Generalized Birthday Paradox

Karl Stratos

Consider any discrete set \(X \) and any distribution \(P \) over \(X \). For any subset \(X \subseteq X \) and any iid samples \(S \sim P^N \), write Pure\(_X(S) \) to denote the event that \(S \) contains no duplicates of elements from \(X \).

Impurity statement. Suppose \(\min_{x \in X} P(x) \geq 1/M \). Then given any \(\delta \in (0, 1) \), if

\[
N \geq \sqrt{2M \ln(1/\delta)} + 1
\]

we have \(\Pr_{S \sim P^N} (\neg \text{Pure}_X(S)) \geq 1 - \delta \).

Application. If people’s birthdays are uniformly random on \(M = 365 \) days, then there is a birthday collision among \(N = 24 \) random people with \(\geq 50\% \) chance.

Purity statement. Suppose \(\max_{x \in X} P(x) \leq 1/M \). Then given any \(\delta \in (0, 1) \), if

\[
N \leq \min\left\{ 0.01M, 1.4\sqrt{M \ln(1/(1-\delta))} \right\}
\]

we have \(\Pr_{S \sim P^N} (\text{Pure}_X(S)) \geq 1 - \delta \).

Remark. Note the first requirement forces that \(N \ll M \) and the statement is not very useful when \(M \) is too small (e.g., in the birthday problem above, we can only say weak statements like: there is no birthday collision among 3 random people with \(\geq 50\% \) chance). The requirements on \(N \) can be equivalently written as a requirement on \(M \):

\[
M \geq \max\left\{ 100N, \frac{0.505}{\ln(1/(1-\delta))}N^2 \right\}
\]

*Application.** Once we sort the elements of \(X \) in decreasing probabilities so that

\[
P(x_1) \geq P(x_2) \geq \cdots
\]

then the largest possible value for \(P(x_M) \) is \(1/M \), thus we have \(P(x_i) \leq 1/M \) for all \(i > M \). This means in \(N \) samples with probability at least \(1 - \delta \) we have no duplicates of \(x_i \) where \(i > \max\{100N, 0.505/\ln(1/(1-\delta))N^2\} \).

Related lemma (outlier risk). In any \(N \geq 2 \) iid samples, with probability at least \(1/4 \) we fail to observe a phenomenon which occurs with probability \(1/N \).

Application. For any \(F : X \to [0, F_{\max}] \), an estimate of \(\mathbb{E}_{x \sim Q} \left[e^{F(x)} \right] \) based on \(N \geq 2 \) samples can never guarantee that it is less than \((1/N)e^{F_{\max}} \) with high confidence, since with probability at least \(1/4 \) there exists \(x \in X \) such that \(Q(x) = 1/N \) and \(F(x) = F_{\max} \).
A Proofs

By the independence of samples,

\[
\Pr_{S \sim P_N} (\text{Pure}_X(S)) = \prod_{i=2}^{N} \Pr (\forall j = 1 \ldots i-1: x_i \not\in X \lor x_j \not\in X \lor x_i \neq x_j)
\]

\[
= \prod_{i=2}^{N} \left(1 - \sum_{j=1}^{i-1} \Pr (x_i, x_j \in X \land x_i = x_j) \right)
\]

Proof of the impurity statement. Follows by solving for \(N \) in

\[
\Pr_{S \sim P_N} (\text{Pure}_X(S)) = \prod_{i=2}^{N} \left(1 - \sum_{j=1}^{i-1} P(x_j) \right) \leq \prod_{i=2}^{N} \left(1 - \frac{i-1}{M} \right) \leq \exp \left(-\frac{N(N-1)}{2M} \right) \leq \delta
\]

Proof of the purity statement. First note that

\[
\Pr (x_i, x_j \in X \land x_i = x_j) \leq \Pr (x_i = x_j | x_i, x_j \in X) = \Pr (x_j | x_j \in X) \leq \frac{1}{M}
\]

Using the fact that \(1 - x \geq e^{-0.01x} \) for \(x \in [0,0.01] \),

\[
\Pr_{S \sim P_N} (\text{Pure}_X(S)) \geq \prod_{i=2}^{N} \left(1 - \frac{i-1}{M} \right) \geq \exp \left(-\frac{0.505N^2}{M} \right)
\]

Solving this for \(1 - \delta \) yields the result.

Proof of the outlier risk lemma. This probability is \((1 - 1/N)^N\) which is at least \(1/4\) for all \(N \geq 2 \).