
Multi-Armed Bandits

Karl Stratos

1 Problem

MDP. The action space is A = {1 . . .K} for some fixed K (“arms”). The state space S = ({1 . . .K}×{0, 1})+ is
used to keep track of past actions and rewards, with a deterministic Markov transition st = st−1 ∪ (at, rt) starting
from s0 = ∅. The reward function r ∼ Da is stochastic, non-adversarial, and only a function of the choice of an
arm a ∈ {1 . . .K}, disregarding the state. Here, Da is some unknown distribution over [0, 1] with mean µa. We
will denote the best arm by a⋆ = argmaxKk=1 µk associated with the reward distribution D⋆ = Da⋆ and the mean
reward µ⋆ = µa⋆ .

Policy. The policy is an algorithm, not a parameteric model. For t = 1 . . . T , the algorithm specifies a conditional
distribution π(·|st−1) over the K arms given st−1 = (a1, r1) . . . (at−1, rt−1), samples at ∼ π(·|st−1), and receives

rt ∼ Dat . The badness of this session is measured by the “regret” R =
∑T

t=1 r⋆t − rt where r⋆t ∼ D⋆. The goal of
the algorithm is to minimize the expected regret:1

E [R] =

T∑
t=1

E [µ⋆ − µat
] ≥ 0 (1)

We assume T ≥ K, but T is generally unknown to the algorithm. We are mostly interested in bounding (1) as an
asymptotic function of T (and K, less importantly). A meaningful bound must be sublinear in T , since linear is
trivial (e.g., always choose at = 1). On the other hand, the bound cannot be smaller than Ω(

√
KT) (Appendix A).

If we know the best arm a⋆, we can achieve E [R] = 0 by always choosing at = a⋆. But since we do not know a⋆,
we need to explore unknown arms. This is the exploration-exploitation tradeoff.

1.1 Reward Estimation

The algorithm maintains a running estimate of µa at step t by averaging the Na,t samples ra,1 . . . ra,Na,t
from Da

collected so far,

µ̂a,t =
1

Na,t

Na,t∑
i=1

ra,i (2)

Note that Na,t is a random variable. Without conditioning on the choice of arms, ra,i may not even be independent
(e.g., the algorithm may sample from arm a only if its previous rewards never fell below 0.1). This makes a naive
application of Hoeffding’s inequality difficult. A straightforward solution is to consider all possible cases ahead in
a “grid” (Slivkins et al., 2019).

Lemma 1.1. Pick any algorithm for sampling a1 . . . aT . The mean estimates (2) satisfy

Pr

(
|µa − µ̂a,t| <

√
2 log T

Na,t
for all a ∈ {1 . . .K} and t ∈ {1 . . . T}

)
> 1− 2

T 2
(3)

Proof. Let G ∈ RK×T be a random grid where G(a, i) ∼ Da independently. Let ν̂a,i denote the average of
G(a, 1) . . . G(a, i). By Hoeffding’s inequality,

Pr

(
|µa − ν̂a,i| ≥

√
2 log T

i

)
≤ 2

T 4

1This is equivalent to maximizing the (finite-horizon) value function with no discount factor.

Then by the union bound,

Pr

(
|µa − ν̂a,i| <

√
2 log T

i
for all a ∈ {1 . . .K} and i ∈ {1 . . . T}

)
> 1− 2

T 2
(4)

Now we view the grid G as having “precomputed” all samples and the algorithm as retrieving ra,i = Ga,i upon
selecting the arm a for the i-th time. At any step t, the estimate (2) for a corresponds to ν̂a,i for i = Na,t. Thus
(4) implies (3).

1.2 Regret Decomposition

Lemma 1.2. The expected regret (1) has the same asymptotic bound when conditioned on the “clean event”

|µa − µ̂a,t| <

√
2 log T

Na,t
= ρa,t ∀a ∈ {1 . . .K} , t ∈ {1 . . . T} (5)

(i.e., every µ̂a,t captures µa in a confidence interval of radius ρa,t).

Proof. Let E ∈ {0, 1} be 1 if the clean event happens and 0 otherwise. Lemma 1.1 gives us Pr(E = 0) ≤ 2
T 2 . Thus

E [R] = Pr(E = 1)E [R|E = 1] + Pr(E = 0)E [R|E = 0]

≤ E [R|E = 1] +
2

T 2
O(T)

≡ E [R|E = 1]

where ≡ denotes equivalence as asymptotic functions of T .

2 Algorithms

2.1 Greedy

1. Pull each of the K arms N times. Let â denote the arm that has the highest reward estimate.

2. For t = KN + 1 . . . T , pull at = â.

If N is not a function of T , the greedy algorithm clearly incurs a linear regret since the probability of â ̸= a⋆ is
nonzero no matter how large N is. Intuitively, the algorithm is “bad” because it stops exploring after the first KN
steps. If we use the knowledge of T , we can achieve the following sublinear bound.

Lemma 2.1. The greedy algorithm has a regret bound of O(T 2/3(K log T)1/3) for N =
⌊
(T/K)2/3(log T)1/3

⌋
.

Proof. We condition on the clean event (5) without loss of generality. In this case, every arm has the same confidence

radius ρ =
√

2 log T
N after the first KN steps. Suppose â ̸= a⋆. Then

µ̂a⋆ ≤ µ̂â =⇒ µ⋆ − ρ < µâ + ρ

=⇒ µ⋆ − µâ < 2ρ

Thus

E [R|E = 1] ≤ KN + (T −KN)E [µ⋆ − µâ] ≤ KN + 2Tρ = KN + 2αN−1/2

where α = T
√
2 log T . The function f(N) = KN + 2αN−1/2 is convex and minimized by N⋆ = K−2/3α2/3 at

f(N⋆) = 3K1/3α2/3. This implies the statement.

2.2 UCB

For t = 1 . . . T , pull at = argmaxK
a=1 µ̂a,t +

√
2 log T

Na,t︸ ︷︷ ︸
ρa,t

.

Unlike the greedy algorithm, the UCB algorithm adaptively controls the exploration-exploitation tradeoff by using
the upper confidence bound µ̂a,t + ρa,t as the selection criterion. Eventually all confidence intervals will shrink to
point estimates and the UCB algorithm will only exploit. The UCB algorithm is “optimistic” because it assumes
the best possible reward for any estimate. Intuitively, this optimism encourages exploring less explored arms (i.e.,
when Na,t is small, the algorithm recommends selecting a).

Lemma 2.2. The UCB algorithm has a regret bound of O(
√
KT log T).

Proof. Again, we condition on the clean event (5) without loss of generality. Let a be any arm such that µa < µ⋆

and suppose we picked a at some step t. It must be the case that

µ̂a⋆ + ρa⋆,t ≤ µ̂a + ρa,t

=⇒ µ⋆ ≤ µa + 2ρa,t (since µ⋆ ≤ µ̂a⋆ + ρa⋆,t and µa ≥ µ̂a − ρa,t)

=⇒ µ⋆ − µa ≤ 2ρa,t =

√
8 log T

Na,t
(6)

Thus the regret caused by a up to step t is at most

Ra,t = Na,t(µ
⋆ − µa) ≤

√
8Na,t log T (7)

The regret up to step t is then at most

Rt =

K∑
a=1

Ra,t ≤
√
8 log T

(
K∑

a=1

√
Na,t

)

≤
√
8K log T

√√√√ K∑
a=1

Na,t

(
Jensen’s inequality:

1

K

∑
k

√
xk ≤

√
1

K

∑
k

xk

)

=
√
8Kt log T

(
using

K∑
a=1

Na,t = t

)

In particular, E[R] = O(
√
KT log T).

Interestingly, the optimism in UCB seems necessary. Consider the “LCB algorithm” which assumes the worst
possible reward and selects at = argmaxKa=1 µ̂a,t−ρa,t. Its pessimism discourages exploring less explored arms (and
encourages exploiting more explored arms). Taking similar analytic steps, we can bound µ⋆ − µa ≤ 2ρa⋆,t only as
a function of the best arm, which prevents us from deriving an arm-wise regret bound like (7).

While the exact formula in the UCB algorithm is not essential in practice, the general idea of exploring action a
which has been chosen Ns,a times at state s by considering a term ∝ 1

Ns,a
is useful. For instance, in Monte Carlo

Tree Search (Appendix C), we aim to improve upon a raw policy πθ(·|s) by performing a few rounds of UCB-style
exploration (31), then picking the most frequently selected action.

2.2.1 Instance-specific regret upper bound

Lemma 2.3. The UCB algorithm has a regret bound of O(CI log T), where CI is an instance-specific constant.

Proof. Following the same steps to (6), conditioning on the clean event, if the UCB algorithm picks a suboptimal
arm a at step t, we must have

Na,t ≤
8 log T

(µ⋆ − µa)2

(i.e., the suboptimal arm must have been chosen “not that many times”). Thus

Ra,t = Na,t(µ
⋆ − µa) ≤

8 log T

µ⋆ − µa

and

Rt =

K∑
a=1

Ra,t ≤

(
K∑

a=1

8

µ⋆ − µa

)
︸ ︷︷ ︸

CI

log T

Theorem A.1 implies that the UCB algorithm is asymptotically optimal (for problem instances with µ⋆ ∈ (0, 1)).

2.3 Thompson Sampling

Thompson sampling derives the policy π(·|st−1) by Bayesian principles. First, it assumes a known reward distribu-
tional form Da = Known(µa), where the only unknown is the mean parameter µa ∈ [0, 1] (e.g., Da = Ber(µa) with
binary rewards), for each arm a. Thus a bandit environment is completely specified by the mean vector µ ∈ [0, 1]K .
Next, at each step t with history st−1, it assumes a posterior distribution qa(·|st−1) over the arm a’s mean parameter

µ
(t)
a ∈ [0, 1].2 We define the policy as the associated distribution over the best arm, specifically

π(a|st−1) = Pr
µ
(t)
a ∼qa(·|st−1) ∀a

(
a =

K
argmax

a=1
µ(t)
a

)
After sampling at ∼ π(·|st−1) and receiving rt ∼ Dat

, we update the posterior distribution for at by the Bayes rule:

qat
(µ′|st) ∝ qat

(µ′|st−1)×Known(µ′
at
)(rt) (8)

By definition, Thompson sampling samples from the best arm distribution, which leads to favorable regret analysis
(e.g., it admits a tight regret upper bound in certain settings). We omit regret analysis, but give an instantiation
of Thompson sampling with (1) a Bernoulli reward distribution Da = Ber(µa), and (2) a beta poterior qa(·|st−1) =
Beta(αa, βa) where αa, βa > 0. In this setting, (8) is given in closed form by the conjugacy of the beta-binomial
distribution:

Beta(α+ rt, β + (1− rt))(µ
′) ∝ Beta(α, β)(µ′)× Ber(µ′

at
)(rt)

(i.e., just keep track of the number of heads vs tails in each arm). Starting with αa = βa = 1 yields the uniform
prior qa(·|s0) = Unif [0,1]. The resulting algorithm is given below:

1. Start from the uniform prior: α← 1K , β ← 1K

2. For t = 1 . . . T ,

(a) Posterior sampling: µ
(t)
a ∼ Beta(αa, βa) for a = 1 . . .K

(b) Pull at ← argmaxK
a=1 µ

(t)
a and receive rt ∈ {0, 1} from Ber(µat) (µat unknown).

(c) Update the posterior: αat ← αat + rt, βat ← βat + (1− rt).

We can consider other conjugate distributions (e.g., Gaussian). If conjugacy is not an option, there are many
methods for approximate Bayesian inference (e.g., Gibbs sampling, gradient-based Langevin Monte Carlo).

References

Shaw, P., Joshi, M., Cohan, J., Berant, J., Pasupat, P., Hu, H., Khandelwal, U., Lee, K., and Toutanova, K.
(2023). From pixels to ui actions: Learning to follow instructions via graphical user interfaces. arXiv preprint
arXiv:2306.00245 .

Slivkins, A. et al. (2019). Introduction to multi-armed bandits. Foundations and Trends® in Machine Learning ,
12(1-2), 1–286.
2For simplicity, we use independent arms for the posterior (“mean field approximation”), instead of a joint posterior q(·|st−1) over

(µ
(t)
1 . . . µ

(t)
K) ∈ [0, 1]K . In this formulation, qa(·|st−1) only needs to use samples of arm a in the history st−1.

A Lower Bounds

We assume binary rewards (i.e., Da is a Bernoulli distribution), which is sufficient for the purpose of lower bounds.

A.1 K = 2

For any ϵ ∈ (0, 1
2) we may construct an adversarial environment by

µa⋆∼Unif{1,2} =
1 + ϵ

2
µa̸=a⋆ =

1

2
(9)

In this case, if T < 1
16ϵ2 , then Pr(at ̸= a⋆) > 1

8 for all t = 1 . . . T (Section A.1.1). Thus

E [R] >

T∑
t=1

(
1

8

)(ϵ
2

)
=

ϵT

16

Given any T , we can choose ϵ = 1
5
√
T

and construct (9). This choice satisfies T < 1
16ϵ2 , thus E [R] >

√
T

80 .

A.1.1 Risk analysis

Let G ∈ {0, 1}2×T
denote the “reward situation”. Any bandit algorithm can be seen as first sampling the entire G

from the environment, then looking up Ga,i ∈ {0, 1} as the reward of pulling arm a for the i-th time. The sampling
process for G is: for each a ∈ {1, 2} independently, draw Ga,1 . . . Ga,T ∼ Da independently. For the ϵ-adversarial
environment in (9), there are only two possible distributions over G corresponding to a⋆ = 1 vs a⋆ = 2. For a
deterministic algorithm (i.e., conditioned on the past reward information, the current arm selection is a point-mass
distribution), a particular reward situation G = g fully determines the choice of the arm at ∈ {1, 2} at any step t.3

Thus at is random only with respect to the choice of G, in particular

Pr (at = 1) =
∑

g∈{0,1}2×T : at=1

Pr (G = g)

(i.e., at = 1 is a measurable event under a distribution over G). This allows us to use the following flurry of logic:

2 (Pr(at = 1|a⋆ = 1)− Pr(at = 1|a⋆ = 2))
2

≤ KL (Pr(G|a⋆ = 1),Pr(G|a⋆ = 2)) (10)

=
∑

a∈{1,2}

T∑
t=1

KL (Pr(Ga,t|a⋆ = 1),Pr(Ga,t|a⋆ = 2)) (11)

= T ×KL

(
Ber

(
1 + ϵ

2

)
,Ber

(
1

2

))
+ T ×KL

(
Ber

(
1

2

)
,Ber

(
1 + ϵ

2

))
(12)

≤ 3ϵ2T (13)

where (10) is Pinsker’s inequality, (11) is by the iid assumption on rewards, (12) is by the definition of the environ-
ment, and (13) is by the property of KL divergence between Bernoulli distributions (Lemma B.1). All this work is
driven to obtain the bound

|Pr(at = 1|a⋆ = 1)− Pr(at = 1|a⋆ = 2)| ≤ 2ϵ
√
T <

1

2
(14)

where the last inequality follows with the (retrospective) premise that T < 1
16ϵ2 . Now suppose there exists an

algorithm with the property that

Pr(at = a|a⋆ = a) >
3

4
∀a ∈ {1, 2} (15)

3The proof is by strong induction. When t = 1, there is no past reward and the claim holds by definition. When t > 1, assume that
the claim holds for all t′ < t. This means a1 . . . at−1 are fixed. Thus, conditioned on a particular G = g, the corresponding rewards
r1 . . . rt−1 are fixed where rt′ = gat′ ,t

′ . By definition, the deterministic algorithm predicts some at with probability 1.

https://en.wikipedia.org/wiki/Pinsker%27s_inequality

But it implies Pr(at = 1|a⋆ = 1) − Pr(at = 1|a⋆ = 2) > 1
2 , contradicting (14). Therefore, for any algorithm, there

is some arm atricky ∈ {1, 2} such that

Pr(at = atricky|a⋆ = atricky) ≤
3

4

This allows us to make the main conclusion: for any step t ≤ T < 1
16ϵ2 ,

Pr(at ̸= a⋆) ≥ Pr(a⋆ = atricky)︸ ︷︷ ︸
= 1

2

×Pr(at ̸= atricky|a⋆ = atricky)︸ ︷︷ ︸
> 1

4

>
1

8
(16)

Finally, the whole argument assumes only deterministic bandit algorithms (e.g., greedy and UCB, with ties broken
by some deterministic procedure). However, the main conclusion also applies to stochastic algorithms because a
stochastic algorithm can be expressed as an expectation over determinstic algorithms Dt. Formally, suppose there
is some stochastic algorithm that achieves Pr(at ̸= a⋆) ≤ 1

8 . Since Pr(at ̸= a⋆) = EDt[Pr(at ̸= a⋆|Dt)], there must
be some deterministic algorithm Dt = dt such that Pr(at ̸= a⋆|Dt = dt) ≤ 1

8 , contradicting (16).

A.2 General K

The case with K = 2 arms (Section A.1) already proves that no bandit algorithm can obtain sub-Ω(
√
T) expected

regret for all environments. We can improve the bound by incorporating K. The proof has a similar spirit but is
substantially more subtle. Fix any bandit algorithm. For ϵ ∈ (0, 1

2) we construct an adversarial environment by

µa⋆∼Unif{1,...,K} =
1 + ϵ

2
µa =

1

2
∀a ̸= a⋆ (17)

We will also need to consider the following “no-winner” environment

µa =
1

2
∀a ∈ {1 . . .K} (18)

For clarity, we will write

• P0 to denote the distribution under the no-winner environment (18)

• Pa to denote the distribution under the adversarial environment (17) with a⋆ = a

The high-level argument goes: at any step t, some arms are “neglected” under P0 by inherent classification risks.4

But Pa is difficult to distinguish from P0.
5 Therefore, if a⋆ = a is one of the neglected arms in P0, it will be

neglected in Pa as well. But this means the algorithm is suboptimal.

A.2.1 Risk analysis: naive version

Pick any t. Assuming K ≥ 12, by Lemma B.3 at least 66% of the arms A0 ⊂ {1 . . .K} satisfy

P0(at = a0) <
1

4
∀a0 ∈ A0 (19)

Fix any a0 ∈ A0. Let G ∈ {0, 1}K×T
denote the reward situation with Ga,t ∼ Da independently. Since the event

at = a0 is measurable under any distribution over G with a (WLOG) deterministic algorithm (see A.1.1 for a recap),
we can use Pinsker’s inequality to argue

2 (Pa0
(at = a0)− P0(at = a0))

2 ≤ KL (Pa0
(G), P0(G))

=

K∑
a=1

T∑
t=1

KL (Pa0
(Ga,t), P0(Ga,t))

=

T∑
t=1

KL (Pa0(Ga0,t), P0(Ga0,t)) (20)

≤ 2ϵ2T (21)

4Here, we are not using any special properties of P0 to impose the classification risks. Any distribution is subject to the risks.
5Note that we have to go through P0 to apply classification risks, since Pa is conditioned on some particular arm a which may not

be at risk.

where (20) and (21) crucially exploit the definition of Pa0 and P0 (and Lemma B.1). Thus |Pa0(at = a0)− P0(at = a0)| ≤
ϵ
√
T , which implies if T ≤ 1

16ϵ2 :

Pa0
(at = a0) ≤ P0(at = a0) +

1

4

≤ 1

2
(by the choice of a0 ∈ A0, see (19))

By construction, the optimal arm a⋆ in the adversarial environment is chosen uniformly at random, thus Pr(a⋆ ∈
A0) ≥ 2

3 . Thus if K ≥ 12 and T ≤ 1
16ϵ2 , for any t ≤ T , the algorithm satisfies

Pr(at ̸= a⋆) ≥ Pr(a⋆ = a0)︸ ︷︷ ︸
≥ 2

3

×Pa0
(at ̸= a0)︸ ︷︷ ︸
> 1

2

>
1

3

where a0 is any neglected arm in A0. Then

E [R] >

T∑
t=1

(
1

3

)(ϵ
2

)
=

ϵT

6

Given T , choose ϵ = 1
5
√
T
. This choice satisfies T < 1

16ϵ2 , thus E [R] >
√
T

30 under the environment (17).

A.2.2 Risk analysis: improved version

The naive argument only yields a Ω(
√
T) regret lower bound. To introduce a dependence on K, we must avoid

considering all T samples for the neglected arm a0 in (20). Achieving this requires an artificial surgery of the sample
space and strengthening the notion of neglection. Define a restricted sample space

Ω⋆ = {0, 1}T × · · · × {0, 1}m︸ ︷︷ ︸
(j-th space)

× · · · × {0, 1}T

where j ∈ {1 . . .K} is the budget arm and m ∈ [1, T] is the budget.6 For any full reward distribution P over

G ∈ {0, 1}K×T
(e.g., Pa or P0), we define an associated restricted distribution P ⋆ over G⋆ ∈ Ω⋆ by the independent

sampling process

G⋆
j,1 . . . G

⋆
j,m

iid∼ Dj G⋆
a,1 . . . G

⋆
a,T

iid∼ Da ∀a ̸= j

where D1 . . . DK are given by P . Here is the central trick: if O is any measurable event under P whose outcome is
completely determined by m samples of arm j and T samples of each a ̸= j (henceforth budget event), then

P (O = o) =
∑

g∈{0,1}K×T : O=o

Pr (G = g)

and

P ⋆(O = o) =
∑

g∈Ω⋆: O=o

Pr (G⋆ = g)

are the same. In the latter version, we simply change the perspective on the event and “precompute” the iid rewards
more economically for the budget arm since we do not need more than m samples from it (i.e., it does not affect
viewing the algorithm as retrieving G⋆

a,t upon selecting the arm a for the t-th time). Consequently, for any budget
event O we can follow similar steps as before and provide the budget bound (for any choice of a⋆ = a)

2 (P ⋆
a (O = o)− P ⋆

0 (O = o))
2 ≤ KL (P ⋆

a (G
⋆), P ⋆

0 (G
⋆))

=

m∑
t=1

KL
(
P ⋆
a (G

⋆
j,t), P

⋆
0 (G

⋆
j,t)
)
+
∑
a̸=j

T∑
t=1

KL
(
P ⋆
a (G

⋆
a,t), P

⋆
0 (G

⋆
a,t)
)

≤ 2ϵ2m

6We suppress the notation since otherwise it becomes unwieldy. We will make the choice of j and m extremely clear in the context.

which implies

m ≤ 1

64ϵ2
⇒ |P ⋆

a (O = o)− P ⋆
0 (O = o)| ≤ 1

8
(22)

Now pick any t ≤ T . Assuming K ≥ 24, by Corollary B.6 at least 33% of the arms A0 ⊂ {1 . . .K} satisfy

P0(at = a0) ≤
1

8

∧
P0

(
Na0,t ≥

24t

K

)
<

1

8
∀a0 ∈ A0 (23)

Pick any a0 ∈ A0. In the following, we assume the budget arm j = a0 and the budget m = 24t
K ≤ t with the

superscript ⋆. If T ≤ K
1536ϵ2 , then

Pa0
(at = a0) ≤ Pa0

(at = a0 ∧Na0,t < m) + Pa0
(Na0,t ≥ m) (24)

= P ⋆
a0

(at = a0 ∧Na0,t < m) + P ⋆
a0

(Na0,t ≥ m) (25)

≤ P ⋆
0 (at = a0 ∧Na0,t < m) + P ⋆

0 (Na0,t ≥ m) +
1

4
(26)

= P0 (at = a0 ∧Na0,t < m) + P0 (Na0,t ≥ m) +
1

4

≤ P0 (at = a0) + P0 (Na0,t ≥ m) +
1

4

≤ 1

2
(27)

where (25) follows because Na0,t < m is a budget event;7 (26) uses (22) with the assumption on T ; and (27) exploits
the choice of a0 ∈ A0. The first step (24) is necessary to apply ⋆ because at = a0 is not a budget event. To see why,
suppose K ≫ 24 so that m ≪ t. Then the choice of arm at step t will generally require more than m samples from
a0. The rest of the argument is similar to the naive version. By construction, the optimal arm a⋆ in the adversarial
environment is chosen uniformly at random, thus Pr(a⋆ ∈ A0) ≥ 1

3 . Thus if K ≥ 24 and T ≤ K
1536ϵ2 , for any t ≤ T ,

the algorithm satisfies

Pr(at ̸= a⋆) ≥ Pr(a⋆ = a0)︸ ︷︷ ︸
≥ 1

3

×Pa0(at ̸= a0)︸ ︷︷ ︸
> 1

2

>
1

6

where a0 is any neglected arm in A0. Then

E [R] >

T∑
t=1

(
1

6

)(ϵ
2

)
=

ϵT

12

Given T , choose ϵ = 1
40

√
K
T . This choice satisfies T < K

1536ϵ2 , thus E [R] >
√
KT
480 under the environment (17).

A.3 Instance-Depedent Lower Bounds

Previous sections show that no algorithm can achieve sub-Ω(
√
t) expected regret on all problem instances—because

we can always produce an adversarial instance where it must have that much expected regret. More formally,

E [Rt] ≥ Ω(C
√
t)

where Rt is the regret at step t and C > 0 is constant for all problem instances. However, we may do better
if we consider instance-dependent lower bounds. For instance, the UCB algorithm achieves E [Rt] ≤ O(CI log t)
where CI is an constant specific for the problem instance I (Lemma 2.3). Is it possible to do even better than the
logarithmic dependence in this setting? The answer is no, as dictated by the following theorem (without proof).

Theorem A.1. Pick a problem instance I and any bandit algorithm that achieves E[Rt] ≤ O(CI,αt
α) for some

α > 0. Then E[Rt] ≥ Ω(CI log t), which holds for any of the two constants:

CI =

K∑
a=1: µ⋆−µa>0

µ⋆(1− µ⋆)

µ⋆ − µa
(weaker version) (28)

CI =

K∑
a=1: µ⋆−µa>0

µ⋆ − µa

KL (Da, D⋆)
− 2ϵ ∀ϵ > 0 (stronger version) (29)

7It is a bit strange to think about it explicitly, but Na0,t < m is indeed a budget event because the algorithm does not require more
than m samples of arm a0 for the task of selecting the arm fewer than m times.

The condition in the theorem is necessary to rule out trivial cases. Without such a condition, we may select an
instance with a⋆ = 1 and an algorithm that selects at = 1, which achieves E[Rt] = 0.

B Lemmas

Lemma B.1. For ϵ ∈ [0, 1
2], KL(Ber(1+ϵ

2),Ber(12)) ≤ 2ϵ2 and KL(Ber(12),Ber(
1+ϵ
2)) ≤ ϵ2.

Proof.

KL

(
Ber

(
1 + ϵ

2

)
,Ber

(
1

2

))
=

(
1 + ϵ

2

)
log(1 + ϵ) +

(
1− ϵ

2

)
log(1− ϵ)

=
1

2
log(1− ϵ2)︸ ︷︷ ︸

≤0

+
ϵ

2
log

(
1 + ϵ

1− ϵ

)
︸ ︷︷ ︸

=log(1+ 2ϵ
1−ϵ)≤

2ϵ
1−ϵ≤4ϵ

≤ 2ϵ2

KL

(
Ber

(
1

2

)
,Ber

(
1 + ϵ

2

))
=

1

2
log

(
1

1− ϵ2

)
︸ ︷︷ ︸

=log
(
1+ ϵ2

1−ϵ2

)
≤ ϵ2

1−ϵ2
≤2ϵ2

≤ ϵ2

Lemma B.2 (Warmup). Fix ϵ ∈ (0, 1
2). Let p = Ber(1+ϵ

2) and q = Ber(12). Let Z ∼ Unk and X1 . . . XT
iid∼ Z

where Unk is some unknown distribution over {p, q}. Then for any predictor f : {0, 1}T → {p, q},

Pr (f(X1 . . . XT) = Z) >
3

4
=⇒ T ≥ 1

4ϵ2

Proof. The sample space of possible configurations is Ω = {p, q} × {0, 1}T , with the joint distribution

lΩ(z, x) = Unk(z)×
T∏

t=1

z(xt)

and the conditional distribution lΩ(x|z) =
∏T

t=1 z(xt). Assuming a deterministic f , the event f(X1 . . . XT) = Z is
measurable under lΩ because a sample (z, x) ∼ lΩ completely determines if the event happens. Formally,

Pr (f(X1 . . . XT) = Z) =
∑

(z,x)∈Ω: f(x)=z

lΩ(z, x)

If f is nondeterministic, the event is still measurable with

Pr (f(X1 . . . XT) = Z) =
∑

(z,x)∈Ω

lΩ(z, x)× Pr (f(x) = z) = E
(z,x)∼lΩ

[Pr (f(x) = z)]

(which clearly subsumes the deterministic f as a special case). This enables the use of Pinsker’s inequality:

2 (Pr (f(X1 . . . XT) = Z|Z = p)− Pr (f(X1 . . . XT) = Z|Z = q))
2 ≤ KL (lΩ(·|p), lΩ(·|q))
= KL

(
pT , qT

)
= T ×KL (p, q)

≤ 2Tϵ2 (30)

Now, if Pr (f(X1 . . . XT) = Z) > 3
4 , we must have Pr (f(X1 . . . XT) = p|Z = p)−Pr (f(X1 . . . XT) = p|Z = q) > 1

2 .

To avoid contradicting the upper bound (30), we must have ϵ
√
T > 1

2 , or T > 1
4ϵ2 .

B.1 Classification Risk

Under any distribution over K values, at least 66% of the values have the probability at most 3
K . Suppose otherwise.

Then more than 33% have probability greater than 3
K , and the total probability mass will be greater than 1. This

risk is better understood at a high level like this, but a formal statement is given below for completeness.

Lemma B.3. Let X ∈ {1 . . .K} be any random variable. There is some S ⊂ {1 . . .K} with |S| > 2K
3 such that

Pr(X = x) < 3
K for all x ∈ S.

Proof. Suppose that for all S ⊂ {1 . . .K} with |S| > 2K
3 , we have Pr(X = x) ≥ 3

K for some x ∈ S. Take the largest

subset S⋆ such that Pr(X = x) < 3
K for all x ∈ S⋆, which implies |S⋆| ≤ 2K

3 . Take S′ = {1 . . .K} \S⋆, whereupon

|S′| > K
3 . It must also be the case that Pr(X = x) ≥ 3

K for all x ∈ S′, since otherwise S⋆ could have been larger.

Thus
∑K

x=1 Pr (X = x) ≥
∑

x∈S′ Pr (X = x) >
(
K
3

) (
3
K

)
= 1.

We have a similar risk in terms of counts. For the statements below, let (X1 . . . XT) ∈ {1 . . .K}T be any random

sequence and define Nx =
∑T

t=1 [[Xt = x]].

Lemma B.4. There is some S ⊂ {1 . . .K} with |S| > 2K
3 such that E [Nx] <

3T
K for all x ∈ S.

Proof. Suppose that for all S ⊂ {1 . . .K} with |S| > 2K
3 , we have E [Nx] ≥ 3T

K for some x ∈ S. Taking the same

steps in the proof of Leamm B.3, we can construct a subset S′ ⊂ {1 . . .K} such that |S′| > K
3 and E [Nx] ≥ 3

K for

all x ∈ S′. Thus
∑K

x=1 E [Nx] ≥
∑

x∈S′ E [Nx] >
(
K
3

) (
3T
K

)
= T .

Corollary B.5. There is some S ⊂ {1 . . .K} with |S| > 2K
3 such that Pr(Nx ≥ 24T

K) < 1
8 for all x ∈ S.

Proof. Since Nx ≥ 0, we can apply Markov’s inequality to have Pr(Nx ≥ ϵ) ≤ E[Nx]
ϵ for any ϵ > 0. Combining with

Lemma B.4, there is some S ⊂ {1 . . .K} with |S| > 2K
3 such that Pr(Nx ≥ ϵ) < 3T

Kϵ for all x ∈ S and ϵ > 0. Solving

for ϵ in 3T
Kϵ = 1

8 , we have Pr(Nx ≥ 24T
K) < 1

8 .

Corollary B.6. There is some S ⊂ {1 . . .K} with |S| > K
3 such that Pr(XT = x) < 3

K and Pr(Nx ≥ 24T
K) < 1

8 for
all x ∈ S.

Proof. At least K
3 of the values in Lemma B.3 and Corollary B.5 must overlap.

C Monte Carlo Tree Search

MCTS (based on the variation in Shaw et al. (2023))
Input: policy πθ(a|s), value network vϕ(s) ∈ R (e.g., trained on human demonstrations labeled with short-path-
encouraging surrogate rewards r(s) = − 1

30
+[[s = terminal]]rs), state transition τ(s, a) ∈ S, beginning state sbegin ∈ S,

number of tree expansions Kexpand, exploration weight c = 0.1, value network weight λ = 0.1
Output: next action anext ∈ A
State-action value estimates: Q(s, a) = Average(r0 = vϕ(s), r1, . . . , rM) where ri is the value associated with
visiting (s, a) the i-th time

1. For Kexpand times:

(a) s← sbegin

(b) While s = sbegin or s has been visited before, repeat:

a′ ← argmax
a∈A

Q(s, a) + c× πθ(a|s)×
√
Ns

1 +Ns,a
(31)

Ns ← Ns + 1

Ns,a′ ← Ns,a′ + 1

s← τ(s, a′)

Let (s1, a1), . . . , (sT , aT), sleaf denote the traveled path.

(c) v(sleaf)← λ× vϕ(sleaf) + (1− λ)× Rollout(πθ, sleaf)

(d) For t = 1 . . . T , update Q(st, at)← NewAverage(Q(st, at), v(sleaf)).

2. Return anext ← argmaxa∈A Nsbegin,a.

	Problem
	Reward Estimation
	Regret Decomposition

	Algorithms
	Greedy
	UCB
	Instance-specific regret upper bound

	Thompson Sampling

	Lower Bounds
	TEXT
	Risk analysis

	General TEXT
	Risk analysis: naive version
	Risk analysis: improved version

	Instance-Depedent Lower Bounds

	Lemmas
	Classification Risk

	Monte Carlo Tree Search

