Variable Elimination and Belief Propagation in Graphical Models

Karl Stratos

We write $X = (X_1 \ldots X_n) \in \mathcal{X}^n$ to denote n discrete random variables. Let $K = |\mathcal{X}|$. We write $x = (x_1 \ldots x_n)$ to mean a specific configuration of X. Similarly, if X' is a subset of X, then we write x' to mean a specific configuration of that subset. Graphical models express a distribution over X in terms of nodes and edges.

1 Types of Graphical Models

A directed graphical model (DGM), or Bayesian network, is a directed acyclic graph (DAG) that represents the chain rule applied on $p(X)$, optionally with Markov assumptions (e.g., HMMs, generative probabilistic neural models). If $pa(X_i) \subseteq X$ denotes the parent nodes of X_i under a DGM, then it is parameterized by local distributions $p(X_i|pa(X_i))$ to define

$$p(X) = \prod_{i=1}^{n} p(X_i|pa(X_i))$$

An undirected graphical model (UGM), or Markov random field (MRF), is an undirected graph on X that establishes certain local conditional independence assumptions with edges. By the Hammersley-Clifford theorem, a UGM is equivalently characterized by its maximal cliques C. It is parameterized by nonnegative potential functions $\psi_c(c(X)) \geq 0$ for all $c \in C$. The “unnormalized energy” of a particular configuration x is given by $\prod_{c \in C} \psi_c(c(x))$. Using the normalization factor $Z = \sum_{x} \prod_{c \in C} \psi_c(c(x))$, the UGM defines

$$p(X) = \frac{1}{Z} \prod_{c \in C} \psi_c(c(X))$$

2 Generalized Marginalization

We focus on the problem of marginalizing $X' \subseteq X$ in an UGM. Marginalizing can be summation, maximization, or something else (see below). This also handles DGMs since we can write $\prod_{i=1}^{n} P(X_i|pa(X_i))$ into an equivalent UGM, $\prod_{i=1}^{n} \psi_i(c_i(X))$, where each of the n cliques $c_i(X) = \{X_i\} \cup pa(X_i)$ has potential $P(X_i|pa(X_i))$ (with the normalization factor $Z = 1$). The creation of new undirected edges between parents is called moralization.

2.1 Setup

We consider any operation \oplus and \otimes that form a commutative semiring (i.e., they are commutative and distributive with identity elements). Given $X' \subseteq X$ of size m,
the marginalization problem is posed as
\[\bigoplus_{x'} \bigotimes_{c \in C} \psi_c(c(X : X' = x')) \] (1)

Note that a naive calculation looping through all possible configurations of \(X' \) takes \(O(K^n) \).

One common use of marginalization is to calculate a **marginal distribution**. In this case, \(a \oplus b = a + b \) (identity 0) and \(a \otimes b = ab \) (identity 1). Assuming \(Z = 1 \) for simplicity, the distribution over a subset \(Y \subseteq X \) is given by summing over all possible configurations of \(X' = X \setminus Y \).

\[p(Y) = \sum_{x'} p(Y, x') = \sum_{x'} \prod_{c \in C} \psi_c(c(X : X' = x')) \]

A slight variant of this problem can be used to calculate the log normalization factor \(\log Z \) in log space. In this case, \(a \oplus b = \text{logsumexp}(a, b) := \log(\exp(a) + \exp(b)) \) (identity \(-\infty\)) and \(a \otimes b = a + b \) (identity 0). Then
\[
\log Z = \log \sum_{x} \prod_{c \in C} \psi_c(c(x)) = \text{logsumexp} \sum_{x} \log \psi_c(c(x))
\]

Another common use of marginalization is for **maximum a posteriori probability (MAP)** estimate. In this case, \(a \oplus b = \max(a, b) \) (identity 0) and \(a \otimes b = ab \) (identity 1). If \(O \) and \(H \) partition \(X \) into observed and hidden variables, calculating the most probable configuration of \(H \) with \(O = o \) boils down to calculating
\[
\max_h p(O = o, H = h) = \max_h \prod_{c \in C} \psi_c(c(O = o, H = h))
\]

2.2 The Variable Elimination Algorithm

The variable elimination (VE) algorithm uses the fact that for any functions \(f, g \) over discrete variables,
\[
\bigoplus_a \bigoplus_b (f(a) \otimes g(b)) = \left(\bigoplus_a f(a) \right) \otimes \left(\bigoplus_b g(b) \right)
\]

This follows from the commutative and distributive properties of \(\oplus \) and \(\otimes \). VE solves the generalized marginalization problem (1) in a potentially efficient way. Given an **elimination ordering** \(X'_1, \ldots, X'_m \) of variables in \(X' \), at each step it views the function \(\bigotimes_{c \in C} \psi_c(c(X : X' = x')) \) as a product of a function \(f \) of \(X'_i \) and a function \(g \) of \(\neg X'_i = X' \setminus X'_i \). Then it uses the above fact and sums \(f \) over \(X'_i \):
\[
\bigoplus_{x'_i} \bigoplus_{\neg x'_i} (f(x'_i) \otimes g(\neg x'_i)) = \left(\bigoplus_{x'_i} f(x'_i) \right) \otimes \left(\bigoplus_{\neg x'_i} g(\neg x'_i) \right)
\]

Importantly, \(f(X'_i) \) can involve variables other than \(X'_i \). For example, if \(f(X'_i) = \psi(\{X'_1, X_1\}) \otimes \psi(\{X'_1, X_2\}) \otimes \psi(\{X'_1, X_3\}) \), then eliminating \(X'_i \) creates a new three-dimensional table \(\bigoplus_{x'_i} f(x'_i) \) over all possible configurations of \(X_1, X_2, X_3 \).
VE
Input: UGM over X with maximal cliques C and potential functions $ψ_i(c(X))$, commutative semiring $(+\otimes)$, subset $X' \subseteq X$ of size m, elimination ordering $X'_1 \ldots X'_m$ of variables in X'
Output: $\bigoplus_{x' \in C} ψ_i(c(X : X' = x'))$

1. For $i = 1 \ldots m - 1$,

 (a) Let C_i denote the set of all current cliques that include X'_i and let $D_i = C_i \setminus \{X'_i\}$.

 (b) Fully connect D_i into a clique with potential

 $ψ_i(D_i) := \bigoplus_{x'_i \in C_i} ψ_i(c(X : X'_i = x'_i))$

 (c) Eliminate X'_i from the graph.

2. Return $\bigoplus_{x'_m} ψ_i(c(X : X'_m = x'_m))$.

The asymptotic runtime of VE is $O(mK^d)$ where d is the size of the largest clique induced in the elimination process. This is simply because it creates a table of K^d entries (see the example below). The induced width of a UGM given an elimination ordering $X'_1 \ldots X'_m$ is the size of the largest induced clique minus 1 (hence “width”). Unfortunately, finding an elimination ordering that has the minimum induced width is generally NP-hard (Arnborg et al., 1987).

Example. Consider the UGM

Each clique (X_i, X_j) has potential $ψ_{ij}(X_i, X_j)$: this is just a table with K^2 entries. Say we want to calculate the normalization factor

$$Z = \sum_{x_1 \ldots x_5} ψ_{12}(x_1, x_2)ψ_{13}(x_1, x_3)ψ_{14}(x_1, x_4)ψ_{25}(x_2, x_5)ψ_{35}(x_3, x_5)ψ_{45}(x_4, x_5)$$

which would take $O(K^5)$ time to naively enumerate all configurations. In contrast, applying VE on the elimination ordering X_2, X_3, X_4, X_5, X_1 looks like

$$Z = \sum_{x_2, x_3, x_4, x_5} ψ_{13}(x_1, x_3)ψ_{14}(x_1, x_4)ψ_{35}(x_3, x_5)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_4, x_5, x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5)ψ_{35}(x_3, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_4} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$

$$= \sum_{x_1} ψ_{14}(x_1, x_4)ψ_{45}(x_4, x_5) \left(\sum_{x_2} ψ_{12}(x_1, x_2)ψ_{25}(x_2, x_5) \right)$$
which involves $K^3 + K^3 + K^3 + K^2 = O(K^3)$ operations. But applying VE on the elimination ordering X_1, X_2, X_3, X_4, X_5 looks like

\[
Z = \sum_{x_2, x_3, x_4, x_5} \psi_{25}(x_2, x_5)\psi_{35}(x_3, x_5)\psi_{45}(x_4, x_5) \left(\sum_{x_2, x_3, x_4, x_5} \psi_{12}(x_1, x_2)\psi_{13}(x_1, x_3)\psi_{14}(x_1, x_4) \right) \psi^4(x_2, x_3, x_4) \\
= \sum_{x_3, x_4, x_5} \psi_{35}(x_3, x_5)\psi_{45}(x_4, x_5) \left(\sum_{x_2, x_3, x_4, x_5} \psi_{25}(x_2, x_5)\psi^4(x_2, x_3, x_4, x_5) \right) \psi^3(x_3, x_5) \\
= \sum_{x_4, x_5} \psi_{45}(x_4, x_5) \left(\sum_{x_2, x_3, x_4, x_5} \psi_{35}(x_3, x_5)\psi^2(x_3, x_4, x_5) \right) \psi^3(x_4, x_5)
\]

which involves $K^4 + K^4 + K^3 + K^2 = O(K^4)$ operations. We can generalize this example to have N nodes each with pairwise connections to X_1 and X_5: the first elimination ordering takes $O(NK^3)$ whereas the second elimination ordering takes $O(NK^{N+1})$.

VE on trees (including chains)

VE has guaranteed runtime $O(mK^2)$ on trees because we can use a bottom-up traversal of nodes as our elimination ordering. This ordering ensures that each elimination step never introduces a new clique of size bigger than one, thus the size of the largest induced clique is $d = 2$. The $O(mK^2)$ forward algorithm in first-order HMMs is simply VE with the left-to-right elimination ordering of m state nodes. The forward algorithm in second-order HMMs takes $O(mK^3)$ because the size of the largest induced clique is $d = 3$ (between H_{t-2}, H_{t-1}, H_t after the DGM-to-UGM conversion).

3 Belief Propagation

Belief propagation (BP) on trees is nothing but VE on trees while caching intermediate tables (which are always one-dimensional) in elimination steps and calling them messages. Once caching is done, we can easily obtain various marginal distributions from the messages.

This is best explained by example. Recall that a tree (undirected) is simply an acyclic connected graph $G = (V, E)$. Consider the following tree on 7 variables

\[
p(X) = \frac{1}{Z} \psi_1(X_1)\psi_2(X_2)\psi_3(X_3)\psi_4(X_4)\psi_5(X_5)\psi_6(X_6)\psi_7(X_7) \\
\psi_{12}(X_1, X_2)\psi_{13}(X_1, X_3)\psi_{34}(X_3, X_4)\psi_{35}(X_3, X_5)\psi_{46}(X_4, X_6)\psi_{47}(X_4, X_7)
\]

Suppose we want to calculate $p(X_1)$. We can treat X_1 as the “root” and run VE bottom-up as described above to marginalize out all “children” of X_1.

![Tree Diagram](image-url)
The VE algorithm looks like

\[
p(X_1) = \frac{1}{Z} \sum_{x_3,x_4} \psi_2(x_2) \psi_1(x_1) \psi_3(x_3) \psi_4(x_4) \psi_{13}(X_1,x_3) \psi_{34}(x_3,x_4) \]

\[
\left(\sum_{x_2} \psi_2(x_2) \psi_{12}(X_1,x_2) \right) \left(\sum_{x_3} \psi_3(x_3) \psi_{35}(x_3,x_5) \right) \left(\sum_{x_6} \psi_6(x_6) \psi_{46}(x_4,x_6) \right) \left(\sum_{x_7} \psi_7(x_7) \right)
\]

\[
\mu_{2 \to 1}(X_1) \mu_{5 \to 3}(x_3) \mu_{6 \to 4}(x_4) \mu_{7 \to 4}(x_4)
\]

\[
= \frac{1}{Z} \sum_{x_3} \psi_1(x_1) \psi_3(x_3) \psi_{13}(X_1,x_3) \mu_{2 \to 1}(X_1) \mu_{5 \to 3}(x_3) \left(\sum_{x_4} \psi_4(x_4) \psi_{46}(x_4) \mu_{6 \to 4}(x_4) \mu_{7 \to 4}(x_4) \right)
\]

\[
= \frac{1}{Z} \psi_1(x_1) \mu_{2 \to 1}(X_1) \left(\sum_{x_3} \psi_3(x_3) \psi_{13}(X_1,x_3) \mu_{5 \to 3}(x_3) \mu_{4 \to 3}(x_3) \right)
\]

\[
= \frac{1}{Z} \psi_1(x_1) \mu_{2 \to 1}(X_1) \mu_{3 \to 1}(X_1)
\]

(2)

We call intermediate tables \(\mu_{i \to j}(x_j)\) by the message from \(i\) to \(j\) which is a function of the subtree rooted at \(i\) (away from \(j\)) over possible values of \(X_j\). What if we now want to calculate \(p(X_3)\)? We can certainly treat \(X_3\) as the root and run VE bottom-up again:

Doing VE yields

\[
p(X_3) = \frac{1}{Z} \psi_3(x_3) \mu_{5 \to 3}(X_3) \mu_{4 \to 3}(X_3) \left(\sum_{x_1} \psi_1(x_1) \mu_{2 \to 1}(x_1) \psi_{13}(x_1,X_3) \right)
\]

(3)

Note that we reuse much of the calculation in \(p(X_1)\) when we calculate \(p(X_3)\). The only new calculation is the message from 1 to 3, since we didn’t need to pass message in that direction before.

Belief propagation on trees means precomputing

\[
\mu_{i \to j}(x_j) := \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i,x_j) \prod_{k \in \text{neighbor}(i) \setminus \{j\}} \mu_{k \to i}(x_k)
\]

for every edge \((i,j) \in E\) (both ways) where \(\text{neighbor}(i) := \{k : (i,k) \in E\}\). This assumes that when \(i\) is messaging \(j\), \(i\) already has messages from all neighbors \(k\) except \(j\). It is easy to see that this is guaranteed if we compute messages bottom-up and then top-down. Another way to achieve this effect is to arbitrarily initialize all messages and in parallel compute \(\mu_{i \to j}(x_j)\) for every edge \(i,j \in E\) (both ways) for
\(D(G)\) times where \(D(G)\) is the largest distance between any pair of nodes in \(G\) (called the **diameter** of \(G\)).

Once all messages are precomputed, for any node \(i \in V\) we can calculate

\[
p(X_i) = \frac{1}{Z} \psi_i(X_i) \prod_{j \in \text{neighbor}(i)} \mu_{j \to i}(X_i)
\]

For example, see (2) and (3). Since this is supposed to be a probability distribution, we can easily calculate the normalization factor by

\[
Z = \sum_{x'_i} \psi_i(x'_i) \prod_{j \in \text{neighbor}(i)} \mu_{j \to i}(x'_i).
\]

We discuss two variants of this basic BP algorithm.

Locally normalized messages. We precompute messages with local normalization:

\[
Z_{ij} := \sum_{x'_j} \left(\sum_{x_i} \psi_i(x_i) \psi_{ij}(x_i, x'_j) \prod_{k \in \text{neighbor}(i) \setminus \{j\}} \tilde{\mu}_{k \to i}(x_i) \right)
\]

\[
\tilde{\mu}_{i \to j}(x_j) := \frac{1}{Z_{ij}} \sum_{x_i} \psi_i(x_i) \psi_{ij}(x_i, x_j) \prod_{k \in \text{neighbor}(i) \setminus \{j\}} \tilde{\mu}_{k \to i}(x_i)
\]

Thus \(\tilde{\mu}_{i \to j} \in \Delta^{K-1}\) defines a probability distribution over the \(K\) values of \(X_j\) representing “prediction” of the value at \(j\) based on the subtree rooted at \(i\) (away from \(j\)). After precomputation, we can again calculate the marginal distribution at any \(i \in V\) by locally normalizing with \(\tilde{\mu}\) since

\[
p(X_i) = \frac{1}{Z} \psi_i(X_i) \prod_{j \in \text{neighbor}(i)} \tilde{\mu}_{j \to i}(X_i)
\]

Locally normalized messages in log space. Note that

\[
\nu_{i \to j}(x_j) = \log \text{sumexp}_{x_i} \left(\log \psi_i(x_i) + \log \psi_{ij}(x_i, x_j) + \sum_{k \in \text{neighbor}(i) \setminus \{j\}} \log \tilde{\mu}_{k \to i}(x_i) \right)
\]

\[
\log \tilde{\mu}_{i \to j}(x_j) = \nu_{i \to j}(x_j) - \log \text{sumexp}_{x'_j} \nu_{i \to j}(x'_j)
\]

and

\[
p(X_i) \propto \exp \left(\log \psi_i(x_i) + \sum_{j \in \text{neighbor}(i)} \log \tilde{\mu}_{j \to i}(x_i) \right)
\]

Thus we can do BP entirely in log probability space.

3.1 Loopy Belief Propagation

Loopy belief propagation (LBP) is BP applied on a non-tree graph (i.e., it has cycles) to approximate marginal probabilities. All messages are initialized to ones or random values in \([0, 1]\), and we keep updating messages until convergence (which may not happen). After enough iterations of LBP, we approximate \(p(X_i)\) by normalizing \(\psi_i(X_i) \prod_{j \in \text{neighbor}(i)} \mu_{j \to i}(X_i)\).
References.

- Concise slides on BP
- Lecture note with good BP examples