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1 Setting

Draw a distribution over k topics w ∈ ∆k−1 from an unknown prior P. Draw a docu-
ment consisting of two paragraphs (x1, x2) ∈ Rn ×Rn from an unknown distribution
Dw over Xw × Xw, where Xw ⊆ Rn is the set of paragraphs that have the topic
distribution w according to some membership function f : Rn → ∆k−1,

Xw := {x ∈ Rn : f(x) = w}

Note that Dw permits arbitrary correlation between paragraphs and feature dimen-
sions (but there will be an additional assumption made on Dw later for a technical
reason). The goal is to learn f given samples from Dw.

2 Approach

Much of the paper assumes that f is linear. There is some V = [v1 . . . vk]> ∈ Rk×n
such that the topic distribution of any paragraph x is given by

f(x) = V x

where fi(x) = v>i x is the probability of the i-th topic in x. The vectors v1 . . . vk are
assumed to be linearly independent.

2.1 Subspace Identification

The plan is to identify span {v1 . . . vk} ⊆ Rn and discover that projecting paragraphs
onto this subspace reveals their latent topics. Since the two paragraphs in a document
(x1, x2) are drawn from the same w, they must satisfy

V x1 = V x2

It follows that span {v1 . . . vk} ⊆ null
{
x1 − x2 : (x1, x2) ∼ Dw

}
, and thus the dimen-

sion of span
{
x1 − x2 : (x1, x2) ∼ Dw

}
is at most n − k. An extra assumption is

imposed on Dw to ensure that the dimension is exactly n − k: for any subspace
Z ⊆ span

{
x1 − x2 : (x1, x2) ∼ Dw

}
with dim (Z) < n − k, there is some chance

ξ > 0 that x1 − x2 will fall outside Z. This gives us

span {v1 . . . vk} = null

{
x1
i − x2

i : i ≤ O
(
n− k
ξ

log
n

δ

)}
with probability at least 1− δ (Lemma A.1) and thus we can estimate the projection
operator onto span {v1 . . . vk}.
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2.2 Convex Hull

Let ∆ ⊂ Rn denote the convex hull of a1 . . . ak ∈ Rn. We claim that if A =
[a1 . . . ak] := V +, then the projection of x ∈ Xw onto span {v1 . . . vk} is in ∆.

Proof. Denote SVD of V as Ũ Σ̃Ṽ >. Then A = Ṽ Σ̃−1Ũ>. Since Ṽ is an orthonormal
basis of span {v1 . . . vk}, the projection operator onto span {v1 . . . vk} is given by AA+.
Thus the projection of any x ∈ Xw onto span {v1 . . . vk} has the form

x|| = AA+x = AV x =

k∑
i=1

(v>i x)ai

The claim follows from the probabilistic structure of v>i x.

To ensure that each vertex ai is eventually included in projected samples, a purity
assumption is added: Pw∼P(w = ei) ≥ ξ > 0 for all i = 1 . . . k. Then a1 . . . ak are
included in m ≥ 1

ξ log k
δ projected samples with probability at least 1− δ.

2.3 Algorithm

Input: S =
{

(x1
i , x

2
i ) ∼ Dw

}m
i=1

where w ∼ P, number of topics k

1. Let X1 := [x1
1 . . . x

1
m] and X2 := [x2

1 . . . x
2
m].

2. Compute the k left singular vectors U ∈ Rn×k of X1−X2 corresponding to
the smallest k singular values.

3. Obtain a convex hull S|| :=
{
UU>xji : i ∈ [m], j ∈ [2]

}
.

4. Compute k vertices A = [a1 . . . ak] ∈ Rn×k of S||.

Output: V = A+

It’s clear that the algorithm succeeds in recovering V with probability at least 1− δ
given O

(
n−k
ξ log n

δ + 1
ξ log k

δ

)
sample documents.

2.4 Problems with This Approach

We assumed that a paragraph x drawn fromDw satisfies w = V x. This is an extremely
unrealistic assumption. Note that we are enforcing two requirements:

1. There is a linear model V returning topic probabilities.

2. There is no noise in samples: every sample paragraph x exactly satisfies w = V x.

The second is relaxed in the next section (to a limited extent) by occassionally allowing
some sampling noise. But the first, which is a much more fundamental issue, is left
unaddressed. It undermines the whole premise of the paper that we are dodging the
need to make simplifying assumptions in modeling the generative process: we are
making enormous simplifying assumptions in modeling the discriminative process.
A linear model is not even required to produce probabilities let alone capture the
discriminative power required to disambiguate topics. A much more realistic choice
of f would be a nonlinear function with a softmax on top.
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3 Approach with Noise

3.1 Sampling Noise

We now assume that instead of receiving pristine samples (x1, x2) ∼ Dw, we receive
(x̂1, x̂2) ∈ Rn × Rn where

(x̂1, x̂2) =

{
(x1, x2) with probability p0

(x1 + e1, x2 + e2) with probability 1− p0

where e1, e2 ∈ Rn are independent draws from N (0, σ2In). Standard concentration
results give us that we can still recover span {v1 . . . vk} even if p0 = 0. Let P be the

projection onto span {v1 . . . vk}, Let P̂ be the estimated projection from m samples
perturbed by N (0, σ2In). Given ε, δ > 0, if m is large enough (Lemma A.2),

P
(∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣

2
≤ ε
)
≥ 1− δ

Denoising. It’s possible to identify noisy samples by the following argument. We

will assume
∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣

2
≤ ε′/(8M) for convenience. Let z ∈ Rn be any point at least

ε′ away from ∆. Consider the probability of a sample paragraph x falling in the
(ε′/2)-ball around z (thus outside ∆) upon projection.

P

(∣∣∣∣∣∣P̂ x− z∣∣∣∣∣∣
2
≤
ε′

2

)
= P

(
x is not noisy ∧

∣∣∣∣∣∣P̂ x− z∣∣∣∣∣∣
2
≤
ε′

2

)
[1]

+P

(
x is noisy ∧

∣∣∣∣∣∣P̂ x− z∣∣∣∣∣∣
2
≤
ε′

2

)
[2]

As for [1], since we then have Px inside ∆,∣∣∣∣∣∣P̂ x− z∣∣∣∣∣∣
2
≥ ||Px− z||2 −

∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣
2
||x||2 >

ε′

2

Thus [1] is zero and the (ε′/2)-ball around z only contains noisy points. As for [2],
since the noise N (0, σ2In) projected onto a k-dimensional subspace by P can be
thought of as N (0, σ2Ik),

P

(
x is noisy ∧

∣∣∣∣∣∣P̂ x− z∣∣∣∣∣∣
2
≤ ε′

2

)
≤ P

(
||Px− z||2 ≤

ε′

2

)
≤ Py∼N (0,σ2Ik)

(
||y||2 ≤

3ε′

2

)
≤ δ ∈

[
exp

(
− k

16

)
, 1

]

for ε′ ≤ (2σ/3)
√
k(1−

√
(16/k) log(1/δ)) (Corollary A.13). Let δ = p0γ/4 where γ

is to be defined later. Then by the correspondence between probability mass and
number of samples for balls (Lemma A.8), given m = Ω( k

p0γ
log 1

δ ) we can claim that

any point that has fewer than mp0γ/2 neighbors within its (ε′/2)-neighborhood is
at least ε′ far from ∆; also, any point (ε′/4) close to ai is has more than mp0γ/2
neighbors within its (ε′/2)-neighborhood by Eq. (1).

Let Ŝ|| denote the set of projected samples after denoising. By the above argument,

given enough samples, with high probability each x|| ∈ Ŝ|| satisfies dist
(
x||,∆

)
≤ ε′.
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3.2 Vertex Noise

We no longer receive samples of pure topics w = ei, but instead assume that

Pw∼P(||w − ei||1 ≤ ε) ≥ g(ε) ∀i ∈ [k]

where g is some polynomial function. This still allows us to guarantee that for each
ai, we receive samples close to it. If x is a non-noisy paragraph,

||Px− ai||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
k∑
j=1

(wj − [ei]j)aj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
k∑
j=1

(wj − [ei]j) ||aj ||2 ≤
ε′

8

with probability at least γ := g( ε′

8αk ) where we assume bounded ||ai|| ≤ α for con-

venience. For
∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣

2
≤ ε′/(8M), we have

∣∣∣∣∣∣P̂ x− ai∣∣∣∣∣∣
2
≤ ε′

4 with probability at

least g( ε′

8αk ). Thus for each i ∈ [k],

P

(∣∣∣∣∣∣P̂ x− ai∣∣∣∣∣∣
2
≤ ε′

4

)
≥ P

(
x is not noisy ∧

∣∣∣∣∣∣P̂ x− ai∣∣∣∣∣∣
2
≤ ε′

4

)
≥ p0γ (1)

We have shown that given enough samples, with high probability each vertex ai has
some âi ∈ Ŝ|| satisfying ||âi − ai||2 ≤ ε′.

3.3 Recovering Approximate Vertices

The final recovery step extracts C ⊂ Ŝ|| such that

• For each i ∈ [k], there is some â ∈ C with ||â− ai|| ≤ ε′.

• For each â ∈ C, there is some i ∈ [k] with ||â− ai|| ≤ ε′.

Then we can trivially recover â1 . . . âk such that ||âi − ai|| ≤ ε′ by clustering C with
threshold ε′ (i.e., put two points in the same cluster iff their distance is at most ε′)
and returning any point from each of the resulting k clusters. For the correctness of
this algorithm, we make a separability assumption: ||ai − aj || ≥ 3ε′.

The key for extracting such C is the result that1

d
(
x||
)

:= dist
(
x||,CH

(
Ŝ||\B6rε′

(
x||
)))

is at least 2ε′ if
∣∣∣∣x|| − ai∣∣∣∣ ≤ ε′ for some i ∈ [k] and less than 2ε′ otherwise. Then we

can easily calculate C =
{
x|| ∈ Ŝ|| : d

(
x||
)
≥ 2ε′

}
.

Proposition 3.1. Let âi ∈ Ŝ|| satisfy ||âi − ai||2 ≤ ε′ for some i ∈ [k]. Then
d(âi) ≥ 2ε′.

Proof.

dist
(
âi,CH

(
Ŝ||\B6rε′ (âi)

))
≥ dist (âi,CH (∆\B5rε′ (âi)))− ε′ ≥ 2ε′

1The constant r is defined to be the smallest value such that dist (ai,CH (∆\Brε′ (ai))) ≥ ε′.
Note that r ≥ 1. The vertices of ∆ are “sharp” if r is small and thus more easily identified.
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The first inequality follows from Lemma A.7. The second inequality follows from the
fact that

dist (âi,CH (∆\B5rε′ (âi))) ≥ dist (ai,CH (∆\B4rε′ (ai)))

≥4ε′

− ||âi − ai||
≤ε′

≥ 3ε′

which can be argued as follows. Let

q = arg min
q̄∈CH(∆\B5rε′ (âi))

||âi − q̄|| t = arg min
t̄∈CH(∆\B4rε′ (ai))

||ai − t̄||

Note that CH (∆\B5rε′ (âi)) ⊆ CH (∆\B4rε′ (ai)) since B4rε′ (ai) ⊆ B5rε′ (âi). Then

dist (âi,CH (∆\B5rε′ (âi))) = ||q − âi|| = ||q − ai − (âi − ai)||
≥ ||q − ai|| − ||âi − ai||
≥ ||t− ai|| − ||âi − ai||
= dist (ai,CH (∆\B4rε′ (ai)))− ||âi − ai||

Proposition 3.2. Let x̂ ∈ Ŝ|| satisfy ||x̂− ai||2 ≥ 8rε′ for all i ∈ [k]. Then d(x̂) ≤
2ε′.

Proof. We know that there is some x =
∑k
i=1 αiai ∈ ∆ such that ||x− x̂|| ≤ ε′, and

that there are âi ∈ Ŝ|| satisfying ||âi − ai||2 ≤ ε′. We argue that x′ :=
∑k
i=1 αiâi

1. Lies inside CH
(
Ŝ||\B6rε′ (x̂)

)
, and

2. Satisfies ||x̂− x′||2 ≤ 2ε′,

which proves the claim. The first property follows because âi are also sufficiently far
away from x̂:

||x̂− âi|| ≥ ||x̂− ai||
≥8rε′

− ||ai − âi||
≤rε′

≥ 6rε′

so that â1 . . . âk ∈ Ŝ||\B6rε′(x̂) and thus

x′ ∈ CH ({â1 . . . âk}) ⊆ CH
(
Ŝ||\B6rε′ (x̂)

)
The second property follows easily because

||x̂− x′||2 ≤ ||x̂− x||2 + ||x− x′||2 ≤ ε
′ +

k∑
i=1

αi ||ai − âi||2 ≤ 2ε′
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3.4 Algorithm

Input: access to noisy samples (x̂1
i , x̂

2
i ) ∼ Dw where w ∼ P, number of topics k,

model parameters r,M , error/confidence parameters ε, δ

1. Set ε′ = ε
8r .

2. Take enough samples Ŝ1 to ensure that the projection operator P̂ estimated

from Ŝ satisfies
∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣ ≤ ε′

8M with probability at least 1− δ
2 .

3. Take enough fresh samples Ŝ2 to ensure that their denoised projections

Ŝ|| =

P̂ x̂ : x̂ ∈ Ŝ2,
∣∣{x ∈ Bε/16r(x̂)

}∣∣ ≥ p0γ
∣∣∣Ŝ2

∣∣∣
2


satisfies

• For all x̂|| ∈ Ŝ||, we have dist(x̂||,∆) ≤ ε′,

• For all i ∈ [k], we have some âi ∈ Ŝ|| such that ||ai − âi|| ≤ ε′,

with probability at least 1− δ
2 .

4. Construct

C =
{
x|| ∈ Ŝ|| : dist

(
x||,CH

(
Ŝ||\B6rε′

(
x||
)))
≥ 2ε′

}
and cluster into k groups with threshold ε. Assign any point in the i-th
group as âi to compute Â = [â1 . . . âk].

Output: V̂ = Â+

We use ε′ = ε
8r so that any cluster in C only contains points at most 8rε′ = ε away

from each other (Proposition 3.2). Thus the algorithm returns â1 . . . âk such that

P (||ai − âi|| ≤ ε ∀i ∈ [k]) ≥ 1− δ
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A Lemmas

Lemma A.1. If m = O
(
n−k
ξ log n

δ

)
then

P(x1
1,x

2
1)...(x1

m,x
2
m)∼Dw

(
dim

(
span

{
x1
i − x2

i

}m
i=1

)
≥ n− k

)
≥ 1− δ

Proof. Define Zj := span
{
x1
i − x2

i : i ≤ j
ξ log n

δ

}
and claim P (dim (Zj) < j) ≤ j δn

for all j = 0 . . . n− k.

P (dim (Zj+1) < j + 1)

≤ P (dim (Zj) < j ∧ dim (Zj+1) < j + 1) + P (dim (Zj) ≥ j ∧ dim (Zj+1) < j + 1)

≤ P (dim (Zj) < j) + P
(

dim (Zj) ≥ j ∧ all 1
ξ log n

δ samples fell in Zj

)
≤ j δ

n
+ (1− ξ)

1
ξ log n

δ ≤ (j + 1)
δ

n

Then P (dim (Zn−k) < n− k) ≤ (n− k) δn < δ.

Lemma A.2.
∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣

2
is close to zero with high probability given large enough m.

Proof. We use Davis-Kahan: for any symmetric B, B̂ ∈ Rn×n with eigendecompo-
sition UΛU> and Û Λ̂Û> (in descending eigenvalues) such that P = U−kU

>
−k and

P̂ = Û−kÛ
>
−k,

∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣
2

λ̂n−k

Let D := X1 −X2 and D̂ := X̂1 − X̂2. We use B = E
[
(x1 − x2)(x1 − x2)

]
and

B̂ =
1

m
D̂D̂> − 2σ2In

Note that we work with the bias-corrected estimate 1
mD̂D̂

>−2σ2In instead of 1
mD̂D̂

>

which is what we actually use to obtain P̂ in the algorithm.2 But this is fine as they
have the same eigenvectors.3 We can then bound the nominator as∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣B̂ − 1

m
DD>

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣ 1

m
DD> −B

∣∣∣∣∣∣∣∣
2

Each term can be bounded, assuming for convenience that paragraphs have a bounded
norm ||x|| ≤ M (Lemma A.3 and A.4). We can lower bound λn−k( 1

mD̂D̂
>) by

2The bias comes from the noise covariance. Write D̂ = D + E so that each column of E is
distributed as N (0, 2σ2In) and (1/m)E

[
EE>] = 2σ2In. Then

E

[
1

m
D̂D̂>

]
= E

[
1

m
DD>

]
+ 2σ2In

3This relies on the fact that the noise is spherical: 2σ2In = 2σ2ÛÛ>.
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observing that

λn−k(B)− λn−k
(

1

m
D̂D̂>

)
≤ λn−k(B)− λn−k

(
1

m
DD>

)
+ λn−k

(
1

m
DD>

)
− λn−k

(
1

m
D̂D̂>

)
≤
∣∣∣∣∣∣∣∣B − 1

m
DD>

∣∣∣∣∣∣∣∣
2

≤ δ04

+

∣∣∣∣∣∣∣∣ 1

m
DD> − 1

m
D̂D̂>

∣∣∣∣∣∣∣∣
2

≤2σ2+
δ0
4

where we use the fact that
∣∣∣λi − λ̂i∣∣∣ ≤ ||E||2. The last terms can be bounded using

results in Lemma A.3 and A.4. This gives us

λn−k

(
1

m
D̂D̂>

)
≥λn−k(B)−

(
2σ2 +

δ0
2

)
≥ 4σ2 +

δ0
2

if we make another assumption that the covariance matrix of x1 − x2 is well condi-
tioned: λn−k(B) ≥ 6σ2 + δ0. We can now claim that given large enough m, with high
probability

∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣
2

λn−k

(
B̂
) ≤ 2ε

2σ2 + δ0
2

≤ ε

δ0

Lemma A.3. P (
∣∣∣∣ 1
mDD

> −B
∣∣∣∣

2
≥ ε) ≤ δ given m = Ω

(
M4+M2ε

ε2 log n
δ

)
samples.

Proof. Let di = x1
i − x2

i denote the i-th column of D and define Si := (did
>
i −B)/m

so that
∑m
i=1 Si = 1

mDD
> − B. Note that E [Si] = 0. Since ||di|| ≤ 2M and thus∣∣∣∣did>i ∣∣∣∣2 = ||di||2 = 4M2,

||Si||2 =

∣∣∣∣did>i −B∣∣∣∣2
m

≤
∣∣∣∣did>i ∣∣∣∣2 + ||B||2

m
≤ 8M2

m
m∑
i=1

∣∣∣∣E [SiS>i ]∣∣∣∣2 ≤ m∑
i=1

E
[∣∣∣∣SiS>i ∣∣∣∣2] ≤ m∑

i=1

E [||Si||2 ||Si||2] ≤ 64M4

m

Matrix Bernstein then gives us

P

(∣∣∣∣∣∣∣∣ 1

m
DD> −B

∣∣∣∣∣∣∣∣
2

≥ ε
)
≤ 2n exp

(
−ε2/2

64M4

m + 8M2ε
3m

)
≤ δ

Ignoring constants and solving for m, we have the result.

Lemma A.4. P
(∣∣∣∣∣∣B̂ − 1

mDD
>
∣∣∣∣∣∣

2
≥ ε
)
≤ δ given enough samples.

Proof sketch. By writing D̂ = D + E, we obtain∣∣∣∣∣∣∣∣B̂ − 1

m
DD>

∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣ 1

m
EE> − 2σ2In

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣ 1

m
DE>

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣ 1

m
ED>

∣∣∣∣∣∣∣∣
2
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The first term is the estimation error of the covariance matrix of N (0, 2σ2In) given m
samples, which can be bounded using the convergence properties of sample covariance
of the Gaussian distribution (Corollary A.6). Each of the remaining two terms can
be bounded using Matrix Bernstein. For instance, consider Z = 1

mDE
>. Let Si =

1
mdie

>
i where di = x1

i − x2
i and ei ∼ N (0, 2σ2In). Note that Z =

∑m
i=1 Si and

E [Si] = 1
mE [di]E [ei]

>
= 0. Also,

||Si||2 =
||di|| ||ei||

m
≤ 2Mσ

√
n log(m/δ)

m
=: L

for all i ∈ [m] with probability at least 1− δ. We used the fact that ||di|| ≤ 2M and
||ei|| ≥ σ

√
n log(1/δ) with probability at most δ (Lemma A.10). The matrix variance

statistic of Z is bounded as

v(Z) :=

m∑
i=1

∣∣∣∣E [SiS>i ]∣∣∣∣ ≤ m∑
i=1

E
[
||Si||2

]
≤ 4M2σ2n(log(m/δ))2

m

Putting together, we obtain P (||Z||2 ≥ ε) ≤ δ by solving for m that satisfies

2n exp

(
−ε2/2

v(Z) + Lε/3

)
≈ n exp

(
−ε2m
c2 + cε

)
≤ δ

where c := Mσ
√
n log(m/δ). Assuming that m is sufficiently large and ε small, we

only consider the dominating terms to have

n exp

(
−ε2m
c2

)
≤ δ ⇐⇒ m ≥ 1

ε2
M2σn log

n

δ

(
log

m

δ

)2

We can use m = nk (thus logm = k log n) for some k since k log n = o(nk). Using
this, we can simplify this expression to have

m = Ω

(
M2σn polylognδ

ε2

)

Lemma A.5. Let E ∈ Rn×m where each column is drawn from N (0, In) indepen-
dently. For any ε ∈ [ nm + 2

√
n
m , 1) and δ ∈ (0, 1), given

m = Ω

n+ log 1
δ +

√
n log 1

δ

ε2


samples, we have P

(∣∣∣∣ 1
mEE

> − In
∣∣∣∣ ≥ ε) ≤ δ.

Proof. The claim is equivalent to

P

(
σ2

1

m
≥ ε+ 1

)
≤ δ

where σ1 is the maximum singular value of E. We use Theorem B.3 with t =√
(1 + ε)m−

√
m−

√
n ≥ 0 to obtain

P

(
σ2

1

m
≥ ε+ 1

)
≤ 2 exp

(
− t

2

2

)
≤ δ
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The value of m must satisfy

m ≥

√n+
√

2 log 2
δ√

1 + ε− 1

2

Use the fact that
√

1 + ε ≥ 1 + ε
2 −

ε2

4 for all ε ∈ [0,∞) to instead require m to satisfy

m ≥

√n+
√

2 log 2
δ

ε
2 −

ε2

4

2

=
16n+ 32 log 2

δ + 16
√

8n log 2
δ

ε2 − 4ε3 + ε4

Since ε < 1, the claim follows.

Corollary A.6. Let E ∈ Rn×m where each column is drawn from N (0, 2σ2In) inde-

pendently. For any ε ∈ [ 2σ2n
m + 4

√
σn
m , 2σ2) and δ ∈ (0, 1), given

m = Ω

σ4n+ σ4 log 1
δ +

√
σ2n log 1

δ

ε2


samples, we have P

(∣∣∣∣ 1
mEE

> − In
∣∣∣∣ ≥ ε) ≤ δ.

Lemma A.7. If x̂ ∈ CH
(
Ŝ||\Bδ+rε′ (âi)

)
, then there is some x ∈ CH (∆\Bδ (âi))

such that ||x̂− x|| ≤ ε′.

Proof. Express x̂ =
∑l
i=1 αiẑi where ẑi are vertices in CH

(
Ŝ||\Bδ+rε′ (âi)

)
. We

know that there exists zi ∈ ∆ such that ||zi − ẑi|| ≤ ε′ ≤ rε′. Thus they cannot be in

Bδ (âi), and we can let x =
∑l
i=1 αizi. Moreover,

||x̂− x|| ≤
l∑
i=1

αi ||zi − ẑi|| ≤ ε′

Lemma A.8 (Claim 4.10 in B&H). Let D be any distribution over Rk. Let x1 . . . xm ∼
D independently. Then m = O( kγ log 1

δ ) is sufficient so that for any ball B ⊆ Rk,

• If P (x ∈ B) ≥ 2γ, the number of samples inside B is greater than γm,

• If P (x ∈ B) ≤ γ/2, the number of samples inside B is smaller than γm,

with probability at least 1− δ.

Lemma A.9 (Large deviation). For x ∼ N (0, In),

P

(
||x||2 ≥

√
n+ 3 log

1

δ

)
≤ δ ∀δ ∈ (0, 1]

P

(
||x||2 ≤

√
n− 3 log

1

δ

)
≤ δ ∀δ ∈ (e−n/3, 1]

10



Proof. For all B ≥
√
n,

P
(
||x||22 ≥ B

2
)
≤ P

(
eλ||x||

2
2 ≥ eλB

2
)

∀λ ∈ R

≤
n∏
i=1

Exi∼N (0,1)

[
eλx

2
i

]
e−λB

2

Markov and independence

= (1− 2λ)−n/2e−λB
2

∀λ ∈ [0, 1/2)

≤ e
n−B2

3 by choosing λ = 1
3

which is at most δ if B2 ≥ n+ 3 log 1
δ . Thus

P

(
||x||22 ≥ n+ 3 log

1

δ

)
= P

(
||x||2 ≥

√
n+ 3 log

1

δ

)
≤ δ

The other side can be similarly shown to be

P

(
||x||22 ≤ n− 3 log

1

δ

)
= P

(
||x||2 ≤

√
n− 3 log

1

δ

)
≤ δ

provided that 3 log 1
δ ≤ n.

Corollary A.10 (Large deviation). For x ∼ N (0, σ2In),

P

(
||x||2 ≥ σ

√
n log

1

δ

)
≤ δ ∀δ ∈ (0, e−1]

Proof.

P

(
||x||2 ≥ σ

√
n log

1

δ

)
≤ P

(
||x||2 ≥ σ

√
n log

1

δ

)

= P

(
||z||2 ≥

√
n log

1

δ

)
z ∼ N (0, In)

≤ P

(
||z||2 ≥

√
n+ 2 log

1

δ

)
∀δ ≤ e−1

The claim follows from Lemma A.9.

Lemma A.11 (Small deviation). For x ∼ N (0, In) and ε ∈ [0, 1],

P
(
||x||2 ≥

√
(1 + ε)n

)
≤ exp

(
−
(
ε2

2
+
ε3

2

)
n

2

)
P
(
||x||2 ≤

√
(1− ε)n

)
≤ exp

(
−
(
ε2

2
+
ε3

2

)
n

2

)
Proof. Use the Chernoff trick in Lemma A.9 to obtain

P
(
||x||22 ≥ (1 + ε)n

)
≤ (1− 2λ)−n/2 exp(−λn(1 + ε)) ∀λ < 1

2

11



We can easily get the bound exp(−εn/3) here by using λ = 1/3. But to obtain a
tighter bound,(

exp(−2λ(1 + ε))

1− 2λ

)n/2
≤
(
(1 + ε)e−ε

)n/2
using λ =

ε

2(1 + ε)

≤
(

(1 + ε)

(
1− ε+

ε2

2

))n/2
using e−x ≤ 1− x+

x2

2

≤ exp

(
−
(
ε2

2
+
ε3

2

)
n

2

)
The other side is similar.

Corollary A.12 (Small deviation). For x ∼ N (0, σ2In) and ε ∈ [0, 1],

P
(
||x||2 ≤ σ

√
(1− ε)n

)
≤ exp

(
−nε

2

16

)
Proof. This follows from Lemma A.11 since

P
(
||x||2 ≤ σ

√
(1− ε)n

)
= Pz∼N (0,In)

(
||z||2 ≤

√
(1− ε)n

)
≤ exp

(
−
(
ε2

2
+
ε3

2

)
n

2

)
≤ exp

(
−nε

2

16

)

Corollary A.13 (Small deviation). For x ∼ N (0, σ2In) and δ ∈ [exp(−k/16), 1],

P

||x||2 ≤ σ
√√√√(1−

√
16

k
log

1

δ

)
n

 ≤ δ
B Tools for Spectral Analysis

Theorem B.1 (Davis-Kahan). Let B, B̂ ∈ Rn×n be symmetric with eigendecomposi-

tion B = UΛU> and B̂ = Û Λ̂Û> where Λ = diag(λ1 ≥ . . . ≥ λn) and Λ̂ = diag(λ̂1 ≥
. . . ≥ λ̂n). For any 1 ≤ i ≤ j ≤ n,

∣∣∣∣∣∣Ui:jU>i:j − Ûi:jÛ>i:j∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣
2

inf
{∣∣∣λ̂− λ∣∣∣ : λ ∈ [λj , λi], λ̂ ∈ (−∞, λ̂j+1] ∪ [λ̂i−1,∞)

}
In particular, suppose B has rank n−k, thus λn−k+1 = · · · = λn = 0. Assume that B̂
has rank at least n− k, thus λ̂n−k > 0. Denote the projection onto range(Un−k+1:n)

by P and range(Ûn−k+1:n) by P̂ . Then

∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣
2

λ̂n−k
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Theorem B.2 (Matrix Bernstein). Let Z =
∑m
i=1 Si where all Si ∈ Rd1×d2 are

independent, E [Si] = 0, and ||Si||2 ≤ L. Then for all ε ≥ 0,

P (||Z||2 ≥ ε) ≤ (d1 + d2) exp

(
−ε2/2

v(Z) + Lε/3

)
where v(Z) is the matrix variance statistic of Z (Tropp, 2015):

v(Z) := max
{∣∣∣∣E [ZZ>]∣∣∣∣ , ∣∣∣∣E [Z>Z]∣∣∣∣}

= max

{
m∑
i=1

∣∣∣∣E [SiS>i ]∣∣∣∣ , m∑
i=1

∣∣∣∣E [S>i Si]∣∣∣∣
}

by independence & centeredness

Theorem B.3 (Corollary 5.35, Vershynin (2010)). Let A ∈ RN×n where Ai,j ∼
N (0, 1) independently. Denote the largest and smallest singular values of A by smax(A)
and smin(A). Then for every t ≥ 0, with probability at least 1− 2 exp(−t2/2),

√
N −

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ t
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