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In this note, pX always refers to the marginal density of a latent-variable generative model pZ and pX|Z where
Z ∈ Z.1 So “learning pX” means learning pZ and pX|Z .

1 Three Types of Estimation

We are interested in estimating the population density popX with the marginal pX by minimizing some divergence
D(popX , pX). Three common types of the estimation problem are

min
pX

D(popX , pX) (direct marginalization)

min
pX

min
q

U(popX , pX , q) (variational optimization)

min
pX

max
q

L(popX , pX , q) (variational adversarial optimization)

Direct marginalization. Sometimes it is possible to directly calculate the marginal. It is trivial if Z is small. If
Z is a set of discrete structures such as sequences or trees, it is possible with conditional independence assumptions
[3, 12]. In this case it is natural to minimize the KL divergence. Using DKL(popX ||pX) = H(popX , pX)−H(popX)

min
pX

DKL(popX , pX) ≡ min
pX

H(popX , pX) = max
pX

E
x∼popX

[log pX(x)]

Variational optimization. Generally direct marginalization is intractable. In this case we can consider estimat-
ing an equivalent objective by minimizing an upper bound U(popX , pX , q) with a variational model q such that (1)
it is easy to compute, and (2) it is tight for an optimal q (henceforth tightable). For instance, EM minimizes the KL
divergence by minimizing the minimization of a tightable upper bound −ELBO(popX , pX , qZ|X) on H(popX , pX)
where qZ|X estimates the intractable posterior pZ|X [6, 13]:

min
pX

DKL(popX , pX) ≡ min
pX

(
min
qZ|X

−ELBO(popX , pX , qZ|X)

)
The consistency of pX follows from the fact that the bound is tightable (assuming universality). The fact that the
objective remains a minimization is convenient in practice.

Variational adversarial optimization. There are cases we maximize a lower bound L(popX , pX , q) where q en-
joys similar properties for estimating other divergence measures. For instance, GAN minimizes the Jensen-Shannon
divergence by minimizing the maximization of a tightable upper bound NCE(popX , pX , qA|X) on 2JSD(popX ||pX)−
log 4 where qA|X is tasked with discriminating between popX and pX [8]:

min
pX

JSD(popX ||pX) ≡ min
pX

(
max
qA|X

NCE(popX , pX , qA|X)

)
The divergence measure has been generalized to f -divergences [16] and the Wasserstein metric [1]. The consistency
of pX again follows from the fact that the bound is tightable (assuming universality). However, the objective is
adversarial and more difficult to optimize in practice.

1 We write “density” or “distribution” interchangeably to denote a probability function and
∑

to denote marginalization whether
the considered variable is discrete or continuous.
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2 Forms of ELBO

The evidence lower bound (ELBO) emerges through an effort to replace the posterior pZ|X with a variational model
qZ|X in the expected log-likelihood:2

E
x∼popX

[log pX(x)] = E
x∼popX

z∼qZ|X(·|x)

[
log

pXZ(x, z)

pZ|X(z|x)

qZ|X(z|x)

qZ|X(z|x)

]
= E

x∼popX
z∼qZ|X(·|x)

[
log

pXZ(x, z)

qZ|X(z|x)

]
ELBO(popX ,pX ,qZ|X)

+DKL(qZ|X ||pZ|X)

≥0

One can write ELBO in various forms by manipulating terms:

ELBO(popX , pX , qZ|X) = E
x∼popX

[log pX(x)]−DKL(qZ|X ||pZ|X) (EM)

= E
x∼popX

z∼qZ|X(·|x)

[log pXZ(x, z)] +H(qZ|X)

= E
x∼popX

z∼qZ|X(·|x)

[
log pX|Z(x|z)

]
−DKL(qZ|X ||pZ) (VAE)

= E
x∼popX

z∼qZ|X(·|x)

[
log pX|Z(x|z)

]
−DKL(qZ|X ||qZ)−DKL(qZ ||pZ) (DVAE)

= E
x∼popX

z∼qZ|X(·|x)

[
log pX|Z(x|z)

]
+H(qZ|X)−H(qZ , pZ) (MAXENT)

The first two forms yield the traditional alternating optimization steps in the EM algorithm. The VAE form is the
standard VAE objective in which the reconstruction term is estimated by sampling and the KL term is estimated
in closed form. The DVAE form is the VAE form further decomposed; one can easily check that DKL(qZ|X ||pZ) =
DKL(qZ|X ||qZ) +DKL(qZ ||pZ) where qZ(z) = Ex∼popX [qZ|X(z|x)]. MAXENT is easily derived from DVAE. DVAE
can be used for the following additional interpretations of VAE.

Rate-distortion autoencoders. First note that DKL(qZ|X ||qZ) = I(X,Z;popqXZ) is the mutual information
between X and Z under the joint density popqXZ(x, z) = popX(x)qZ|X(z|x).3 We can view DVAE as a nested
maximization over pZ , pX|Z , and qZ|X . The optimal prior is always pZ = qZ which eliminates the last KL term.
The resulting optimization problem is equivalent to

min
pX|Z , qZ|X

I(X,Z;popqXZ) +H(popqX|Z , pX|Z)

This shows the standard rate-distortion tradeoff where we want to limit the channel capacity of the encoder qZ|X
for light-weight communication while limiting distortion H(popqX|Z , pX|Z) ≤ Hmax.

Disentanglement. Assume Z = (Z1 . . . Zm) and the model prior pZ =
∏
i pZi is component-wise independent

(usually the case). Let qZi denote the marginal of qZ for the i-th variable; note that qZ may still be a complicated
joint density. It is easy to verify that

DKL(qZ ||pZ) = DKL

(
qZ

∣∣∣∣∣∣∣∣ m∏
i=1

qZi

)
+

m∑
i=1

DKL(qZi ||pZi)

where the first term is also known as total correlation (a multivariate generalization of mutual information). Thus
minimizing the KL term in VAE involves minimizing dependencies between latent components under qZ . Implicit
disentanglement observed in VAE (e.g., Zgender vs Zmustache) is attributed to this term. Several weighting schemes
have been proposed to control the level of disentanglement [9, 5].

2One related lower bound on the log-likelihood is

E
x∼popX
z∼pZ

[
log pX|Z(x|z)

]
≤ E
x∼popX

[
log E

z∼pZ

[
pX|Z(x|z)

]]
= E
x∼popX

[log pX(x)]

which follows from Jensen’s inequality. This objective is useful if we want to sample z from the model’s own prior during learning; it
can be optimized with REINFORCE in that case (Section 4) [21].

3An aside: the posterior collapse in VAE DKL(qZ|X ||pZ) = 0 implies I(X,Z;popqXZ) = 0 since

I(X,Z;popqXZ) = DKL(qZ|X ||qZ) = DKL(qZ|X ||pZ)−DKL(qZ ||pZ) = −DKL(qZ ||pZ)

and both mutual information and KL divergence are nonnegative [7].
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2.1 Direct Estimation of the Log-Likelihood

ELBO is just a lower bound on the log-likelihood (LL) which is what we really care about. The gap between ELBO
and LL is the KL divergence between qZ|X and pZ|X , which means when they are not equal a Monte Carlo estimate

of ELBO (assuming fixed data x for simplicity) (1/K) log(pXZ(x, z(k))/qZ|X(z(k)|x)) where z(1) . . . z(K) ∼ qZ|X(·|x)
may still be far smaller than log pX(x) even if K →∞. However, we can simply compute a Monte Carlo estimate
of pX(x) directly, in particular using importance sampling with qZ|X as the proposal distribution. That is,

log pX(x) = log E
z∼qZ|X(·|x)

[
pXZ(x, z)

qZ|X(z|x)

]
≈ log

(
1

K

K∑
k=1

pXZ(x, z(k))

qZ|X(z(k)|x)

)

Clearly as K → ∞ the estimate converges to LL assuming bounded Ez∼qZ|X(·|x)[pXZ(x, z)/qZ|X(z|x)]. The cor-
responding population-level objective defined for each value of K is actually a lower bound on LL by Jensen’s
inequality:

LK = E
z(1)...z(K)∼qZ|X(·|x)

[
log

(
1

K

K∑
k=1

pXZ(x, z(k))

qZ|X(z(k)|x)

)]
≤ log pX(x)

Note that L1 coincides with ELBO: thus LK can be viewed as a multi-sample lower bound that, unlike ELBO,
converges to LL as K → ∞. LK can be used as an alternative training objective for learning pXZ and qZ|X
(importance weighted autoencoders (IWAs) [4]) or as a way to estimate true LL value (instead of ELBO) after
learning a VAE for evaluation purposes.

3 Prior

The choice of prior can be important from an optimization perspective as well as a modeling perspective. Recall
that the VAE objective is, written explicitly as a function of pZ and pX|Z ,

ELBO(popX , pZ , pX|Z , qZ|X) = E
x∼popX

z∼qZ|X(·|x)

[
log pX|Z(x|z)

]
−DKL(qZ|X ||pZ)

pZ affects the decoder qZ|X through the regularization term, which in turn affects the reconstruction term. A richer
prior such as multimodal instead of unimodal can help achieve better objective value.

Mixture prior. One common approach to enriching the prior is to make it a mixture distribution by introducing
an additional latent variable C ∈ {1 . . .K} and define pZ(z) =

∑K
c=1 pZ|C(z|c)pC(c). We assume X ⊥⊥ C|Z so that

the model defines the joint density pXZC(x, z, c) = pX|Z(x|z)pZ|C(z|c)pC(c). If we further define the variational
posterior qZC|X(z, c|x) = qZ|X(z|x)qC|X(c|x) with the assumption Z ⊥⊥ C|X, the first term in ELBO does not
change and only the regularization term changes to

DKL(qZC|X ||pZC) = DKL(qC|X ||pC) +DKL(qZ|X ||pZ|C)

= E
x∼popX

c∼qC|X(·|x)

[
log

qC|X(c|x)

pC(c)
+DKL(qZ|X(·|x)||pZ|C(·|c))

]

which is easy to calculate assuming small K and a closed-form solution for the KL term over Z as usual. It can be
viewed as more fine-grained regularization in which we make qZ|X ≈ pZ|C where C is with respect to qC|X ≈ pC .

Mixture prior from the variational posterior. Choosing pZ to be a mixture distribution can be justi-
fied in terms of the optimal prior. Recall from the DVAE form of ELBO that the optimal prior is given by
Ex∼popX [qZ|X(z|x)] for any fixed qZ|X . Thus the optimal prior for an empirical estimate of ELBO based on

iid samples x1 . . . xN ∼ popX is actually the mixture distribution (1/N)
∑N
i=1 qZ|X(z|xi). The mixture prior

pZ(z) =
∑K
c=1 pZ|C(z|c)pC(c) can be seen as approximating this optimal prior which becomes exact when pC is

uniform over K = N components and pZ|C(z|c) = qZ|X(z|xc). We can consider a more direct approximation by

explicitly using qZ|X to define pZ , for instance pZ(z) = (1/K)
∑K
c=1 qZ|X(z|x̃c) where x̃1 . . . x̃K are either random

samples or learnable parameters that represent “pseudo-inputs”. This parameter sharing between the prior and the
decoder is shown to be potentially useful [17].
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Hierarchical prior. There may be cases in which there is a natural structure to the latent variable Z. For
instance, if X represents a sentence, we may think of a topic Z1, think of facts about the topic Z2, and then
generate X. In this case we can model the joint density as pXZ1Z2

(x, z1, z2) = pX|Z1Z2
(x|z1, z2)pZ2|Z1

(z2|z1)pZ1
(z1)

and define the variational posterior as qZ1Z2|X(z1, z2|x) = qZ2|XZ1
(z2|x, z1)qZ1|X(z1|x). This is almost the same

as having a mixture prior except that we do not make conditional independence assumptions. ELBO can still be
optimized with a suitable parameterization, for instance Z1 and Z2 are isotropic Gaussians.

Compartmentalized prior. There may also be cases in which we want to compartmentalize Z = (Z1, Z2) with
Z1 ⊥⊥ Z2. For instance, Kingma et al. (2014) define Z1 ∈ Rd as the style and Z2 ∈ {1 . . . L} as the label of an MNIST
digit imageX and consider the model pXZ1Z2

(x, z1, z2) = pX|Z1Z2
(x|z1, z2)pZ2

(z2)pZ1
(z1) where the decoder pX|Z1Z2

is a continuous-discrete hybrid [14]. The variational posterior qZ1Z2|X(z1, z2|x) = qZ2|X(z2|x)qZ1|XZ2
(z1|x, z2)

provides a label classifier qZ2|X . The model can be trained in a semi-supervised manner by jointly optimizing the
ELBO of log pX(x) on unlabeled images and log pXZ2(x, z2) on labeled images.

Conditional prior. Assume a joint pensity popXY over X and Y as the population density. Consider the
model pXY Z(x, y, z) = pX|Z(x|z)pZ|Y (z|y)popY (y) representing the generative story Y → Z → X in which X is
conditionally independent of Y given the bottleneck variable Z. We minimize DKL(popXY ||pXY (x, y)) over the
model parameters. Equivalently we maximize the conditional log likelihood E(x,y)∼popXY

[log pX|Y (x|y)]. We do
this by introducing a variational posterior qZ|XY and maximizing the ELBO lower bound

max
pZ|Y , pX|Z , qZ|XY

E
(x,y)∼popXY
z∼qZ|XY (·|x,y)

[
log pX|Z(x|z)

]
−DKL(qZ|XY ||pZ|Y )

4 Types of Non-Differentiability

Deterministic operation. Consider the step function step : R → {0, 1} which outputs 1 iff the input value is
nonnegative. Since it is non-differentiable at 0 and has derivative 0 almost everywhere, it is meaningless to talk
about a gradient. One heuristic to obtain a meaningful gradient signal is to linearize step(a) ≈ a (which preserves
the sign) in the backward pass so that

∂J(step(f(θ)))

∂θ
=
∂J(step(f(θ)))

∂step(f(θ)))

∂step(f(θ))

∂f(θ)

∂f(θ))

∂θ
≈ ∂J(step(f(θ)))

∂step(f(θ)))

∂f(θ))

∂θ

We can also consider a “multidimensional step function”. Define snap : RK → {e1 . . . eK} by snap(u) = ek∗ where

k∗ = arg maxKk=1 uk and e1 . . . eK ∈ {0, 1}K are standard basis elements. It is non-differentiable along (K − 1)-
dimensional manifolds and has gradient 0K almost everywhere, but we can linearize snap(u) ≈ u (which preserves
the argmax) in the backward pass so that

∂J(snap(f(θ)))

∂θ
≈ ∂J(snap(f(θ)))

∂snap(f(θ)))

∂f(θ))

∂θ
(1)

Stochastic operation. Consider a stochastic function which outputs a certain value with a certain probability.
It is only meaningful to talk about the differentiability of such a function with respect to its expectation. Let pθZ
denote a differentiable function of θ that defines a density over some variable Z. Given an objective function J(z)4,
we can consider unbiased gradient estimators such as

∂

∂θ
E

z∼pθZ
[J(z)] =

∑
z∈Z

J(z)
∂

∂θ
pθZ(z) (direct marginalization)

= E
z∼pθZ

[
J(z)

∂

∂θ
log pθZ(z)

]
(score function estimator)

= E
ε∼pE

[
∂

∂θ
J(πθ(ε))

]
(reparameterization trick)

Direct marginalization is an option if computationally possible (e.g., Z is a small discrete set) [14]. The other two
gradient estimates are based on sampling. The score function estimator (aka. REINFORCE [19]) is high-variance

4In general J(θ, z) can depend on θ through other connections.
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and normally requires additional techniques to reduce variance (control variates). The reparameterization trick is an
option if z ∼ pθZ is distributed as z = πθ(ε) where πθ(ε) is a differentiable function of θ and ε ∼ pE is some random
variable that does not depend on θ. An isotropic Gaussian density is a classical example: z ∼ N (µθ,diag

(
σ2
θ

)
Id)

is distributed as z = µθ + σθ � ε where ε ∼ N (0, Id) [13].

4.1 Backpropagation Through Discrete Sampling

When Z is discrete and neither direct marginalization nor the score function estimator is a good option (due to
computational costs or high variance), we can consider biased gradient estimators.

Bernoulli variable. Let Z ∈ {0, 1} with pθZ(1) = f(θ). Combining the reparameterization trick z = step(f(θ)−
ε) where ε ∼ U(0, 1) and the linear approximation step(a) ≈ a in the backward pass, we derive the straight-through
gradient estimator [10, 2]:

∂

∂θ
E

z∼pθZ
[J(z)] = E

ε∼pE

[
∂

∂θ
J(step(f(θ)− ε))

]
≈ E
ε∼pE

[
∂J(step(f(θ)− ε))
∂step(f(θ)− ε)

∂f(θ)

∂θ

]
= E
z∼pθZ

[
∂J(z)

∂z

∂f(θ)

∂θ

]
Of course in this case direct marginalization is trivial, but this is applicable for Z ∈ {0, 1}d where pθZ is a product
distribution. In that case direct marginalization has complexity O(2d) whereas sampling has complexity O(d).

Categorical variable: Gumbel-Softmax. Let Z ∈ {1 . . .K} where K > 2. Without loss of generality, let
Z ∈ {e1 . . . eK} be represented as a K-dimensional standard basis element with pθZ = f(θ) ∈ ∆K−1. It can be shown

that z ∼ pθZ (which is a vertex in ∆K−1) is distributed as z = softmax((log f(θ) + ε)/τ) where ε ∼ GumbelK(0, 1)
and τ > 0 as τ goes to zero (Appendix A), yielding the Gumbel-Softmax (GS) estimator [11, 15]

∂

∂θ
E

z∼pθZ
[J(z)] = lim

τ→0
E

ε∼GumbelK(0,1)

[
∂

∂θ
J

(
softmax

(
log f(θ) + ε

τ

))]
In practice τ is fixed (e.g., 0.9) or annealed, so GS is biased. GS involves a K-dimensional sample and does not
seem to offer any computational advantage over direct marginalization over K values. But consider:

1. Suppose the objective J(z, z′) involves nested sampling z ∼ Cat(f(θ)) and z′ ∼ N (µ(z),diag
(
σ2(z)

)
Id).

Direct marginalization requires drawing K conditional samples of Z ′ and thus O(Kd) time, whereas GS gives

lim
τ→0

E
ε∼GumbelK(0,1)

[
E

ε′∼N (0,Id)

[
∂

∂θ
J (zε,τθ , µ(zε,τθ ) + σ(zε,τθ )� ε′)

]]
where zε,τθ = softmax((log f(θ) + ε)/τ) ∈ ∆K−1. This estimator requires one conditional sample of Z ′ and
thus O(d) time.

2. Suppose Z ∈ {1 . . .K}d and pθZ is a product distribution over d dimensions. Then direct marginalization has
complexity O(Kd) whereas sampling has complexity O(Kd).

We can consider a straight-through version of GS for cases in which we need a discrete sample by snapping in the
forward pass and softmaxing in the backward pass:

∂

∂θ
E

ε∼GumbelK(0,1)

[
J

(
snap

(
log f(θ) + ε

τ

))]
≈ E
ε∼GumbelK(0,1)

[
∂

∂θ
J

(
softmax

(
log f(θ) + ε

τ

))]

Categorical variable: vector quantization Let f(θ) ∈ Rd and assume C ∈ RK×d. We discretize f(θ) ∈ Rd
into {1 . . .K} by treating the rows of C as centroids in k-means. Estimating the gradient in this case using the
straight-through estimator for snapping (1) is called vector quantization (VQ):

∂J(snap(u(θ, C))

∂θ
≈ ∂J(snap(u(θ, C)))

∂snap(u(θ, C))

∂f(θ))

∂θ

where ui(θ, C) = − ||f(θ)− Ci||. When we want to update C as well we can add additional objectives such as

minimizing ||f(θ)− Ci∗ ||2 where i∗ = arg maxKi=1 ui(θ, C) [18].
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A The Gumbel Distribution

The Gumbel distribution with location µ ∈ R and scale β > 0 has the CDF over R:

Gumbel(µ, β)(x) =

∫ x

−∞
Gumbel(µ, β)(t)dt = exp

(
− exp

(
−x− µ

β

)) µ=0
β=1
= exp(− exp(−x))

where µ = 0 and β = 1 yields the standard form. Differentiating the CDF gives the PDF:5

Gumbel(µ, β)(x) =
1

β
exp

(
−x− µ

β
− exp

(
−x− µ

β

)) µ=0
β=1
= exp(−x− exp(−x))

which is admittedly complicated with nested exponentials.6 Gumbel is closed under linear transformation: if
Z ∼ Gumbel(0, 1), then µ + βZ ∼ Gumbel(µ, β).7 If z ∼ Gumbel(µ, β) and z′ ∼ Gumbel(µ′, β), then z − z′ ∼
Logistic(µ−µ′, β). Gumbel is the limiting distribution over the maximum of (properly normalized) N iid variables
as N →∞ [20]. Let X1 . . . XN ≥ 0 denote iid variables distributed as Expλ.8 Define Zmax

N := λmaxNi=1Xi− logN .
The CDF of Zmax

N is

Pr(Zmax
N ≤ x) = Pr(λXi − logN ≤ x)N (iid assumption on X1 . . . XN )

= Pr

(
Xi ≤

1

λ
(x+ logN)

)N
= (1− exp (−x− logN))

N
(CDF of Expλ)

=

(
1− 1

N
exp (−x)

)N
N→∞

= exp(− exp(−x)) = Gumbel(0, 1)(x) (Lemma A.2)

Hence Zmax
N ∼ Gumbel(0, 1) with median z̄ = − log log 2 (i.e., Pr(Zmax

N ≤ z̄) = 1/2) as N →∞, which implies that
there is a 50/50 chance that maxNi=1Xi ≤ 1

λ (logN − log log 2). More generally, the maximum under a distribution
with an exponentially thin tail (Gaussian, Gamma, etc., with appropriate normalization) behaves like Gumbel with
the median growing like O((logN)p) for some p. Think of it as a “max version” of the central limit theorem which

states that Zmean
N :=

√
N/σ2( sXN − µ) ∼ N (0, 1) as N → ∞ where the variance of sXN =

∑N
i=1Xi/N shrinks like

O(1/N).

A.1 The Gumbel-Max Trick

Theorem A.1. Let u ∈ RK where K ≥ 1. Pick any β > 0 and define the categorical random variable X ∈ {1 . . .K}
with distribution Cat(softmax(u/β)), that is

Pr(X = k) =
exp (uk/β)∑K
l=1 exp (ul/β)

∀k = 1 . . .K

Now define

ε1 . . . εK
iid∼ Gumbel(0, β) Y =

K
arg max
k=1

uk + εk

(the argmax is unique with probability 1 since ε1 . . . εK are drawn iid from a continuous distribution). Then Pr(X =
k) = Pr(Y = k) for all k = 1 . . .K.

5If F (x) =
∫ x
c f(t)dt is a CDF of a PDF f with support on x ≥ c, and G is any antiderivative of f (i.e., G′(x) = f(x)), the

fundamental theorem of calculus says F (x) = G(x)−G(c). Therefore, F ′(x) = ∂
∂x

(G(x) +G(c)) = G′(x) = f(x).
6It can be verified that the mean is µ+ γβ where γ = 0.5772 · · · is the Euler-Mascheroni constant, the variance is π2

6
β2.

7The CDF of µ+ βZ is Pr(µ+ βZ ≤ x) = Pr(Z ≤ x−µ
β

) = exp
(
− exp

(
−x−µ

β

))
. But this is exactly the CDF of Gumbel(µ, β).

8Recall Expλ(x) = [[x ≥ 0]]λ exp(−λx) is the continuous version of the geometric distribution that represents how long we have to
wait until an event with rate λ happens. It has the CDF: 1− exp(−λx).
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The proof is trivial for K = 1 and simple for K = 2 with β = 1.9 The proof for the general case is less simple.

Proof. WLOG let k = 1.

Pr(Y = 1) = Pr
ε1...εK∼Gumbel(0,β)

(u1 + ε1 ≥ uk + εk ∀k > 1)

= E
ε1∼Gumbel(0,β)

[∏
k>1

Pr
εk∼Gumbel(0,β)

(u1 + ε1 ≥ uk + εk)

]

= E
ε1∼Gumbel(0,β)

[∏
k>1

Pr
εk∼Gumbel(0,β)

(εk ≤ u1 − uk + ε1)

]

= E
ε1∼Gumbel(0,β)

[∏
k>1

exp

(
− exp

(
−u1 + uk − ε1

β

))]

=

∫ ∞
−∞

1

β
exp

(
−ε1
β
− exp

(
−ε1
β

))∏
k>1

exp

(
− exp

(
−u1 + uk

β
− ε1
β

))
dε1

Let x = ε1/β which yields the infinitesimal relation dε1 = βdx. Plugging it in (the integrated region is still R), we
have ∫ ∞

−∞
exp (−x− exp (−x))

∏
k>1

exp

(
− exp

(
−u1 + uk

β
− x
))

dx

=

∫ ∞
−∞

exp

(
−x− exp (−x)−

∑
k>1

exp

(
−u1 + uk

β

)
exp (−x)

)
dx

=

∫ ∞
−∞

exp

(
−x−

K∑
k=1

exp

(
−u1 + uk

β

)
exp (−x)

)
dx

By https://www.integral-calculator.com, for C > 0,∫ ∞
−∞

exp (−x− C exp(−x)) dx =
exp(−C exp(−x))

C

∣∣∣∣∞
−∞

=
1

C

Thus the above integral evaluates to

1∑K
k=1 exp((−u1 + uk)/β)

=
exp(u1/β)∑K
k=1 exp(uk/β)

= Pr(X = 1)

Gumbel-Softmax. We observe that for any ε ∈ RK the distribution

δτ := softmax

(
u+ ε

τ

)
∈ [0, 1]K

converges to the one-hot vector representation of k∗ = arg maxKk=1 uk + εk as τ → 0+. Thus if ε1 . . . εK ∼
Gumbel(0, 1), then δτ is distributed as the one-hot vector representation of X ∼ Cat(softmax(u)) as τ → 0+

by Theorem A.1.

9 WLOG let k = 1. Using the fact that the CDF of Logistic(0, 1) is the sigmoid function, we have

Pr(Y = 1) = Pr
ε1,ε2∼Gumbel(0,1)

(u1 + ε1 ≥ u2 + ε2) = Pr
z∼Logistic(0,1)

(z ≤ u1 − u2) = σ(u1 − u2)

By the usual relation between the sigmoid and the softmax when K = 2, we have

σ(u1 − u2) =
1

1 + exp(u2 − u1)
=

exp(u1)

exp(u1) + exp(u2)
= Pr(X = 1)

8
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Lemma A.2. For any c > 0,

lim
N→∞

(
1− 1

N
c

)N
= lim
ε→0−

(1 + εc)
− 1
ε = e−c

Proof. The first equality follows by the change of variable N = − 1
ε and taking the one-sided limit ε→ 0−. Taking

negative log on both sides of the second equality gives

− log lim
ε→0−

(1 + εc)
− 1
ε = lim

ε→0−

log (1 + εc)

ε
= c (2)

where the first equality holds since log is continuous at (1 + εc)−
1
ε > 0 for all εmin < ε < 0 for some εmin. Define

f(x) = log(1 + xc) and note that

f ′(x) := lim
ε→0

f(x+ ε)− f(x)

ε
= lim
ε→0

log(1 + (x+ ε)c)− log(1 + xc)

ε
⇒ f ′(0) = lim

ε→0

log(1 + εc)

ε

f(x) is uniformly continuous at x = 0 so the one-sided limit is the same as the two-sided limit. Hence the claim (2)
is equivalent to f ′(0) = c. This follows since f ′(x) = c/(1 + xc) by the chain rule on log.
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