2}+1\right)+\cdots+\operatorname{Bin}(N, p)(N) \\
& \approx \operatorname{Bin}(N, p)\left(\frac{N}{2}\right) \quad \quad \quad(\text { exact as } p \rightarrow 0 \text { by (19)) } \\
& =\binom{N}{N / 2} p^{N / 2}(1-p)^{N / 2} \\
& \approx 2^{N} p^{N / 2}(1-p)^{N / 2} \\
& =(4 p(1-p))^{N / 2}
\end{aligned} \quad \quad(\text { exact as } N \rightarrow \infty \text { by }(13))
$$

For the first approximation, first note that the terms are monotonically decreasing since $\frac{N}{2}>N p$ (i.e., we are past the mean of the binomial distribution). The first term dominates the next term by

$$
\begin{equation*}
\frac{\operatorname{Bin}(N, p)(N / 2)}{\operatorname{Bin}(N, p)(N / 2+1)}=\left(\frac{\binom{N}{N / 2}}{\binom{N}{N / 2+1}}\right) \frac{p^{N / 2}(1-p)^{N / 2}}{p^{N / 2+1}(1-p)^{N / 2-1}}=\left(1+\frac{2}{N}\right) \frac{1-p}{p}=\Omega\left(\frac{1}{p}\right) \tag{19}
\end{equation*}
$$

So the approximation is justified for sufficiently small p.
Lemma C.3. Pick any $\epsilon>0$ and $0<\delta<1$. For each $N \in \mathbb{N}$, pick any subset $S_{\delta}(N) \subset \mathcal{X}^{N}$ satisfying $\operatorname{Pr}\left(X \in S_{\delta}(N)\right) \geq 1-\delta$ with respect to $X \sim \mathbf{p o p}^{N}$. There is some $N_{0} \in \mathbb{N}$ such that for all $N>N_{0}$

$$
\left|S_{\delta}(N)\right|>2^{N(H(\mathbf{p o p})-\epsilon)}
$$

Proof. Suppose otherwise. Then there are infinitely many $N_{1}<N_{2}<\cdots$ such that $\left|S_{\delta}\left(N_{i}\right)\right| \leq 2^{N_{i}(H(\mathbf{p o p})-\epsilon)}$. For any constant $c>0$, we may use the typical set $T_{c}\left(N_{i}\right)$ defined in (2) and its complement $T_{c}^{C}\left(N_{i}\right)$ to have

$$
\begin{align*}
\operatorname{Pr}\left(X \in S_{\delta}\left(N_{i}\right)\right) & =\operatorname{Pr}\left(X \in S_{\delta}\left(N_{i}\right) \cap T_{c}^{\complement}\left(N_{i}\right)\right)+\operatorname{Pr}\left(X \in S_{\delta}\left(N_{i}\right) \cap T_{c}\left(N_{i}\right)\right) \\
& \leq \operatorname{Pr}\left(X \notin T_{c}\left(N_{i}\right)\right)+\left|S_{\delta}\left(N_{i}\right)\right| \max _{x^{\prime} \in T_{c}\left(N_{i}\right)} \operatorname{Pr}\left(X=x^{\prime}\right) \tag{20}\\
& <\frac{\sigma^{2}}{N_{i} c^{2}}+2^{N_{i}(H(\mathbf{p o p})-\epsilon)} \cdot 2^{-N_{i}(H(\mathbf{p o p})-c)} \tag{21}\\
& =\frac{\sigma^{2}}{N_{i} c^{2}}+2^{N_{i}(c-\epsilon)} \tag{22}
\end{align*}
$$

(20) is a worst-case bound. The first term uses the fact that $X \in S_{\delta}\left(N_{i}\right) \cap T_{c}^{\complement}\left(N_{i}\right)$ implies $X \notin T_{c}\left(N_{i}\right)$. A more formal derivation of the second term is

$$
\begin{aligned}
\operatorname{Pr}\left(X \in S_{\delta}\left(N_{i}\right) \cap T_{c}\left(N_{i}\right)\right)=\sum_{x \in S_{\delta}\left(N_{i}\right)} \mathbb{1}\left(x \in T_{c}\left(N_{i}\right)\right) \operatorname{Pr}(X=x) & \leq \sum_{x \in S_{\delta}\left(N_{i}\right)} \max _{x^{\prime} \in T_{c}\left(N_{i}\right)} \operatorname{Pr}\left(X=x^{\prime}\right) \\
& =\left|S_{\delta}\left(N_{i}\right)\right| \max _{x^{\prime} \in T_{c}\left(N_{i}\right)} \operatorname{Pr}\left(X=x^{\prime}\right)
\end{aligned}
$$

where the inequality follows because for any $x \in \mathcal{X}$

$$
\mathbb{1}\left(x \in T_{c}\left(N_{i}\right)\right) \operatorname{Pr}(X=x)= \begin{cases}\operatorname{Pr}(X=x) & \text { if } x \in T_{c}\left(N_{i}\right) \leq \max _{x^{\prime} \in T_{c}\left(N_{i}\right)} \operatorname{Pr}\left(X=x^{\prime}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(21) uses the coverage of the typical set (3), the smallness of $S_{\delta}\left(N_{i}\right)$, and the probability bound on a typical element (4). Now we select $c=\frac{\epsilon}{2}>0$ to obtain

$$
\operatorname{Pr}\left(X \in S_{\delta}\left(N_{i}\right)\right)<\frac{2 \sigma^{2}}{N_{i} \epsilon^{2}}+2^{-N_{i}(\epsilon / 2)}
$$

which grows strictly smaller for $N_{1}<N_{2}<\cdots$. Thus we can find a sufficiently large j such that

$$
\operatorname{Pr}\left(X \in S_{\delta}\left(N_{j}\right)\right)<1-\delta
$$

which contradicts the premise.
Theorem C.4. Pick any $\epsilon>0$ and $0<\delta<1$. For each $N \in \mathbb{N}$, pick a smallest subset $S_{\delta}^{\star}(N) \subset \mathcal{X}^{N}$ satisfying $\operatorname{Pr}\left(X \in S_{\delta}^{\star}(N)\right) \geq 1-\delta$ with respect to $X \sim$ pop N. There is some $N_{0} \in \mathbb{N}$ such that for all $N>N_{0}$

$$
\left.\left.\left|\frac{1}{N} \log \right| S_{\delta}^{\star}(N) \right\rvert\,-H(\text { pop }) \right\rvert\,<\epsilon
$$

Proof. Since $S_{\delta}^{\star}(N)$ is a particular subset satisfying the condition in Lemma C.3, there is some $N_{0}^{\prime} \in \mathbb{N}$ such that $\left|S_{\delta}^{\star}(N)\right|>2^{N(H(\mathbf{p o p})-\epsilon)}$ for all $N>N_{0}^{\prime}$. By Lemma 1.1, there is some $N_{0}^{\prime \prime} \in \mathbb{N}$ such that $\left|S_{\delta}^{\star}(N)\right|<2^{N(H(\mathbf{p o p})+\epsilon)}$ for all $N>N_{0}^{\prime \prime}$. Thus for all $N>N_{0}=\max \left(N_{0}^{\prime}, N_{0}^{\prime \prime}\right)$,

$$
\begin{aligned}
2^{N(H(\mathbf{p o p})-\epsilon)}<\left|S_{\delta}^{\star}(N)\right|<2^{N(H(\mathbf{p o p})+\epsilon)} & \Leftrightarrow \quad H(\mathbf{p o p})-\epsilon<\frac{1}{N} \log \left|S_{\delta}^{\star}(N)\right|<H(\mathbf{p o p})+\epsilon \\
& \Leftrightarrow
\end{aligned}
$$

[^0]: ${ }^{1}$ One such lossless encoding is

 $$
 x \in \mathcal{X}^{N} \mapsto(\underbrace{b_{1}^{(1)} \ldots b_{\log |\mathcal{X}|}^{(1)}}_{\text {identify } x_{1}}, \underbrace{b_{1}^{(2)} \ldots b_{\log |\mathcal{X}|}^{(2)}}_{\text {identify } x_{2}}, \ldots, \underbrace{b_{1}^{(N)} \ldots b_{\log |\mathcal{X}|}^{(N)}}_{\text {identify } x_{N}}) \in\{0,1\}^{N \log |\mathcal{X}|}
 $$

[^1]: ${ }^{2}$ It is interesting to note that $\epsilon=0$ is not allowed. But this simply reflects the fact that we must lose some information as long as we do not use all $|\mathcal{X}|^{N}$ sequences.

[^2]: ${ }^{3}$ See this post for why it is called "weak".

