
All of Backpropagation in Two Pages

Karl Stratos

You need to understand the chain rule (Appendix B-E) and DAGs (Appendix F)
before understanding backpropagation.

1 Computation Graph

A computation graph is a DAG G = (V,A) in which every node i ∈ V is equipped
with, without loss of generality, a vector-valued variable xi of length di. Each non-
input node i ∈ VN is additionally equipped with a function

f i : ×
j∈pa(i)

Rd
j

→ Rd
i

The variables are populated as follows.

• An input node i ∈ VI expects a vector ai ∈ Rdi and populates xi = ai.

• A non-input node i ∈ VN recursively populates xi = ai where

ai := f i
((
xj
)
j∈pa(i)

)
For convenience, we will define

xI := (xi)i∈VI
aI := (ai)i∈VI

xiI := (xj)j∈pa(i) aiI := (aj)j∈pa(i) ∀i ∈ V

Thus the variable xi at each node is a global function of xI evaluated at aI ; it is a
local function of xiI evaluated at aiI .

2 Setting

We assume that the graph is connected and has an output node ω ∈ V such that
dω = 1. Then we can view the entire graph as a scalar-valued function of xI ,

Lω : ×
i∈VI

Rd
i

→ R

where Lω(xI) := xω. The output value Lω(aI) = aω can be computed in runtime
linear in |A| with the forward algorithm in Appendix G:

(aω, π)← forward(G,ω, aI)

where π ∈ ΠG is a topological ordering on G that represents the order of nodes used
in computation. In particular, this populates xi = ai for all i ∈ V .

1

3 Backpropagation

The goal is to calculate the gradient of Lω, evaluated at xI = aI , with respect to xi

for every i ∈ V :

zi :=
dLω(xI)

dxi

∣∣∣∣
xI=aI

∈ R1×di (1)

In light of the chain rule (15), this is just

zi =
∑

j∈ch(i)

dLω(xI)

dxj

∣∣∣∣
xI=aI

1×dj

dxj

dxi

∣∣∣∣
xj
I=a

j
I

dj×di

(2)

The first key observation is that the second term in the sum is simply the Jacobian
of f j , evaluated at xjI = ajI , with respect to xi. But because i ∈ pa(j), this can be
analytically computed. For instance, if f j = cmult where cmult : Rd × Rd → Rd
is defined as cmult(x, x′) := x � x′ (Appendix H), then the Jacobian of cmult,
evaluated at (x, x′) = (a, a′), with respect to x is

d(x� x′)
dx

∣∣∣∣
(x,x′)=(a,a′)

= diag(a′) ∈ Rd×d

The second key observation is that the first term in the sum is zj , which can be
recursively computed. In the base case j = ω, this value is

dLω(xI)

dxω

∣∣∣∣
xI=aI

=
dxω

dxω

∣∣∣∣
xω
I =aωI

= 1

The following “backpropagation” procedure computes the value of zi for every i 6= ω
in runtime linear in |A|.

backpropagation
Input: computation graph G = (V,A) in which xi = ai is populated for all i ∈ V ,
topological ordering π ∈ ΠG

• Set ω = π(|V |) and initialize zω = 1.

• For k = |V | − 1 . . . 1,

– Set i = π(k) and compute

zi ←
∑

j∈ch(i)

zj
dxj

dxi

∣∣∣∣
xI=aI

Another way to view the algorithm is a sum-product algorithm on a DAG (Ap-
pendix F.2) since

dLω(xI)

dxi

∣∣∣∣
xI=aI

=
∑

(i1...in)∈P (i,ω)

dxω

dxin−1

∣∣∣∣
xω
I =aωI

dxin−1

dxin−2

∣∣∣∣
xin−1
I =ain−1

I

· · · dx
i2

dxi1

∣∣∣∣
x
i1
I =a

i1
I

But this view is not necessary to see the correctness of the algorithm.

2

A Notation

The set of unit vectors in Rn is denoted by Sn := {v ∈ Rn : ||v||2 = 1}. The i-
th standard basis vector in Rn is denoted by ei ∈ {0, 1}n. The norm of a vector
x ∈ Rn is denoted by ||x||: we assume a fixed choice of ||·|| (e.g., Euclidean), but we
make no assumption about the choice. The (n−1)-dimensional probability simplex is
denoted by ∆n−1 := {v ∈ Rn : v ≥ 0, ||v||1 = 1}. The component-wise multiplication
of vectors x, x′ ∈ Rn is denoted by x� x′ ∈ Rn. The concatenation of vectors x ∈ Rn
and x′ ∈ Rn′ is denoted by x ⊕ x′ ∈ Rn+n′ . The sigmoid function is defined as
σ(x) := (1 + exp(−x))−1. We write In×n to denote the n× n identity matrix, 0m×n
to denote the m × n zero matrix, 1n and 0n to denote the n-dimensional vector of
ones and zeros. Given a vector v ∈ Rn, diag(v) ∈ Rn×n refers to a diagonal matrix
with [diag(v)]i,i = vi.

B Scalar-Valued Function of a Scalar Variable

Consider f : R→ R and a ∈ R.

B.1 Limit

The limit of f(x) as x approaches a is a constant L ∈ R satisfying the following:
given any ε > 0, we can find δ > 0 such that if x ∈ R satisfies |x− a| < δ, then
|f(x)− L| < ε. In this case, we say the limit exists and write

lim
x→a

f(x) = L (3)

Theorem B.1. If the limit of f(x) as x approaches a exists, then it is unique.

f is continuous at a if f(a) = limx→a f(x). Note that f may not be continuous but
still have a limit at a.

B.2 Derivative

The derivative of f at a is a unique scalar f ′(a) ∈ R such that

lim
x→a

f(x)− (f(a) + f ′(a)(x− a))

x− a
= 0 (4)

This definition is equivalent to

f ′(a) := lim
ε→0

f(a+ ε)− f(a)

ε
(5)

We say f is differentiable at a if f ′(a) exists.

B.3 Chain Rule

We write

df(x)

dx

∣∣∣∣
x=a

∈ R

3

to mean “the derivative of f : R→ R with respect to parameter x when x = a”. This
is of course just f ′(a), but what if we introduce g : R→ R and want to compute

dg(f(x))

dx

∣∣∣∣
x=a

∈ R

The central tool for this problem is the chain rule

dg(f(x))

dx

∣∣∣∣
x=a

=
dg(y)

dy

∣∣∣∣
y=f(a)

× df(x)

dx

∣∣∣∣
x=a

(6)

which can now be calculated as g′(f(a)) × f ′(a). Why is this true? A non-rigorous
but illuminating argument is as follows. By the definition of the derivative (4)

g(y) ≈ g(b) + g′(b)(y − b) ∀y, b ∈ R
f(x) ≈ f(a) + f ′(a)(x− a) ∀x, a ∈ R

Use y = f(x) and b = f(a), and expand f(x) by its linear approximation to have

g(f(x)) ≈ g(f(a)) + g′(f(a))f ′(a)(x− a) ∀x, b ∈ R

This means that g′(f(a))f ′(a) is the derivative of g(f(x)) with espect to x.

C Scalar-Valued Function of a Vector Variable

Consider f : Rn → R and a ∈ Rn.

C.1 Limit

The limit of a function of a vector variable is straightforward to generalizes from the
scalar-variable case. The limit of f(x) as x approaches a is a constant L ∈ R
satisfying the following: given any ε > 0, we can find δ > 0 such that if x ∈ Rn
satisfies ||x− a|| < δ, then |f(x)− L| < ε. The uniqueness and continuity are derived
similarly.

C.2 Directional/Partial Derivative

The directional derivative of f at a in the direction of v ∈ Sn is

Dvf(a) := f ′v(0) = lim
ε→0

f(a+ εv)− f(a)

ε
(7)

where fv : R→ R is defined by fv(t) := f(a+ tv). This is a natural reduction to the
scalar-variable derivative (5) (equivalent when n = 1). The i-th partial derivative
of f at a is simply the directional derivative in the direction of ei:

∂f(a)

∂xi
:= Deif(a) = lim

ε→0

f(a1, . . . , ai + ε, . . . , an)− f(a1, . . . , an)

ε

C.3 Gradient

The gradient of f at a is a unique vector ∇f(a) ∈ Rn such that

lim
x→a

f(x)− (f(a) +∇f(a)>(x− a))

||x− a||
= 0 (8)

4

This is a natural generalization of the scalar-variable derivative (4) (equivalent when
n = 1). We say f is differentiable at a if ∇f(a) exists.

Equivalently, the gradient of f at a is a unique vector ∇f(a) ∈ Rn such that

Dvf(a) = ∇f(a)>v ∀v ∈ Sn (9)

This version is useful because it tells us that for f(x) at x = a, −∇f(a)/ ||∇f(a)|| is

the direction with the maximum rate of decrease − ||∇f(a)||2, ∇f(a)/ ||∇f(a)|| is the

direction with the maximum rate of increase ||∇f(a)||2, and any direction orthogonal
to ∇f(a) does not change the function value.

C.4 Gradient as Partial Derivatives

It is easy to see that if f is differentiable at a, then the gradient must have the form

∇f(a) =

(
∂f(a)

∂x1
. . .

∂f(a)

∂xn

)
(10)

because the gradient must satisfy [∇f(a)]i = ∇f(a)>ei = Deif(a) = ∂f(a)
∂xi

for all
i ∈ {1 . . . n} by definition (9). However, f may not be differentiable at a even if
all partial and directional derivatives exist at a. The following result allows us to
eliminate this subtlety.

Theorem C.1. If the partial derivatives of f are continuous around a, then f is
differentiable at a.

We generally only discuss functions with continuous partial derivatives (thus differ-
entiable), so we will use (10) as a definition of the gradient.

D Vector-Valued Function of a Vector Variable

Consider f : Rn → Rm and a ∈ Rn. We will view f : Rn → Rm simply as a
concatenation of f1 . . . fm : Rn → R. That is,

f(x) =

 f1(x)
...

fm(x)

 ∀x ∈ Rn

D.1 Total Derivative

The total derivative of f at a is a unique matrix T fa ∈ Rm×n such that

lim
x→a

∣∣∣∣f(x)− (f(a) + T fa (x− a))
∣∣∣∣

||x− a||
= 0 (11)

This is a natural generalization of the gradient (8) (equivalent when m = 1): the
linear function f(a) + T fa (x− a) is a linear approximation of f(x) around a. We say
f is differentiable at a if T fa exists.

5

D.2 Total Derivative as Jacobian

It is easy to see that when f1 . . . fm are differentiable, we have

T fa =

∇f1(a)>

...
∇fm(a)>

 =: Jf (a) (12)

where the matrix Jf (a) ∈ Rm×n whose i-th row is the gradient of fi at a is called
the Jacobian of f at a. Thus we will equate the Jacobian with the total derivative.
It is useful to view the Jacobian in terms of scalar derivatives: the (i, j)-th value of
Jf (a) ∈ Rm×n is the derivative of fi : R→ R with respect to xj ∈ R when x = a,

[Jf (a)]i,j =
dfi(x)

dxj

∣∣∣∣
x=a

(13)

D.3 Chain Rule

We now revisit the chain rule. We write

df(x)

dx

∣∣∣∣
x=a

∈ Rm×n

to mean “the Jacobian of f : Rn → Rm with respect to parameter x when x = a”.
This is of course just Jf (a), but what if we introduce g : Rm → Rd and want to
compute

dg(f(x))

dx

∣∣∣∣
x=a

∈ Rd×n

Beautifully, the chain rule takes the same form in (14):

dg(f(x))

dx

∣∣∣∣
x=a

d×n

=
dg(y)

dy

∣∣∣∣
y=f(a)

d×m

df(x)

dx

∣∣∣∣
x=a

m×n

(14)

which can now be calculated as matrix product Jg(f(a))Jf (a). We can again convince
ourselves that this is true by using the definition of the total derivative (11) to derive

g(f(x)) ≈ g(f(a)) + Jg(f(a))Jf (a)(x− a) ∀x, b ∈ R

This means that Jg(f(a))Jf (a) is the total derivative of g(f(x)) with respect to x.

Sum over derivatives. In scalar form, the chain rule states that the derivative of
gi(f(x)) ∈ R with respect to xj ∈ R is

dgi(f(x))

dxj

∣∣∣∣
x=a

=

m∑
k=1

dgi(y)

dyk

∣∣∣∣
y=f(a)

× dfk(x)

dxj

∣∣∣∣
x=a

This is almost the same as the scalar-variable chain rule (6) except that we sum over
partial contributions from xj through m arguments yk = fk(x) in g(y1 . . . ym).

6

Sum over Jacobians. Sometimes it is useful to view g : Rm → Rd as a function of
multiple vectors instead of one. Let R1 . . . RK be any K-partition of indices {1 . . .m}
and define f (k) : Rn → R|Rk| by f (k)(x) = (fi(x))i∈Rk

. We now view g as a function

g : R|R1| × · · · × R|RK | → Rd

that takes K input vectors y(1) . . . y(K) where y(k) = f (k)(x). The chain rule states
that

dg(f(x))

dx

∣∣∣∣
x=a

d×n

=

K∑
k=1

dg(y(1), . . . , y(K))

dy(k)

∣∣∣∣
y=f(a)

d×|Rk|

df (k)(x)

dx

∣∣∣∣
x=a

|Rk|×n

(15)

where y = f(a) means y(k) = f (k)(a) for all k ∈ {1 . . .K}. If K = 1, we recover the
single-vector case (14).

E Tensor-Valued Function of a Tensor Variable

Now that we have covered the case of a vector-valued function of a vector variable,
we can easily extend it to the general case of

f : Rn1×···×nN → Rm1×···×mM

with input tensor A ∈ Rn1×···×nN . This is achieved by “vectorizing” the tensor. For
example, A is viewed as a vector of length (n1 · · ·nN) whose indices

i ∈ {1 . . . (n1 · · ·nN)}

are in one-to-one correspondence with tuples

(i1, . . . , iM) ∈ {1 . . . n1} × · · · × {1 . . . nM}

Let ind(i1, . . . , iM) denote vector index corresponding to the tensor index tuple
(i1, . . . , iM). Then the total derivative of f at A is viewed as a “matrix” of dimensions
(m1 · · ·mM)× (n1 · · ·nN) with elements[

df(X)

dX

∣∣∣∣
X=A

]
ind(i1,...,iM),ind(j1,...,jN)

=
dfi1,...,iM (X)

dXj1,...,jN

∣∣∣∣
X=A

(16)

Chain rule. Suppose we introduce

g : Rm1×···×mM → Rd1×···×dD

and want to compute the total derivative of g(f(X)) with respect to X at A. Again
taking the vectorized view, we can invoke the chain rule in (14) and calculate

dg(f(X))

dX

∣∣∣∣
X=A

(d1···dD)×(n1···nN)

=
dg(y)

dy

∣∣∣∣
y=f(A)

(d1···dD)×(m1···mM)

df(X)

dX

∣∣∣∣
X=A

(m1···mM)×(n1···nN)

Equivalently, the chain rule states that the total derivative is a (D + N)-th-order
tensor of dimensions d1 × · · · × dD × n1 × · · · × nN whose (i1, . . . , iD, j1, · · · , jN)-th
element is

dgi1,...,iD (f(X))

dXj1,··· ,jN

∣∣∣∣
X=A

=

m1∑
k1=1

· · ·
mM∑
kM=1

dgi1,...,iD (B)

dBk1,...,kM

∣∣∣∣
B=f(A)

× dfk1...kM (X)

dXj1,··· ,jN

∣∣∣∣
X=A

7

F Directed Acyclic Graph (DAG)

F.1 Terminology

A directed graph is a pair G = (V,A) where V = {1 . . . |V |} is a set of nodes and
A ∈ V × V is a set of directed arcs. We sometimes denote the head and tail of an
arc a = (i, j) by ah = i and at = j. A directed acylic graph (DAG) is a directed
graph with no cycles. Equivalently, a DAG is a directed graph with a topological
ordering: a sequence π of V such that for every arc (i, j) ∈ A, i comes before j in
π. Let ΠG denote the set of all topological orderings in G.

Given a node i ∈ V , we denote the set of its parents by pa(i) := {j ∈ V : (j, i) ∈ A}
and the set of its children by ch(i) := {j ∈ V : (i, j) ∈ A}. We say i ∈ V is a input
node if pa(i) = ∅. Let VI and VN denote the set of input and non-input nodes:
together, they form a partition of V . We say i ∈ V is an output node if ch(i) = ∅.
The set of paths from i ∈ V to j ∈ V where i 6= j is

P (i, j) :=
{

(a1 . . . an) ∈ An : n ≥ 2, ah1 = i, atn = j, atk−1 = ahk ∀k = 2 . . . n
}

Denote the set of nodes that can reach j ∈ V by ρ(j) := {i ∈ V : |P (i, j)| ≥ 1}. Here
is an example of a DAG (input nodes shaded for readability):

1 2 3 4 5 6

V = {1, 2, 3, 4, 5, 6}
A = {(1, 3), (1, 5), (2, 4), (3, 4), (4, 6), (5, 6)}

pa(4) = {2, 3}
ch(1) = {3, 5}

ΠG = {(1, 2, 3, 4, 5, 6), (2, 1, 3, 4, 5, 6)}
VI = {1, 2}
VN = {3, 4, 5, 6}

P (1, 6) = {((1, 3), (3, 4), (4, 6)), ((1, 5), (5, 6))}
P (2, 6) = {((2, 4), (4, 6))}
P (2, 5) = ∅
ρ(6) = {1, 2, 3, 4, 5}
ρ(5) = {1}
ρ(4) = {1, 2, 3}

F.2 Sum-Product Algorithm on DAGs

Let Q be any set equipped with associative binary operations + and ∗. We assume
that the multiplicative operation ∗ is distributive over +. We assume that the additive
operation + is commutative but the multiplicative operation ∗ may not be. For

8

instance, Q can be the set of matrices and (+, ∗) can be the matrix addition and
multiplication (applicable only to matrices with correct dimensions).

Suppose we have a DAG G = (V,A) in which each arc (i, j) ∈ A is associated with
Qi→j ∈ Q. A computation of interest is: given the last node t ∈ V in a topological
ordering π, calculate

µ(s) :=
∑

(a1...an)∈P (s,t)

(
Qa

h
n→a

t
n ∗ · · · ∗Qa

h
1→a

t
1

)
(17)

for all reachable s ∈ ρ(t). Note the reverse order of multiplication: because ∗ is not
commutative, it will be important to respect this order. For instance, in the above
example DAG with t = 6, we have

µ(1) =
(
Q4→6 ∗Q3→4 ∗Q1→3

)
+
(
Q5→6 ∗Q1→5

)
Explicitly summing over all paths is not a good idea since the number of paths in
P (s, t) may grow exponentially in the length of a path. For instance, in the following
DAG

1 2b

2a

2c

3b

3a

3c

4b

4a

4c

5b

5a

5c

6b

6a

6c

7b

7a

7c

8

the number of paths in P (1, 8) is 36 = 729. However, observe that:

• If s ∈ pa(t):

µ(s) = Qs→t

• If s 6∈ pa(t):

µ(s) =
∑

(a1...an)∈P (s,t)

(
Qa

h
n→a

t
n ∗ · · · ∗Qa

h
2→a

t
2 ∗Qa

h
1→a

t
1

)
=

∑
i∈ch(s)

∑
(a2...an)∈P (i,t)

(
Qa

h
n→a

t
n ∗ · · · ∗Qa

h
2→a

t
2 ∗Qs→i

)

=
∑

i∈ch(s)

 ∑
(a2...an)∈P (i,t)

Qa
h
n→a

t
n ∗ · · · ∗Qa

h
2→a

t
2

 ∗Qs→i
=

∑
i∈ch(s)

µ(i) ∗Qs→i

where the third equality uses the distributivity of ∗ over +.

Thus we can use the following one-liner dynamic programming algorithm.

9

Input: G = (V,A), topological ordering π ∈ ΠG, t = π(|V |)
Output: µ(s) in (17) for all s ∈ ρ(t)

• For i = |V | − 1 . . . 1, set s = π(i) and compute

µ(s) =

{
Qs→t if s ∈ pa(t)∑

j∈ch(s) µ(j) ∗Qs→j else

It is critical to follow a reverse topological ordering since it guarantees that µ(j) is
computed for all children j of s before µ(s) is computed. The number of computation
steps is |A|: in the example above, it is 51� 729.

G Forward Computation

forward
Input: computation graph G = (V,A), output node ω ∈ V , input value aI
Output: Lω(xI) := xω evaluated at aI , topological ordering π ∈ ΠG

• aω ← forward-rec(G,ω, aI , π ← ())

• Return (aω, π).

forward-rec
Input: computation graph G = (V,A), i ∈ V , input value aI , topological order-
ing in construction π

• If i ∈ VI or ai has already been calculated, just return ai.

• Otherwise,

– Calculate aj ← forward-rec(G, aI , j, π) for each j ∈ pa(i).

– Set π ← π + (i) and return xi ← f i
((
aj
)
j∈pa(i)

)
.

10

H Example Functions in a Computation Graph

H.1 Common Functions

add :Rd × Rd → Rd add(x, x′) := x+ x′

cmult :Rd × Rd → Rd cmult(x, x′) := x� x′

concat :Rd × Rd
′
→ Rd+d

′
concat(x, x′) := x⊕ x′

mult :Rd×d
′′
× Rd

′′×d′ → Rd×d
′

mult(U, V) := UV

pick :Rd × {1 . . . d} → R pick(x, l) := xl

pnls :Rd × Z→ R pnls(x, l) := log

 d∑
j=1

exp(xj)

− xl
pow :Rd × Z→ Rd powi(x, n) := xni

tanh :Rd → Rd tanhi(x) := tanh(xi)

logit :Rd → Rd logiti(x) :=
1

1 + exp(−xi)

sm :Rd → Rd smi(x) :=
exp(xi)∑d
j=1 exp(xj)

H.2 Jacobians

Multi-argument functions.

add
d(x+ x′)

dx
= Id×d

d(x+ x′)

dx′
= Id×d

cmult
d(x� x′)

dx
= diag(x′)

d(x� x′)
dx′

= diag(x)

concat
d(x⊕ x′)

dx
=

[
Id×d
0d′×d

]
d(x⊕ x′)
dx′

=

[
0d×d′
Id′×d′

]
mult

d[UV]i,j
dUk,l

=

{
Vl,j if i = k

0 else

d[UV]i,j
dVk,l

=

{
Ui,k if j = l

0 else

pick
dpick(x, l)

dx
= el

pnls
dpnls(x, l)

dxi
=

{
smi(x)− 1 if i = l

smi(x) else

pow
dpowi(x, n)

dxj
=

{
n× xn−1i if i = j

0 else

11

Single-argument functions.

tanh
dtanhi(x)

dxj
=

{
1− tanh(xi)

2 if i = j
0 else

logit
dlogit(x)i

dxj
=

{
logiti(x)× (1− logiti(x)) if i = j

0 else

sm
dsmi(x)

dxj
=

{
smi(x)× (1− smi(x)) if i = j
−smi(x)× smj(x) else

I Practical Issues

I.1 Shape

Although we have followed the standard notation in vector calculus and defined the
Jacobian of f j : ×t∈pa(j) R

dt → Rdj with respect to xi to be a (dj × di) matrix

so that zi ∈ R1×di in (2) is a row vector, in practice we want to make zi a column

vector to match the shape of xi ∈ Rdi (which we usually assume as a column vector).
This is easily achieved by working with the transpose of (2). This means that we
directly compute zi as a column vector of length di given by summing over products
of a (di × dj) matrix and a column vector of length dj ,

zi =
∑

j∈ch(i)

Jj × zj (18)

where Jj ∈ Rdi×dj is the transpose of the Jacobian, that is

Jjk,l =
df jl (xjI)

dxik

∣∣∣∣
xj
I=a

j
I

I.2 Propagating a Linear Transformation of the Gradient

Consider any node with a local function f with output dimension d. For each of its
parent variables p ∈ Rdp , let gp ∈ Rdp denote the gradient of p initialized to zero.
Assuming that the gradient vector of the current node g ∈ Rd is complete, in light
of (18) and the reverse topological traversal in backpropagation, the only calculation
we need to perform is: for each parent variable p,

gp ← gp + Jpf g

where Jpf ∈ Rdp×d denotes the Jacobian of f with respect to p. Thus a central

computational issue is to calculate the matrix-vector product Jpf g as efficiently as

possible. Rather than explicitly calculating the matrix Jpf and then calculating the
product, we use the closed-form expressions given below (obtained by using Jacobians
in Section H.2).

12

Multi-argument functions.

add (g ∈ Rd) Jx(x+x′)g = g Jx
′

(x+x′)g = g

cmult (g ∈ Rd) Jx(x�x′)g = x′ � g Jx
′

(x�x′)g = x� g

concat (g ∈ Rd+d
′
) Jx(x⊕x′)g = g1:d Jx(x⊕x′)g = gd+1:d′

mult (g ∈ Rd×d
′
) JU(UV)g = gV > JV(UV)g = U>g

pick (g ∈ R) Jxpick(x,l)g = gel

pnls (g ∈ R) Jxpnls(x,l)g = g(sm(x)− el)

pow (g ∈ Rd) Jxpow(x,n)g = npow(x, n− 1)� g

Single-argument functions.

sm (g ∈ Rd) Jxsm(x) = sm(x)� g −

(
d∑
i=1

[sm(x)� g]i

)
sm(x)

13

	Computation Graph
	Setting
	Backpropagation
	Notation
	Scalar-Valued Function of a Scalar Variable
	Limit
	Derivative
	Chain Rule

	Scalar-Valued Function of a Vector Variable
	Limit
	Directional/Partial Derivative
	Gradient
	Gradient as Partial Derivatives

	Vector-Valued Function of a Vector Variable
	Total Derivative
	Total Derivative as Jacobian
	Chain Rule

	Tensor-Valued Function of a Tensor Variable
	Directed Acyclic Graph (DAG)
	Terminology
	Sum-Product Algorithm on DAGs

	Forward Computation
	Example Functions in a Computation Graph
	Common Functions
	Jacobians

	Practical Issues
	Shape
	Propagating a Linear Transformation of the Gradient

