All of Backpropagation in Two Pages

Karl Stratos

You need to understand the chain rule (Appendix B-E) and DAGs (Appendix F)
before understanding backpropagation.

1 Computation Graph

A computation graph is a DAG G = (V, A) in which every node i € V is equipped
with, without loss of generality, a vector-valued variable z* of length d’. Each non-
input node i € Vi is additionally equipped with a function

fir X RY 5RY
Jj€pa(i)
The variables are populated as follows.
e An input node i € V expects a vector a’ € R and populates z¢ = a’.

e A non-input node i € Vyy recursively populates z° = a’ where
i i j
o' = ' () pare)

For convenience, we will define

xTr = (xi)ievl ar = (ai)ievl

xZI = (xj)jepa(i) al} = (aj)ija(i) VieV

Thus the variable z? at each node is a global function of x; evaluated at ar; it is a
local function of =} evaluated at aj.

2 Setting

We assume that the graph is connected and has an output node w € V such that
d¥ = 1. Then we can view the entire graph as a scalar-valued function of z,

£ X RY SR
eV

where £¥(xy) := a*. The output value £¥(ay) = a* can be computed in runtime
linear in |A| with the forward algorithm in Appendix G:

(a¥,m) « forward(G,w,ary)

where 7 € Il is a topological ordering on G that represents the order of nodes used
in computation. In particular, this populates x* = a* for all 1 € V.

3 Backpropagation

The goal is to calculate the gradient of £, evaluated at x; = ay, with respect to z°
for every i € V:

; dLY (LL'[) 1xd
Uil 04 € R 1
: dz* |, _q,)
In light of the chain rule (15), this is just
i ALY (zr) da’
=T Z dzxJ _dat| j_ @
j€ch(i) rr=arg ry=ay
1xdi di xdi

The first key observation is that the second term in the sum is simply the Jacobian
of f7, evaluated at =} = a’, with respect to z;. But because i € pa(j), this can be
analytically computed. For instance, if f/ = cmult where cmult : R4 x R¢ — R?
is defined as cmult(z,2’) := 2 ® 2’ (Appendix H), then the Jacobian of cmult,
evaluated at (z,z') = (a,a’), with respect to x is

d © a')

- = diag(a’) € R™*?

(z,2")=(a,a’)

The second key observation is that the first term in the sum is 2/, which can be
recursively computed. In the base case j = w, this value is
dﬁw(I])
dx¥

e

= = 1
dz¥

[T p——
Tr=ay

Try=arg

The following “backpropagation” procedure computes the value of z* for every i # w
in runtime linear in |A|.

backpropagation
Input: computation graph G = (V, A) in which z* = o’ is populated for all i € V,
topological ordering 7 € Ilz

e Set w = 7(|V]) and initialize 2% = 1.
e Fork=[V|—1...1,

— Set i = (k) and compute

; s dx?

2t 2 ==

] Z dx?
Jj€ch(i)

rr=arg

Another way to view the algorithm is a sum-product algorithm on a DAG (Ap-
pendix F.2) since

dzt

dmin—l
in—1_ ip—1 dz® | i1 iy
Ty =ar Ty =ar

-2

ace (331) _ Z dx®

dxt dxin—1

dzin
Tr=ar (y..i,)EP(iw) ri=af

But this view is not necessary to see the correctness of the algorithm.

A Notation

The set of unit vectors in R” is denoted by S” := {v € R": |jv||, =1}. The i-
th standard basis vector in R™ is denoted by e; € {0,1}". The norm of a vector
x € R™ is denoted by ||z||: we assume a fixed choice of ||-|| (e.g., Euclidean), but we
make no assumption about the choice. The (n — 1)-dimensional probability simplex is
denoted by A" ! :={v € R": v >0,]|v||, = 1}. The component-wise multiplication
of vectors x, 2’ € R™ is denoted by x ® 2’ € R™. The concatenation of vectors € R
and 2 € R" is denoted by z ® 2’ € R™" . The sigmoid function is defined as
o(x) == (1 +exp(—x))~t. We write I,,x, to denote the n x n identity matrix, O,,x»
to denote the m x n zero matrix, 1,, and 0, to denote the n-dimensional vector of
ones and zeros. Given a vector v € R", diag(v) € R™*™ refers to a diagonal matrix
with [diag(v)];; = vs.

B Scalar-Valued Function of a Scalar Variable

Consider f: R — R and a € R.

B.1 Limit

The limit of f(z) as = approaches a is a constant L € R satisfying the following:
given any ¢ > 0, we can find 6 > 0 such that if x € R satisfies |z —a| < J, then
|f(z) — L] < e. In this case, we say the limit exists and write

lim f(z) =1L (3)

r—a
Theorem B.1. If the limit of f(x) as x approaches a exists, then it is unique.
f is continuous at a if f(a) = lim,_,, f(z). Note that f may not be continuous but
still have a limit at a.

B.2 Derivative

The derivative of f at a is a unique scalar f/(a) € R such that

pon £ = (@) + (@) — @)

T—a T —a

=0 (4)

This definition is equivalent to

We say f is differentiable at a if f'(a) exists.

B.3 Chain Rule

We write

to mean “the derivative of f : R — R with respect to parameter x when x = a”. This
is of course just f’(a), but what if we introduce g : R — R and want to compute

dg(f(x))

R
dr <

r=a

The central tool for this problem is the chain rule

dg(f(x)) dg(y)

dx - dy

)

dx (6)

r=a y=f(a) r=a

which can now be calculated as ¢’(f(a)) x f'(a). Why is this true? A non-rigorous
but illuminating argument is as follows. By the definition of the derivative (4)

9(y) ~ g(b) +¢'(b)(y — b) Vy.b€R
f(@) = f(a) + f'(a)(z — a) Va,a € R
Use y = f(z) and b = f(a), and expand f(x) by its linear approximation to have

9(f(2)) = g(f(a)) + ¢'(f(a)) f'(a)(z — a) Vr,b e R
This means that ¢'(f(a))f’(a) is the derivative of g(f(z)) with espect to z.

C Scalar-Valued Function of a Vector Variable

Consider f: R™ — R and a € R™.

C.1 Limit

The limit of a function of a vector variable is straightforward to generalizes from the
scalar-variable case. The limit of f(x) as x approaches a is a constant L € R
satisfying the following: given any € > 0, we can find 6 > 0 such that if z € R"”
satisfies ||z — a|| < J, then |f(z) — L| < e. The uniqueness and continuity are derived
similarly.

C.2 Directional/Partial Derivative

The directional derivative of f at a in the direction of v € §" is

D, f(a) := f,(0) = lim fla+tev) — fla)

e—0 €

(7)

where f, : R — R is defined by f,(t) := f(a + tv). This is a natural reduction to the
scalar-variable derivative (5) (equivalent when n = 1). The i-th partial derivative
of f at a is simply the directional derivative in the direction of e;:

of(a) flat,...;a;+¢€...,a,) — flar,...,an)

o, - Defle) =l .

C.3 Gradient

The gradient of f at a is a unique vector V f(a) € R such that
_ Ty —
o J@) ~ (@) + V(@) (z ~)

za ||z — all

=0 (8)

This is a natural generalization of the scalar-variable derivative (4) (equivalent when
n=1). We say f is differentiable at a if V f(a) exists.

Equivalently, the gradient of f at a is a unique vector V f(a) € R™ such that
D, f(a) =V f(a)v Vo e s” (9)

This version is useful because it tells us that for f(z) at x = a, =V f(a)/ ||V f(a)|| is
the direction with the maximum rate of decrease — ||V f(a)||*, Vf(a)/ ||V f(a)|| is the
direction with the maximum rate of increase ||V f (a)\|27 and any direction orthogonal
to Vf(a) does not change the function value.

C.4 Gradient as Partial Derivatives

It is easy to see that if f is differentiable at a, then the gradient must have the form

Vi(a)= <aggg?)aa{£j)> (10)

because the gradient must satisfy [Vf(a)]; = Vf(a) e; = De,f(a) = %f—g’) for all
i € {1...n} by definition (9). However, f may not be differentiable at a even if
all partial and directional derivatives exist at a. The following result allows us to
eliminate this subtlety.

Theorem C.1. If the partial derivatives of f are continuous around a, then f is
differentiable at a.

We generally only discuss functions with continuous partial derivatives (thus differ-
entiable), so we will use (10) as a definition of the gradient.

D Vector-Valued Function of a Vector Variable

Consider f : R® — R™ and a € R". We will view f : R® — R™ simply as a
concatenation of fy ... f,, : R® — R. That is,

fi(z)
f(z) = : Ve € R
fm ()
D.1 Total Derivative
The total derivative of f at a is a unique matrix 7/ € R™*™ such that

o 1@ = (@ + T @ = a))

a—a ||z — all

=0 (11)

This is a natural generalization of the gradient (8) (equivalent when m = 1): the
linear function f(a) + T (z — a) is a linear approximation of f(x) around a. We say
f is differentiable at a if T exists.

D.2 Total Derivative as Jacobian

It is easy to see that when f ... f,, are differentiable, we have

Vfl (G)T
T = : =: Jy(a) (12)
V fm(a)®

where the matrix Jy(a) € R™*™ whose i-th row is the gradient of f; at a is called
the Jacobian of f at a. Thus we will equate the Jacobian with the total derivative.
It is useful to view the Jacobian in terms of scalar derivatives: the (4, j)-th value of
Jr(a) € R™*"™ is the derivative of f; : R — R with respect to z; € R when z = q,

[Jr(a)lij=—— (13)
M dy |,
D.3 Chain Rule
We now revisit the chain rule. We write
ZAC
dr |,_,

to mean “the Jacobian of f : R” — R™ with respect to parameter x when =z = a”.
This is of course just Jy(a), but what if we introduce ¢g : R™ — R? and want to
compute

dg(f(x))

c Rdx n
dx

r=a

Beautifully, the chain rule takes the same form in (14):

dg(f(z)) _ dg(y) df (x)
dx p—a o dy y=F(a) dx |,_, (14)
— — pp

which can now be calculated as matrix product J,(f(a))Jr(a). We can again convince
ourselves that this is true by using the definition of the total derivative (11) to derive

9(f(2)) = g(f(a)) + Jo(f(a))Js (a)(x — a) Va,be R

This means that J,(f(a))J¢(a) is the total derivative of g(f(x)) with respect to z.

Sum over derivatives. In scalar form, the chain rule states that the derivative of
9i(f(x)) € R with respect to z; € R is

% dfk (.7;‘)
y=f(a) dz;

dgi(f(z)) N~ dgi(y)
a _,; dyp,

dl‘j

r= r=a

This is almost the same as the scalar-variable chain rule (6) except that we sum over
partial contributions from x; through m arguments yx = fi(z) in g(y1 - .. Ym)-

Sum over Jacobians. Sometimes it is useful to view g : R™ — R? as a function of
multiple vectors instead of one. Let R; ... Rk be any K-partition of indices {1...m}
and define f®) : R” — RIEZ| by f*) () = (fi(z))icr,. We now view g as a function

g : Rl o RIFx] RE

that takes K input vectors y™ ...y where y*) = f(*) (z). The chain rule states
that

K
dg(f(x))| _ 3 dg(y™,....y") df M (z) (15)
dx _ dy(F) _ dx _
r=a k=1 y—f(a)I r=a
dxn dx|Ry| |Ry|xn

where y = f(a) means y*) = f*)(a) for all k € {1...K}. If K = 1, we recover the
single-vector case (14).

E Tensor-Valued Function of a Tensor Variable

Now that we have covered the case of a vector-valued function of a vector variable,
we can easily extend it to the general case of

f:Rnlx---XnN _)lex---me

with input tensor A € R™* X"~ This is achieved by “vectorizing” the tensor. For
example, A is viewed as a vector of length (n; ---ny) whose indices

ie{l...(n1---nn)}
are in one-to-one correspondence with tuples

(1'17...,2'M)€{1...nl}><---><{1...nM}

Let ind(¢1,...,457) denote vector index corresponding to the tensor index tuple
(i1, ...,%p). Then the total derivative of f at A is viewed as a “matrix” of dimensions
(mq---mpr) X (ng -+ -ny) with elements

df(X) _ dfily---,iM(X) (16)

{dX ‘X—A:|ind(i1,...,iM),ind(jh,..,jN) de1,~-~JN X=A

Chain rule. Suppose we introduce

g:lex-ume *}Rdlx---xdp

and want to compute the total derivative of g(f(X)) with respect to X at A. Again
taking the vectorized view, we can invoke the chain rule in (14) and calculate

dg(f(X))‘ _ dgly) df(X)‘

X |y_4 dy |,_sen dX | y_4
_— 1 L 1 | ——
(dl---dD)X(n1~~-nN) (dl"'dD)X(ml"‘mZW) (mlmM)X(nlnN)

Equivalently, the chain rule states that the total derivative is a (D + N)-th-order

tensor of dimensions d; X -+ X dp X ny X -++ X ny whose (i1,...,ip,j1, - ,jn)-th
element is
dgil,m,iD(f(X))‘ _ i % dgil ,,,,, iD (B) % dfklmkM (X)
dXji - jn X=A =1 kag—=1 ABp,,... ks B=f(A) dXj o gn |x=a

F Directed Acyclic Graph (DAG)

F.1 Terminology

A directed graph is a pair G = (V, A) where V = {1...]V|} is a set of nodes and
A €V xV is a set of directed arcs. We sometimes denote the head and tail of an
arc a = (i,j) by a” =i and a* = j. A directed acylic graph (DAG) is a directed
graph with no cycles. Equivalently, a DAG is a directed graph with a topological
ordering: a sequence w of V such that for every arc (i,j) € A, i comes before j in
m. Let IIg denote the set of all topological orderings in G.

Given a node i € V, we denote the set of its parents by pa(i) := {j € V : (j,i) € A}
and the set of its children by ch(i) :={j € V : (i,j) € A}. Wesay i € V is a input
node if pa(i) = @. Let Vi and Vi denote the set of input and non-input nodes:
together, they form a partition of V. We say ¢ € V is an output node if ch(i) = @.
The set of paths from i € V to j € V where i # j is

P(i,j):={(a1...a,) € A" : n>2al =ial, =ja}_, ZaZVk:Z..n}

Denote the set of nodes that can reach j € V by p(j) :=={i € V : |P(4,j)| > 1}. Here
is an example of a DAG (input nodes shaded for readability):

o @ i oO—®

V= {1,2,3,4,5,6}
A= {(173)7 (1, 5)7 (2,4), (374)7 (47 6)7 (57 6)}

pa(4) = {2,3}

ch(1) = {3,5}
g ={(1,2,3,4,5,6), (2,1,3,4,5,6)}
Vi ={1,2}
Vv ={3,4,5,6}

P(1,6) = {((1,3), (3,4), (4,6)), ((1,5),(5,6))}
P9 = (4. (4))
P(2,5) =
p(6) = {1 ,3,4,5}
p(5) =
p(4) = {1,2,3}

F.2 Sum-Product Algorithm on DAGs

Let Q be any set equipped with associative binary operations + and *. We assume
that the multiplicative operation x is distributive over +. We assume that the additive
operation + is commutative but the multiplicative operation * may not be. For

instance, Q can be the set of matrices and (+,) can be the matrix addition and
multiplication (applicable only to matrices with correct dimensions).

Suppose we have a DAG G = (V, A) in which each arc (i,j) € A is associated with
Q"7 € Q. A computation of interest is: given the last node ¢t € V in a topological
ordering 7, calculate

pls)i= 3 (@U@ (17)

(ay...an)€EP(s,t)

for all reachable s € p(t). Note the reverse order of multiplication: because * is not
commutative, it will be important to respect this order. For instance, in the above
example DAG with ¢ = 6, we have

‘U,(l) _ (Q4—>6 % Q3~>4 % Q1~>3) + (Q5~>6 % QIHS)

Explicitly summing over all paths is not a good idea since the number of paths in
P(s,t) may grow exponentially in the length of a path. For instance, in the following
DAG

the number of paths in P(1,8) is 35 = 729. However, observe that:
o If s € pa(t):

pu(s) = Q"

M(S) = Z (Qafz*)afn k oo 0k Qag%a; *k Qd’f*}di)

(alu-an)ep(svt)

Z Z (Qaﬁ,—mﬁb K oe ok Qag_m; . QS_”.)

i€ch(s) (az...an)EP(i,t)

Z Z Qaﬁﬁa; K oee % Qag%a; % Qs%i

i€ch(s) \(az...an)EP(i,t)

Y nl)

i€ch(s)

where the third equality uses the distributivity of % over +.

Thus we can use the following one-liner dynamic programming algorithm.

Input: G = (V, A), topological ordering « € Ilg, t = w(|V])
Output: u(s) in (17) for all s € p(t)

e Fori=|V|—1...1, set s = 7(i) and compute

(s) = { Q7" if s € pa(t)
e = Ejgch(s) p(j) x Q%7 else

It is critical to follow a reverse topological ordering since it guarantees that p(j) is
computed for all children j of s before p(s) is computed. The number of computation
steps is |A[: in the example above, it is 51 < 729.

G Forward Computation

forward
Input: computation graph G = (V, A), output node w € V, input value as
Output: £¥(zr) := z* evaluated at as, topological ordering =« € Ilg

e a¢* + forward-rec(G,w,ar, 7 < ())

e Return (a®, 7).

forward-rec
Input: computation graph G = (V, A), i € V, input value as, topological order-
ing in construction m

e If i € V7 or @’ has already been calculated, just return a'.
e Otherwise,

— Calculate @’ + forward-rec(G,ar, j,7) for each j € pa(i).

— Set m < 7 + (i) and return z‘ < f* ((aj)jepa(i>).

10

H Example Functions

H.1 Common Functions

add :R? x R? — R4 add(z,z') := x + 2’
cmult :R? x R — R? cmult(z,2') ;=2 ©a’
concat :R? x R — R4 concat(z,z’) == x ® 2’
mult ;R4 x R x4y gexd mult(U,V) := UV
pick :RY x {1...d} = R pick(z,1) :=
d
pnls :R? x Z - R puls(z,1) :=log Zexp(xj) — @
j=1
pow :R? x Z — R? pow,(z,n) := z}
tanh :R? — R? tanh;(x) := tanh(z;)
1
logit :R? — R? logit, (z) :=
ogi — ogit, (x) T+ oxp(—z1)
sm :R? — R? sm;(x) := exp(zi)
Z]‘:l exp(z;)
H.2 Jacobians
Multi-argument functions.
d ! d !
add do +) = laxd (z + ') = Iyxa
dz dx’
d ! d !
cmult % = diag(z’) (xd(;/x) _ diag(x)
d(z @ a’) Taxa d(z & a') Oaxar
t bt i =
conca . |:Od’><d de’ Ty s
dUV]; [Vi, ifi=k dUV]; | U ifj=1
mult AU, 0 else dVii 0 else
ick
pick dpick(z,1) _ e
dz
) dpnls(z,l) | sm;(z)—1 ifi=1
pRis dx; B sm;(z) else
ow dpow,;(z,n) [nxal™' ifi=j
P dzx; N 0 else

in a Computation Graph

11

Single-argument functions.

. _ N2 e
tanh dtanh;(z) [1—tanh(z;)* ifi=
dzx; 0 else
logit dlogit(z); _ [logit;(z) x (1 — logit;(z)) ifi=
dz; 0 else
sm — =

dsm;(z) { smy(z) x (1 —smy(z)) ifi=j

dz; —sm,;(x) X sm;(x) else

I Practical Issues

1.1 Shape

Although we have followed thg standard notation in vector calculus and defined the
Jacobian of f7 : Xiepatj) RY — R? with respect to z’ to be a (d/ x d*) matrix
so that 2¢ € R¥4" in (2) is a row vector, in practice we want to make Z% a column
vector to match the shape of 2* € R%" (which we usually assume as a column vector).
This is easily achieved by working with the transpose of (2). This means that we

directly compute z* as a column vector of length d* given by summing over products
of a (d" x d’) matrix and a column vector of length d”,

2 = Z J x4 (18)

j€ch(i)
where J7 € R4 % s the transpose of the Jacobian, that is

lel _ df/ (ZUJ[)
' dx;,

J—d
Tr=0ay

I.2 Propagating a Linear Transformation of the Gradient

Consider any node with a local function f with output dimension d. For each of its
parent variables p € R¥ let g? € R denote the gradient of p initialized to zero.
Assuming that the gradient vector of the current node g € R? is complete, in light
of (18) and the reverse topological traversal in backpropagation, the only calculation
we need to perform is: for each parent variable p,

9" 9"+ Jig

where J]’c) € R¥*d4 denotes the Jacobian of f with respect to p. Thus a central
computational issue is to calculate the matrix-vector product J}’g as efficiently as
possible. Rather than explicitly calculating the matrix J? and then calculating the
product, we use the closed-form expressions given below (obtained by using Jacobians
in Section H.2).

12

Multi-argument functions.

add (g €RY) Jii.n9=g Trvan9 =9
cmult (g € RY) Joong =1 Og J(wz/@z/)g =r0yg
concat (g € R4 Jowend = 91:d JGwen9 = ga+r:ar
mult (g € R4 Jvyg =gV Jovyg=U"g
pick (9 €R) Sk 9 = g€
pols (9 €R) Jo 509 = 9(sm(z) — e)
pow (g €RY) JZ L (p g =npow(z,n—1)0g

Single-argument functions.

d

sm(g€RY) Jin =sm(z)Og - (Z[sm<x> © g}z—) sm(z)

=1

13

	Computation Graph
	Setting
	Backpropagation
	Notation
	Scalar-Valued Function of a Scalar Variable
	Limit
	Derivative
	Chain Rule

	Scalar-Valued Function of a Vector Variable
	Limit
	Directional/Partial Derivative
	Gradient
	Gradient as Partial Derivatives

	Vector-Valued Function of a Vector Variable
	Total Derivative
	Total Derivative as Jacobian
	Chain Rule

	Tensor-Valued Function of a Tensor Variable
	Directed Acyclic Graph (DAG)
	Terminology
	Sum-Product Algorithm on DAGs

	Forward Computation
	Example Functions in a Computation Graph
	Common Functions
	Jacobians

	Practical Issues
	Shape
	Propagating a Linear Transformation of the Gradient

