
Notes on Balcan and Blum (2008)

Karl Stratos

1 Setting

S denotes a set of m points x1 . . . xm, and C denotes a concept class. A concept
c ∈ C selects a subset of S: for instance, an interval selects a subset of points in
R, a disjunction/conjunction selects a subset of Boolean assignments in {0, 1}n. For
convenience, we will interchangeably write c ∈ C to denote either the concept or the
subset of S that c determines.

Target clustering. There is a particular target k-clustering c1 . . . ck ∈ C of S. A
hypothesis clustering h1 . . . hk ∈ C is correct if, for some permutation σ over [k], the
subset of S determined by hi is the same as the subset of S determined by cσ(i) for
all i ∈ [k].

Clustering restrictions. The clusters must be in C and exactly partition S. This
requirement makes the model inflexible (Appendix A). The authors alleviates the
problem somewhat by introducing the “extended” model where the final cluster is
always set to cover remaining points (Appendix B): ck := S\c1 ∪ . . . ∪ ck−1.

Interactive clustering. Given S and an unknown target k-clustering c1 . . . ck ∈ C
of S, our goal is to obtain a correct hypothesis clustering h1 . . . hk ∈ C by using as
few of the following requests (from the user) as possible:

• split(h) is issued when there are x, x′ ∈ S such that x, x′ ∈ h but x ∈ ci and
x′ ∈ cj for i 6= j.

• merge(h, h′) is issued when h ⊆ ci and h′ ⊆ ci for some i ∈ [k].

The hypothesis clustering must be correct when none of these requests is issued. So
we can start out with some initial h1 . . . hk′ ∈ C and continue applying operations
until these requests are not issued.

Flexibility in hypothesis clusterings. We consider two sources of flexibility.

1. We allow k′ 6= k.

2. We allow hi ∩ hj 6= ∅ for i 6= j.

The paper emphasizes that Flexibility 1 is important.

• Let S be m points on a circle and C be intervals on the circle. Choose a random
halving of S as the target 2-clustering in C. If we insist that k′ = k, then split

or merge cannot lead to any meaningful operations, and all we can do is guess
a random halving. So the expected number of requests is Ω(m).

1

• If we allow k′ 6= k, we can initialize h1, h2 to be a random halving of S, and find
each of the two target boundary by halving h every time split(h) is issued.
The number of split or merge requests is therefore O(log2(m)).

Lemma D.1 gives an example of a cluster class and a dataset such that no algorithm
exists that can use only k′ = poly(logm, k) clusters and find the correct clustering in
poly(logm, k) requests. The benefit of Flexibility 2 will be evident in the following
algorithms.

2 Interval Clustering

Let C be the class of intervals: c1 . . . ck ∈ C is a partition of m points S on the line
determined by some k consecutive intervals. Here is an obvious havling algorithm
that maintains disjoint hypothesis clusters (so Flexibility 2 is not needed):

1. Initialize h = R.

2. Until no request is made,

(a) split(h): Split h to two intervals each with half the points.

(b) merge(h, h′): Merge h and h′.

This is such a straightforward result, but a proof is still useful because it shows how
to be careful with arguments on split and merge.

Proposition 2.1. The above algorithm finds the target interval clustering in O(k logm)
requests.

Proof. For each i ∈ [k − 1], let x < x′ be the points in S such that x ∈ ci and
x′ ∈ ci+1. We know they exist because the target clustering must cover all points in
S. Set ai = (x+ x′)/2 as the decision boundary between ci and ci+1 (thus ai 6∈ cj for
all j ∈ [k]). At any point in the algorithm with hypothesis intervals h1 . . . hk′ ∈ C,
define size(ai) = |hj | if ai ∈ hj for some j ∈ [k′] and size(ai) = 0 otherwise.

• In the beginning, we must have size(ai) = m for all i ∈ [k − 1].

• When we have the correct clustering, we must have size(ai) = 0 for all i ∈ [k−1].
But this is not a sufficient condition for having the correct clustering as some
hypotheses clusters may need to be merged.

• We will now argue that we will have split the initial hypothesis clustering h = R
at most O(m log k) times to reach this point. If this is true, then we need at most
O(m log k) merges to recover the correct clustering, hence the claim follows.

split(h) is requested only if ai ∈ h for some i ∈ [k−1], since otherwise h will contain
only points in a single target cluster. Furthermore, the havling operation ensures that
size(ai) is halved. Therefore, for each i ∈ [k− 1], we make at most O(logm) splits to
reach size(ai) = 0. Thus we make at most O(k logm) splits to reach size(ai) = 0 for
all i ∈ [k − 1].

Extended model. The extended model can be treated as the non-extended model
with 2k− 1 intervals (k− 1 intervals plus k intervals to catch the rest), so it can also
be learned in O(k logm) requests.

2

3 Disjunction Clustering

Let C be the class of disjunctions: c1 . . . ck ∈ C is a partition ofm Boolean assignments
S in {0, 1}n determined by some k disjuctions. WLOG we assume that there is no
negated literal (just introduce more dimensions).

Remark. Partitioning Boolean assignments using disjunctions is awkward and un-
natural (see Appendix A). Here, however, we don’t worry about this part. We simply
assume the existence of some valid target disjunction clustering, and exploit this
assumption to derive an analyzable interactive clustering algorithm.

3.1 Overlapping Hypothesis Clusters

We exploit the limitation of C that if a literal zi is used in any target disjuction c ∈ C,
this c must contain all assignments x ∈ S with xi = 1.

1. Initialize hi = zi for i ∈ [n] (and remove empty clusters).

2. Until no request is made,

(a) split(h): Remove h.

(b) merge(h, h′): Remove h and h′ and introduce h ∨ h′.

Let’s analyze what happens at the initialization.

• We have at most n hypothesis clusters each of which corresponds to some lit-
eral zi. Denote the cluster corresponding to zi by hi. They may overlap, so
Flexibility 2 is used.

• If zi is used in a target disjunction c, then all assignments in hi must belong to
c. This is because c is a disjunction and we assume a valid target clustering (in
particular, it must be the case that zi is used only in c in the target clustering).

• Thus if assignments in hi are not pure, then zi is not used in any target dis-
junction and hi can be removed. Note that each x ∈ S stays covered by some
hypothesis cluster.

• merge(h, h′) is issued only for clusters h, h′ that cannot be split, and the merged
cluster h ∨ h′ will never be split in the future.

Since the number of hypothesis clusters is reduced by one at either split or merge,
we find the correct clustering in at most n− k requests.

Extended model. The algorithm is the same except that it’s possible for some
x ∈ S to become uncovered. Since this happens only if x is in ck, so we can simply
maintain a default bucket to put these uncovered points as we proceed. We still find
the correct clustering in at most n− k requests.

3.2 Disjoint Hypothesis Clusters

To maintain disjoint hypothesis clusters during interactive clustering, we have to
change the algorithm slightly.

3

• A quick way to achieve disjoint initial clusters is to define n clusters h1 . . . hn
where now hi contains all x ∈ S such that xi = 1 and xj = 0 for j ∈ [i− 1]. For

example, if S = {0, 1}3 \ {000},

100, 101, 110, 111 ∈ h1
010, 011 ∈ h2

001 ∈ h3

• Again, if split(hi) is issued, it must be that zi is never used in any target
disjunction c (otherwise, if zi is a literal in c, then every point in hi must be in
c). So we can try to remove this cluster.

• However, upon removal of hi all x ∈ hi becomes uncovered. It’s not obvious
how to reassign them so that we can guarantee that a merged cluster will never
be split in the future (we want this invariant).

• The simplest fix is to remove the i-th variable zi in all S and restart.

Here’s the resulting algorithm:

1. Initialize hi = {x ∈ S : xi = 1, xj = 0 ∀j < i}.

2. Until no request is made,

(a) split(hi): Remove zi from all S and restart the algorithm.

(b) merge(hi, hj): Remove h and h′ and introduce h ∪ h′.

Each episode of the algorithm consists purely of O(n) merges, so the total runtime is
O(n2).

Extended model. We can maintain a default bucket to put all-zero-literal assign-
ments as we proceed (an assignment x ∈ S becomes all-zero only if it’s in ck). We
still find the correct clustering in at most O(n2) requests.

4 Conjunction Clustering

Let C be the class of conjunctions: c1 . . . ck ∈ C is a partition of m Boolean assign-
ments S in {0, 1}n determined by some k conjuctions. As before, we disallow negated
literals.

Remark. Partitioning S ⊂ {0, 1}n using conjunctions is strictly more expressive
than disjunctions. Suppose S = {10, 01, 11} and we want to have each point contained
in its own cluster. This clustering is not possible with disjunctions (in the non-
extended model). With conjunctions, we can set c1 = (z1 ∧ z̄2), c2 = (z̄1 ∧ z2), and
c3 = (z1 ∧ z2). Without negated literals, we can equivalently introduce z3 = z̄1 and
z4 = z̄2 and cluster S = {1001, 0110, 1100} using c1 = (z1 ∧ z4), c2 = (z2 ∧ z3), and
c3 = (z1 ∧ z2).

4

4.1 Reduction to Disjunctions

Because we assume that the target clustering is a valid clustering that partitions S
(with no empty cluster), the same clustering is given by (k − 1)-DNFs

ci =

k∧
j=1: j 6=i

c̄j (1)

where the negated conjunction cj is a disjunction of negated literals (well, their non-
negated counterparts):

c̄j =
∨
l∈Lj

z̄l

(the set Lj is some subset of [n]). Distributing disjunctions across k−1 conjunctions,
we can write (1) as

ci =

k∧
j=1: j 6=i

 ∨
l∈Lj

z̄l

=
∨
t∈T

(
z̄t1 ∧ · · · ∧ z̄tk−1

)
=
∨
t∈T

yt1...tk−1

where T is some selection of k − 1 elements from [n]. Thus each ci is now a dis-
junction over nk−1 variables yt1...tk−1

:= z̄t1 · · · z̄tk−1
, and we can use the interactive

clustering algorithm for disjunctions to find the correct clustering in O(nk−1) requests
(O(n2(k−1)) if overlapping clusters are disallowed).

Extended model. In the extended model, ck is not necessarily expressed as a
conjunction over z1 . . . zn, thus c̄k is not necessarily a disjunction over z̄1 . . . z̄n. Con-
sequently, ci is not a (k − 1)-DNF except when i = k, so we can’t just run the
disjunction algorithm as before. What we can do is to exploit the fact that ck is a
(k − 1)-DNF and can be written as a disjunction

ck =
∨
t∈T

yt1...tk−1

1. Initialize ht1...tk−1
= yt1...tk−1

for all nk−1 selections of k − 1 integers from [n]
(and remove empty clusters).

2. Keep a default bucket B.

3. Until no request is made,

(a) split(h): Remove h and put all points in h to B. Run (k− 1)-disjunction
algorithm inside B.

(b) merge(h, h′): Merge h and h′. If one of them is in B then put the merged
cluster in B and run (k − 1)-disjunction algorithm inside B.

This works because any yt1...tk−1
used in ck is pure and cannot be split. Thus only

points that belong to c1∪· · ·∪ck−1 will be sent to B, in which the problem is reduced
to the non-extended (k − 1)-disjunction model. Since there can be at most nk−1

calls to either the O(nk−2) or O(n2k−4) algorithms, the total runtim is O(n2k−3) or
O(n3k−5).

5

5 Generic Clustering

Let C be any finite concept class (e.g., if C is the class of conjunctions over {0, 1}n,
then |C| = 2n). Let CV S denote all possible k-clusterings with C: note that

∣∣CV S∣∣ ≤
|C|k. Our target clustering is just some c ∈ CV S . The authors provide a “halving”
algorithm for interactive clustering in this general scenario.

1. Initialize the version space CV S .

2. While
∣∣CV S∣∣ > 1,

(a) (h1 . . . hk)← GenerateInterestingClustering(CV S , S)

(b) Receive a single request on h1 . . . hk. Remove all clusterings in CV S that
conflict with this request:

• If split(h): Remove all clusterings in CV S such that the points in h
belong to the same cluster.

• If merge(h, h′): Remove all clusterings in CV S such that the points in
h and h′ do not belong to the same cluster.

We will not describe GenerateInterestingClustering, but the claim is that Step 2b
removes 1/k2 portion of the version space CV S . Then the number of requests r
required to obtain

∣∣CV S∣∣ ≤ 1 is(
1− 1

k2

)r ∣∣CV S∣∣ ≤ 1 ⇐⇒ r ≤ − 1

log
(
1− 1

k2

) log
∣∣CV S∣∣

≤ k2 log
∣∣CV S∣∣

≤ k3 log |C|

6

A Valid Clusterings

Let C be the class of disjunctions over z1, z2, z3, z4 ∈ {0, 1}. Suppose S = {1100, 0100, 0010}
and k = 2. Invalid target clusterings of S include:

• (Multiple-membership) c1 = (z1 ∨ z2) and c2 = (z2 ∨ z3)

1100 ∈ c1 ∩ c2 0100 ∈ c1 ∩ c2 0010 ∈ c2

• (Incomplete coverage) c1 = (z1) and c2 = (z3)

1100 ∈ c1 0100 6∈ c1 ∪ c2 0010 ∈ c2

• (Empty cluster) c1 = (z2 ∨ z3) and c2 = (z4)

1100 ∈ c1 0100 ∈ c1 0010 ∈ c1

Valid target clusterings of S include:

• c1 = (z1 ∨ z2) and c2 = (z3)

1100 ∈ c1 0100 ∈ c1 0010 ∈ c2

• c1 = (z1) and c2 = (z2 ∨ z3)

1100 ∈ c1 0100 ∈ c2 0010 ∈ c2

B Extended Model

Let C be the class of disjunctions over z1, z2, z3 ∈ {0, 1}. Suppose S = {101, 011, 001}.
We wish to put each point in a separate cluster (so set k = 3), but this is not possible
with C. Under the extended model, we can set c1 = (z1) for 101 and c2 = (z2) for
011, whereupon the default cluster c3 handles 001.

As another example, let C be the class of conjunctions over z1, z2, z3 ∈ {0, 1}. Suppose
S = {111, 011, 001}. We want two clusters {111, 001} and {011} but this is not
possible with C: z3 = 1 is the only common factor between 111 and 001, but it is
also shared by 011. Under the extended model, we can set c1 = (z̄1 ∧ z2) and let the
default cluster c2 handle 111 and 001.

C The Fourier Basis

Consider the vector space of functions from n Boolean variables to R:

F := {f : {0, 1}n → R}

The inner product between f, g ∈ F is

〈f, g〉 := E [f(x)g(x)] =
1

2n

∑
x∈{0,1}n

f(x)g(x)

The norm of f ∈ F is given by
√
〈f, f〉.

7

Lemma C.1. S := {ēα : α ∈ {0, 1}n} is a basis of F , where ēα ∈ F is defined as
ēα(x) := [[α = x]]. In particular, dim(F) = 2n.

Proof. S is orthogonal (though not normal). Any f ∈ F can be written as

f(x) =
∑

α∈{0,1}n
f(α)[[α = x]]

Define P := {χα ∈ F : α ∈ {0, 1}n} as the set of parity functions:

χα(x) := (−1)
∑
i: αi=1 xi

Note that

E [χα(x)] =

{
0 if α 6= 0
1 otherwise

(2)

χα(x)χβ(x) = χα⊕β(x) (3)

where ⊕ is the bit-wise XOR operation. From (2) and (3), we see that

〈χα, χβ〉 = E [χα⊕β(x)] =

{
1 if α = β
0 otherwise

(4)

Proposition C.1 (The Fourier basis). P is an orthonormal basis of F .

Proof. P is orthonormal by (4); in particular, dim(P) = 2n. Since dim(F) = 2n by
Lemma C.1, the claim follows.

Thus any f ∈ F can be written as

f(x) =
∑

α∈{0,1}n
〈χα, f〉 χα(x)

from which the following claim can be easily verified.

Proposition C.2 (Perseval’s identity). For any f ∈ F ,∑
α∈{0,1}n

〈χα, f〉2 = E
[
f(x)2

]
Corollary C.2. For any f : {0, 1}n → {±1},∑

α∈{0,1}n
〈χα, f〉2 = 1

Perseval’s identity can be used to argue that any given f : {0, 1}n → {0, 1} cannot
correlate strongly with too many parity functions. Concretely, the number of α ∈
{0, 1}n such that |〈χα, f〉| ≥ C cannot exceed 1/C2, since otherwise∑

α∈{0,1}n
〈χα, f〉2 >

1

C2
C2 = 1

8

Reference Learning Boolean Functions via the Fourier Transform (Mansour, 1994)

D Lemmas

Lemma D.1. Consider the setting:

• C is the class of parity functions c and their negations ¬c(x) := −c(x) over
{0, 1}n. Given x ∈ {0, 1}n and c ∈ C, we say x ∈ c if c(x) = 1 and x 6∈ c if
c(x) = −1.

• S = {0, 1}n. That is, we consider all m = 2n points for clustering.

• k = 2. Denote the target 2-clustering of S by c ∈ C and ¬c = S\c. Assume
that c is picked uniformly at random from 2n possible parity functions.

Then for all interactive clustering algorithms using only k′ = poly(k, logm) clusters,
the expected number of requests needed to recover c is exponential in poly(k, logm).

Proof. Let c′ ∈ C denote the largest hypothesis cluster. If |c′| = αm, we must
have α ≥ 1/k′ = 1/poly(k, logm). We will show that the probability that split(c′)
cannot be issued is at most 1/(2n4α2) using the properties of parity functions. This
probability is then bounded as

1

2n4α2
≤ poly(k, logm)

2n4
=

poly(k, n)

2n2k

which is exponentially small in n = logm and k. Since this is the case at any point
in the algorithm, the number of requests we need to cluster correctly is exponential
in logm and k as argued.

The only way split(c′) cannot be issued is either c′ ⊆ c or c′ ⊆ ¬c. Define a
parity function h : {0, 1}n → {±1} associated with c′: h(x) = 1 if x ∈ c′ and
h(x) = −1 otherwise. We will show that if split(c′) cannot be issued, we must have
|〈c, h〉| = 2α. Then we invoke Parseval’s identity to state that there are at most
1/4α2 such target parity functions c. Since we choose c at random, the probability
that such c is picked is at most 1/(2n4α2).

All that remains to show is that when c′ ⊆ c or c′ ⊆ ¬c,

|〈c, h〉| = |E [h(x)c(x)]| = |Pr(h(x) = c(x))− Pr(h(x) 6= c(x))|

is equal to 2α

• Suppose c′ ⊆ c. Then

Pr(c′(x) = −1, c(x) = −1) = Pr(c′(x) = −1|c(x) = −1)× Pr(c(x) = −1) =
1

2
Pr(c′(x) = 1, c(x) = 1) = Pr(c(x) = 1|c′(x) = 1)× Pr(c′(x) = 1) = α

so that Pr(h(x) = c(x)) = 1
2 + α. Then |〈c, h〉| = |2α|.

• Suppose c′ ⊆ ¬c. Then similarly Pr(h(x) = ¬c(x)) = 1
2 +α and |〈c, h〉| = |−2α|.

9

