Notes on Poulis and Dasgupta (2017)

Karl Stratos

The paper's content can be greatly simplified as follows.

1 Setting

- We have a fixed topic model $\theta : \mathcal{X} \to \Delta^{T-1}$.
- There is some ground truth mapping $l : [T] \to [k] \cup \{?\}$. Let $P := \{t \in [T] : l(t) \neq ?\}$.
- Each labeled document (x, y) is generated by
 - 1. Drawing x from some distribution over \mathcal{X} , and
 - 2. Drawing $t \sim \text{Categorical}(\theta(x))$ and setting y = l(t).

It's a graphical model. Capital letters denote random variables (so T is overloaded). The model defines

$$\Pr(X = x, Y = y) = \Pr(Y = y | X = x) \times \Pr(X = x)$$

where the conditional label distribution is given by

$$\Pr(Y = y | X = x) = \sum_{t=1}^{T} \Pr(T = t, Y = y | X = x)$$
$$= \sum_{t=1}^{T} \Pr(T = t | X = x) \times \Pr(Y = y | X = x, T = t)$$
$$= \sum_{t: y = l(t)} \theta_t(x)$$

2 Problem

The goal is to estimate l from labeled documents $(x_1, y_1) \dots (x_n, y_n)$. Poulis and Dasgupta (2017) suggest finding the maximum-likelihood estimator

$$l^* = \arg\max_{l} \prod_{i=1}^{n} \sum_{t: \ l(t)=y_i} \theta_t(x_i)$$

They go on to show that finding any l that assigns nonzero probability to given data is NP-complete (Lemma A.1).

But the data is arbitrary. The documents are labeled adversarially, *not* by the model.

3 Solution

Now suppose that we receive n documents actually labeled by the model. Let

$$n_{ty} := \sum_{i=1}^{n} \mathbb{1} \left(t \sim \text{Categorical}(\theta(x_i)) \land y = y_i \right)$$

and $n_t := \sum_{y \in [k]} n_{ty}$. The estimator

$$\hat{l}(t) := \underset{y \in [k] \cup \{?\}}{\operatorname{arg\,max}} n_{ty}$$

is then Bayes optimal and consistent in expectation. That is,

$$\mathbf{E}\left[\hat{l}\right](t) = \underset{y}{\arg\max} \operatorname{Pr}(Y = y | X = x, T = t) = l(t)$$

3.1 Finite Samples

Consider the expected value of n_{ty} ,

$$\mathbf{E}[n_{ty}] = \sum_{i=1}^{n} \Pr\left(T = t, Y = y | X = x_i\right)$$
$$= \sum_{i=1}^{n} \theta_t(x_i) \times \Pr\left(Y = y | X = x_i, T = t\right)$$

Under the model, clearly we have

$$\Pr(Y = y | X = x, T = t) \ge 2\lambda \qquad \forall t \in P, \ y = l(t)$$
(1)

$$\Pr(Y = y | X = x, T = t) \le \frac{\lambda}{2} \qquad \forall t \in [T], \ y \ne l(t)$$
(2)

for some $\lambda \leq 1/2$. (In particular, we can use $\lambda = 1/2$.) Let

$$n_0 := \frac{6}{\lambda} \log \frac{(k+1)T}{\delta}$$

Lemma A.3 shows that w.p. $\geq 1 - \delta$, for all t such that $n_t \geq n_0$ and for all y,

- $t \in P$: $n_{ty} > \lambda n_t$ if $y = l(t), n_{ty} < \lambda n_t$ if $y \neq l(t)$
- $t \notin P$: $n_{ty} < \lambda n_t$ if $y \neq ?$

Thus w.p. $\geq 1 - \delta$, the following estimator

$$\hat{l}(t) = \begin{cases} y & \text{if } n_t \ge n_0 \text{ and } n_{ty} \ge \lambda n_t \\ ? & \text{otherwise} \end{cases}$$

is consistent for all t with $n_t \ge n_0$. For $t \in P$, we ensure $n_t \ge n_0$ in expectation if

$$n \ge \frac{n_0}{\min_{i=1}^n \theta_t(x_i)}$$

3.2 So What's the Paper Doing?

Essentially a bunch of unnecessary steps.

We see above that

- 1. Estimating l is hard if documents are allowed to be labeled adversarially.
- 2. Estimating l is *not* hard if documents are labeled by the model.

The "feature feedback" component of the paper confusingly mashes with the model. We exploit (1) and (2) exactly as before,

$$\begin{split} \Pr(Y = y | X = x, T = t) &\geq 2\lambda \\ \Pr(Y = y | X = x, T = t) &\leq \frac{\lambda}{2} \end{split} \qquad & \forall t \in P, \ y = l(t) \\ \forall t \in [T], \ y \neq l(t) \end{split}$$

which are trivially true under the model. But we assume that humans generate topics T that satisfy these conditions.

4 A Method-of-Moments Estimator

Define $L \in \{0, 1\}^{(k+1) \times T}$ by

$$L_{y,t} = \begin{cases} 1 & \text{if } y = l(t) \\ 0 & \text{otherwise} \end{cases}$$

(With appropriate ordering, L is block diagonal.) Conditioning on documents x, each sample can be regarded as $y \sim \text{Categorical}(h(x))$ where

$$h(x) = L\theta(x)$$

Given *n* documents, let $H \in \mathbb{R}^{(k+1) \times n}$ be a matrix with columns $h(x) \in \Delta^{k+1}$, and let $\Theta \in \mathbb{R}^{T \times n}$ be a matrix with columns $\theta(x) \in \Delta^T$. Then

$$H=L\Theta$$

so if $n \ge \max\{k+1, T\}$ and Θ is full-rank, we can recover the labeling by $L = H\Theta^+$ if we observe H.

A Lemmas

Lemma A.1. The problem: given any topic model $\theta : \mathcal{X} \to [T]$ and labeled documents $(x_1, y_1) \dots (x_n, y_n) \in \mathcal{X} \cup \{1, 2, ?\}$, find a topic-label mapping $l : [T] \to \{1, 2, ?\}$ such that for every $i = 1 \dots n$ there is $t \in [T]$ with $\theta_t(x_i) > 0$ and $l(t) = y_i$. This problem is NP-complete.

Proof. Let $\phi(z_1 \dots z_q) = C_1 \wedge \dots \wedge C_p$ be a 3-SAT instance with q Boolean variables $z_1 \dots z_q \in \{0, 1\}$ and p clauses $C_1 \dots C_p$ (e.g., $C_j = \overline{z_3} \vee z_{10} \vee \overline{z_1}$). We construct a one-to-one correspondence between z_i values and topics by having 2q topics.

- Topics $1 \ldots q$ are associated with $z_1 \ldots z_q$.
- Topics $(q+1) \dots 2q$ are associated with $\bar{z}_1 \dots \bar{z}_q$.

Construct 2q labeled documents as follows. For each $i = 1 \dots q$, let x be a document such that $\theta_i(x) = \theta_{q+i}(x) = 1/2$, then add (x, 1) as the *i*-th labeled document and (x, 2) as the (q + i)-th labeled document. If l is a valid topic-label mapping, then for the first q labeled documents it must assign label 1 to some $t \in \{i, q + i\}$ and for the next q labeled documents it must assign label 2 to some $t \in \{i, q + i\}$. This means for each $i \in [q]$, either

- l(i) = 1 and l(q+i) = 2, or
- l(i) = 2 and l(q+i) = 1.

Note that at this point, l(i) is either 1 or 2 and can be treated like a Boolean variable. Construct p additional labeled documents as follows. For each $j = 1 \dots p$, denote the three topics corresponding to the three literals in C_j by $j_1, j_2, j_3 \in [2q]$ and let x be a document such that $\theta_{j_1}(x) = \theta_{j_2}(x) = \theta_{j_3}(x) = 1/3$. Add (x, 2) as the (2q + j)-th labeled document. To handle these last p labeled documents, a valid mapping l must assign l(t) = 2 for some $t \in \{j_1, j_2, j_3\}$ for every $j = 1 \dots p$. A satisfying assignment to ϕ is now given by

$$z_i = \begin{cases} 1 & \text{if } l(i) = 2\\ 0 & \text{if } l(i) = 1 \end{cases} \qquad \forall i = 1 \dots q$$

Conversely, if we have a satisfying assignment to ϕ , a valid mapping for this topic model and dataset is given by setting l(i) = 2 and l(q + i) = 1 if $z_i = 1$ and l(i) = 1 and l(q + i) = 2 if $z_i = 0$. Thus 3-SAT and the considered problem are equivalent (the construction takes polynomial time). The problem is in NP since given l we can check its validity in polynomial time.

Lemma A.2. Let $X = \sum_{i=1}^{n} X_i$ where $X_i \in \{0,1\}$ are independent. Suppose $\boldsymbol{E}[X] \leq U$ and $\boldsymbol{E}[X] \geq L$. Then

$$\Pr\left(X \ge 2U\right) \le \exp\left(-\frac{U}{3}\right)$$
$$\Pr\left(X \le \frac{L}{2}\right) \le \exp\left(-\frac{L}{8}\right)$$

Proof. Define $Y_U := X - \mathbf{E}[X] + U$. Note that $\mathbf{E}[Y_U] = U$ and $Y_U \ge X$. Thus

$$\Pr(X \ge 2U) \le \Pr(Y_U \ge 2U) \le \exp\left(-\frac{U}{3}\right)$$

where we use the multiplicative Chernoff $\Pr(Z \ge 2\mathbf{E}[Z]) \le \exp\left(-\frac{\mathbf{E}[Z]}{3}\right)$. Define $Y_L := X - \mathbf{E}[X] + L$. Note that $\mathbf{E}[Y_L] = L$ and $Y_L \le X$. Thus

$$\Pr\left(X \le \frac{L}{2}\right) \le \Pr\left(Y_L \le \frac{L}{2}\right) \le \exp\left(-\frac{L}{8}\right)$$

where we use the multiplicative Chernoff $\Pr\left(Z \le \frac{\mathbf{E}[Z]}{2}\right) \le \exp\left(-\frac{\mathbf{E}[Z]}{8}\right)$.

Lemma A.3. With probability at least $1 - \delta$ the following holds. For all $t \in [T]$ and $y \in [k] \cup \{?\}$, either $n_t < n_0$ or

- $t \in P$: $n_{ty} > \lambda n_t$ if y = l(t), $n_{ty} < \lambda n_t$ if $y \neq l(t)$
- $t \notin P$: $n_{ty} < \lambda n_t$ if $y \neq ?$

Proof. Using (1) and (2), conditioning on the value of n_t ,

$$\begin{split} \mathbf{E} \left[n_{ty} \right] &\geq 2\lambda n_t & \forall t \in P, \ y = l(t) \\ \mathbf{E} \left[n_{ty} \right] &\leq \frac{\lambda}{2} n_t & \forall t \in [T], \ y \neq l(t) \end{split}$$

Then by Lemma A.2,

$$\Pr(n_{ty} \le \lambda n_t) \le \exp\left(-\frac{\lambda n_t}{4}\right) \qquad \forall t \in P, \ y = l(t)$$
$$\Pr(n_{ty} \ge \lambda n_t) \le \exp\left(-\frac{\lambda n_t}{6}\right) \qquad \forall t \in [T], \ y \ne l(t)$$

Let

$$E_{ty} := (t \in P \land y = l(t) \land n_{ty} \le \lambda n_t) \lor (t \in [T] \land y \ne l(t) \land n_{ty} \ge \lambda n_t)$$

Note that $\Pr(E_{ty}|n_t \ge n_0) \le \frac{\delta}{(k+1)T}$. Apply the union bound as follows:

$$\Pr\left(\exists (t,y): n_t \ge n_0 \land E_{ty}\right) \le \sum_{(t,y)} \Pr\left(E_{ty} | n_t \ge n_0\right) \le \delta$$

Lemma A.4. Let $A \succ 0$. The dual of the norm $||\cdot||_A$ is $||\cdot||_{A^{-1}}$. Proof. Let $||\cdot||_*$ denote the dual of $||\cdot||_A$. Then

$$||x||_{*}^{2} := \max_{u: \, ||u||_{A}=1} (x^{\top}u)^{2} = \max_{u: \, u^{\top}Au=1} u^{\top}xx^{\top}u$$
$$= \max_{v: \, ||v||_{2}=1} v^{\top}A^{-1/2}xx^{\top}A^{-1/2}v$$
$$= \left|\left|A^{-1/2}x\right|\right|_{2}^{2}$$

where the last step uses the fact that the only positive eigenvalue of a rank-1 matrix zz^{\top} is given by $||z||_2^2$ (with z as the eigenvector).

Lemma A.5. Let $A \succ 0$. The squared norm $||\cdot||_A^2$ is 2-strongly convex wrt. itself. Proof. Since $\nabla ||x||_A^2 = 2Ax$, we have

$$\langle \nabla ||x||_{A}^{2} - \nabla ||y||_{A}^{2}, \ x - y \rangle = 2 \langle Ax - Ay, \ x - y \rangle \ge 2 ||x - y||_{A}$$

B External Theorems

Theorem B.1 (Theorem 1, Kakade et al. (2009)). The class of bounded linear models $\mathcal{F} = \{w : ||w|| \leq W\}$ where $||\cdot||^2$ is σ -strongly convex wrt. itself has the Rademacher complexity bounded as follows:

$$\mathcal{R}_n(\mathcal{F}) \le W \max_x ||x||_* \sqrt{\frac{2}{\sigma n}}$$