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The paper’s content can be greatly simplified as follows.

1 Setting

• We have a fixed topic model θ : X → ∆T−1.

• There is some ground truth mapping l : [T ]→ [k]∪{?}. Let P := {t ∈ [T ] : l(t) 6=?}.

• Each labeled document (x, y) is generated by

1. Drawing x from some distribution over X , and

2. Drawing t ∼ Categorical(θ(x)) and setting y = l(t).

It’s a graphical model. Capital letters denote random variables (so T is over-
loaded). The model defines

Pr (X = x, Y = y) = Pr (Y = y|X = x)× Pr (X = x)

where the conditional label distribution is given by

Pr (Y = y|X = x) =

T∑
t=1

Pr (T = t, Y = y|X = x)

=

T∑
t=1

Pr (T = t|X = x)× Pr (Y = y|X = x, T = t)

=
∑

t: y=l(t)

θt(x)

2 Problem

The goal is to estimate l from labeled documents (x1, y1) . . . (xn, yn). Poulis and
Dasgupta (2017) suggest finding the maximum-likelihood estimator

l∗ = arg max
l

n∏
i=1

∑
t: l(t)=yi

θt(xi)

They go on to show that finding any l that assigns nonzero probability to given data
is NP-complete (Lemma A.1).

But the data is arbitrary. The documents are labeled adversarially, not by the
model.
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3 Solution

Now suppose that we receive n documents actually labeled by the model. Let

nty :=

n∑
i=1

1 (t ∼ Categorical(θ(xi)) ∧ y = yi)

and nt :=
∑
y∈[k] nty. The estimator

l̂(t) := arg max
y∈[k]∪{?}

nty

is then Bayes optimal and consistent in expectation. That is,

E
[
l̂
]

(t) = arg max
y

Pr(Y = y|X = x, T = t) = l(t)

3.1 Finite Samples

Consider the expected value of nty,

E [nty] =

n∑
i=1

Pr (T = t, Y = y|X = xi)

=

n∑
i=1

θt(xi)× Pr (Y = y|X = xi, T = t)

Under the model, clearly we have

Pr(Y = y|X = x, T = t) ≥ 2λ ∀t ∈ P, y = l(t) (1)

Pr(Y = y|X = x, T = t) ≤ λ

2
∀t ∈ [T ], y 6= l(t) (2)

for some λ ≤ 1/2. (In particular, we can use λ = 1/2.) Let

n0 :=
6

λ
log

(k + 1)T

δ

Lemma A.3 shows that w.p. ≥ 1− δ, for all t such that nt ≥ n0 and for all y,

• t ∈ P : nty > λnt if y = l(t), nty < λnt if y 6= l(t)

• t 6∈ P : nty < λnt if y 6=?

Thus w.p. ≥ 1− δ, the following estimator

l̂(t) =

{
y if nt ≥ n0 and nty ≥ λnt
? otherwise

is consistent for all t with nt ≥ n0. For t ∈ P , we ensure nt ≥ n0 in expectation if

n ≥ n0
minni=1 θt(xi)
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3.2 So What’s the Paper Doing?

Essentially a bunch of unnecessary steps.

We see above that

1. Estimating l is hard if documents are allowed to be labeled adversarially.

2. Estimating l is not hard if documents are labeled by the model.

The “feature feedback” component of the paper confusingly mashes with the model.
We exploit (1) and (2) exactly as before,

Pr(Y = y|X = x, T = t) ≥ 2λ ∀t ∈ P, y = l(t)

Pr(Y = y|X = x, T = t) ≤ λ

2
∀t ∈ [T ], y 6= l(t)

which are trivially true under the model. But we assume that humans generate topics
T that satisfy these conditions.

4 A Method-of-Moments Estimator

Define L ∈ {0, 1}(k+1)×T
by

Ly,t =

{
1 if y = l(t)
0 otherwise

(With appropriate ordering, L is block diagonal.) Conditioning on documents x, each
sample can be regarded as y ∼ Categorical(h(x)) where

h(x) = Lθ(x)

Given n documents, let H ∈ R(k+1)×n be a matrix with columns h(x) ∈ ∆k+1, and
let Θ ∈ RT×n be a matrix with columns θ(x) ∈ ∆T . Then

H = LΘ

so if n ≥ max {k + 1, T} and Θ is full-rank, we can recover the labeling by L = HΘ+

if we observe H.
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A Lemmas

Lemma A.1. The problem: given any topic model θ : X → [T ] and labeled documents
(x1, y1) . . . (xn, yn) ∈ X ∪ {1, 2, ?}, find a topic-label mapping l : [T ] → {1, 2, ?} such
that for every i = 1 . . . n there is t ∈ [T ] with θt(xi) > 0 and l(t) = yi. This problem
is NP-complete.

Proof. Let φ(z1 . . . zq) = C1 ∧ · · · ∧ Cp be a 3-SAT instance with q Boolean variables
z1 . . . zq ∈ {0, 1} and p clauses C1 . . . Cp (e.g., Cj = z̄3 ∨ z10 ∨ z̄1). We construct a
one-to-one correspondence between zi values and topics by having 2q topics.

• Topics 1 . . . q are associated with z1 . . . zq.

• Topics (q + 1) . . . 2q are associated with z̄1 . . . z̄q.

Construct 2q labeled documents as follows. For each i = 1 . . . q, let x be a document
such that θi(x) = θq+i(x) = 1/2, then add (x, 1) as the i-th labeled document and
(x, 2) as the (q + i)-th labeled document. If l is a valid topic-label mapping, then for
the first q labeled documents it must assign label 1 to some t ∈ {i, q + i} and for the
next q labeled documents it must assign label 2 to some t ∈ {i, q + i}. This means
for each i ∈ [q], either

• l(i) = 1 and l(q + i) = 2, or

• l(i) = 2 and l(q + i) = 1.

Note that at this point, l(i) is either 1 or 2 and can be treated like a Boolean variable.
Construct p additional labeled documents as follows. For each j = 1 . . . p, denote the
three topics corresponding to the three literals in Cj by j1, j2, j3 ∈ [2q] and let x be
a document such that θj1(x) = θj2(x) = θj3(x) = 1/3. Add (x, 2) as the (2q + j)-th
labeled document. To handle these last p labeled documents, a valid mapping l must
assign l(t) = 2 for some t ∈ {j1, j2, j3} for every j = 1 . . . p. A satisfying assignment
to φ is now given by

zi =

{
1 if l(i) = 2
0 if l(i) = 1

∀i = 1 . . . q

Conversely, if we have a satisfying assignment to φ, a valid mapping for this topic
model and dataset is given by setting l(i) = 2 and l(q + i) = 1 if zi = 1 and l(i) = 1
and l(q + i) = 2 if zi = 0. Thus 3-SAT and the considered problem are equivalent
(the construction takes polynomial time). The problem is in NP since given l we can
check its validity in polynomial time.

Lemma A.2. Let X =
∑n
i=1Xi where Xi ∈ {0, 1} are independent. Suppose E [X] ≤

U and E [X] ≥ L. Then

Pr (X ≥ 2U) ≤ exp

(
−U

3

)
Pr

(
X ≤ L

2

)
≤ exp

(
−L

8

)
Proof. Define YU := X −E [X] + U . Note that E [YU ] = U and YU ≥ X. Thus

Pr (X ≥ 2U) ≤ Pr (YU ≥ 2U) ≤ exp

(
−U

3

)
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where we use the multiplicative Chernoff Pr(Z ≥ 2E [Z]) ≤ exp
(
−E[Z]

3

)
. Define

YL := X −E [X] + L. Note that E [YL] = L and YL ≤ X. Thus

Pr

(
X ≤ L

2

)
≤ Pr

(
YL ≤

L

2

)
≤ exp

(
−L

8

)
where we use the multiplicative Chernoff Pr

(
Z ≤ E[Z]

2

)
≤ exp

(
−E[Z]

8

)
.

Lemma A.3. With probability at least 1− δ the following holds. For all t ∈ [T ] and
y ∈ [k] ∪ {?}, either nt < n0 or

• t ∈ P : nty > λnt if y = l(t), nty < λnt if y 6= l(t)

• t 6∈ P : nty < λnt if y 6=?

Proof. Using (1) and (2), conditioning on the value of nt,

E [nty] ≥ 2λnt ∀t ∈ P, y = l(t)

E [nty] ≤ λ

2
nt ∀t ∈ [T ], y 6= l(t)

Then by Lemma A.2,

Pr (nty ≤ λnt) ≤ exp

(
−λnt

4

)
∀t ∈ P, y = l(t)

Pr (nty ≥ λnt) ≤ exp

(
−λnt

6

)
∀t ∈ [T ], y 6= l(t)

Let

Ety := (t ∈ P ∧ y = l(t) ∧ nty ≤ λnt) ∨ (t ∈ [T ] ∧ y 6= l(t) ∧ nty ≥ λnt)

Note that Pr(Ety|nt ≥ n0) ≤ δ
(k+1)T . Apply the union bound as follows:

Pr (∃(t, y) : nt ≥ n0 ∧ Ety) ≤
∑
(t,y)

Pr (Ety|nt ≥ n0) ≤ δ

Lemma A.4. Let A � 0. The dual of the norm ||·||A is ||·||A−1 .

Proof. Let ||·||∗ denote the dual of ||·||A. Then

||x||2∗ := max
u: ||u||A=1

(x>u)2 = max
u: u>Au=1

u>xx>u

= max
v: ||v||2=1

v>A−1/2xx>A−1/2v

=
∣∣∣∣∣∣A−1/2x∣∣∣∣∣∣2

2

where the last step uses the fact that the only positive eigenvalue of a rank-1 matrix
zz> is given by ||z||22 (with z as the eigenvector).

Lemma A.5. Let A � 0. The squared norm ||·||2A is 2-strongly convex wrt. itself.

Proof. Since ∇ ||x||2A = 2Ax, we have

〈∇ ||x||2A −∇ ||y||
2
A , x− y〉 = 2〈Ax−Ay, x− y〉 ≥ 2 ||x− y||A
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B External Theorems

Theorem B.1 (Theorem 1, Kakade et al. (2009)). The class of bounded linear models

F = {w : ||w|| ≤W} where ||·||2 is σ-strongly convex wrt. itself has the Rademacher
complexity bounded as follows:

Rn(F) ≤W max
x
||x||∗

√
2

σn
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