The Frank-Wolfe algorithm basics

Karl Stratos

1 Problem

A function f: R? — R is said to be in differentiability class C* if the k-th derivative
%) exists and is furthermore continuous. For f € C*, the value of f(z) around
a € R? is approximated by the k-th order Taylor series For : R? — R defined as
(using the “function-input” tensor notation for higher moments):

Furle) = (@) + @)z —) + 3 f(@)(w — a0 —a) +
1
+ Ef(k)(a)(x —a,...,T—a)

up to an additive error that vanishes as x approaches a.

Let D C R? be a compact convex set and f € C! be a convex function. We consider
a constrained convex optimization problem of the form:

¥ = argmin f(x) (1)
zeD

2 Algorithm

A standard version of the Frank-Wolfe algorithm initializes some #(°) € D and repeats
fort=1,2,...

1. Instead of (1), solve the following constrained linear optimization problem:
ye = argmin f(2 D) + /(207D (y - 27)
yeD
2. Choose the step size v, = 2/(t + 1).
3. Update the estimate:

2" =y 4 (1 =)™V

Step 1 is often easy' and yields sparse updates. Step 2 is deterministically given
so that no tuning is needed.? Step 3 always yields an estimate inside D due to its
convexity.

IThere are other variants of the Frank-Wolfe algorithm to handle cases where it’s not.

2 Another variant of the algorithm performs the line search and finds
e = arg min f(yye + (1 —y)z~Y)
v€[0,1]

which is also often given in a closed form solution.

3 Example (with line search)

Define f(z) := (1/2)||b — Az||* for some b € R™ and A € R™*4, Define D := {z €
RY:z >0, 3, 2; = 1}. Then we initialize xl(o) = 1/d and at each step t = 1,2,...
compute:

y; = e;» where i* = arg min[AT(Ax(t’l) -b);
i=1...d

v+ = min | 0,max | 1 (Az(7Y — Aei) T(Ax"D —b)
’ ’ ||A:c(t*1) — Ae;» 2

2 =y + (1= yp)aY

4 Duality gap

F, 1(z) is linear and tangent with f(z) at a and, so the convexity of f implies that

)

1
F,1(z) < f(z) for all x € R%. Thus

F@®) + f/@)y -) <

min f'(x0)(y — =) < f&") = (=)

f
!
rynea,%(f/(x(t))(x(t) —y) > f@W) = f(a*)
@) (@® —yy) > f

The right-hand side

is the (unknown) “true error” of 2(Y). The left-hand side

g(a®) = f' (D) (2" -y 1)

is called the “duality gap” for a connection to Fenchel duality (which we won’t go
into). Since h(z®) < g(z®) always and g(z®) is given for free as part of the
algorithm (Step 1), we can use the duality gap as a stopping criterion.

5 Convergence rate

To derive how fast the algorithm converges, we need to define a notion of non-linearity
of f. Let Cy be a constant such that for all z,a € D and v € [0,1],

’)’2

(A =)z +ra) < fz) +f'(2)(a - 2) + 5Cf

Intuitively, the more “curved” f isin D, the larger C'y needs to be. With this constant,
we first prove the following lemma:

Lemma 5.1. f(z®) < f(zt=) — y,9(zt1) + 'YQ—ZCf fort > 1.

Proof.
F@®) = F((1 = 702" + yeye)
< F@D) 42 f D)~ 2D) + Loy
= f@"Y) = g(atY) + %ng
O

The following theorem states that the true error at step ¢ is bounded above as

O(1/t). So the algorithm has a linear convergence rate.
2C
Theorem 5.2 (Frank and Wolfe, 1956). h(z®)) < oy fort> 1

Proof. By Lemma 5.1,

72

F) < f@0) = pg@Y) + 2 Cy

2
F@®) = fa®) < F@D) = f@*) = gD + L0y

2

A@®) < h(@D) = yig(at =) + LCy
2

< h(a7D) = (V) + 2Ly

2
< (1= h(a"") + 20y
When ¢ = 1, using 7, = 2/(1 4 1) = 1 we have h(zM)) < 1Cy < 2Cy.

When t > 1, using v, = 2/(¢t + 1) we have

t 2 t—1
h(l‘()) < <1_t+1) h(fﬁ())“rm

2 QCf 20f
<(1- +
t+1)t+1 " (t+1)2

2Cf QCf

T i1
_ 20
Tt

20
t+2

+1)?
1
1
- t2ff1 <t + 1)
)-

QCf t+1
t+2

—t+1

