All of Backpropagation in Two Pages*

Karl Stratos

You need to understand the chain rule (Appendix B-E) and DAGs (Appendix F) before understanding backpropagation.

1 Computation Graph

A computation graph is a DAG $G = (V, A)$ in which every node $i \in V$ is equipped with, without loss of generality, a vector-valued variable x^i of length d^i. Each non-input node $i \in V_N$ is additionally equipped with a function $f^i : \prod_{j \in \text{pa}(i)} \mathbb{R}^{d^j} \to \mathbb{R}^{d^i}$.

The variables are populated as follows.

- An input node $i \in V_I$ expects a vector $a^i \in \mathbb{R}^{d^i}$ and populates $x^i = a^i$.
- A non-input node $i \in V_N$ recursively populates $x^i = a^i$ where
 $$a^i := f^i \left(\left(x^j \right)_{j \in \text{pa}(i)} \right)$$

For convenience, we will define

$$x_I := (x^i)_{i \in V_I}$$
$$a_I := (a^i)_{i \in V_I}$$
$$x^i_I := (x^j)_{j \in \text{pa}(i)}$$
$$a^i_I := (a^j)_{j \in \text{pa}(i)}$$

Thus the variable x^i at each node is a global function of x_I evaluated at a_I; it is a local function of x^i_I evaluated at a^i_I.

2 Setting

We assume that the graph is connected and has an output node $\omega \in V$ such that $d^\omega = 1$. Then we can view the entire graph as a scalar-valued function of x_I,

$$\mathcal{L}^\omega : \prod_{i \in V_I} \mathbb{R}^{d^i} \to \mathbb{R}$$

where $\mathcal{L}^\omega(x_I) := x^\omega$. The output value $\mathcal{L}^\omega(a_I) = a^\omega$ can be computed in runtime linear in $|A|$ with the forward algorithm in Appendix G:

$$(a^\omega, \pi) \leftarrow \text{forward}(G, \omega, a_I)$$

where $\pi \in \Pi_G$ is a topological ordering on G that represents the order of nodes used in computation. In particular, this populates $x^i = a^i$ for all $i \in V$.

*Code: https://github.com/karlstratos/simplenet
3 Backpropagation

The goal is to calculate the gradient of L^ω, evaluated at $x_I = a_I$, with respect to x^i for every $i \in V$:

$$z^i := \frac{dL^\omega(x_I)}{dx^i} \bigg|_{x_I = a_I} \in \mathbb{R}^{1 \times d^i}$$ (1)

In light of the chain rule (15), this is just

$$z^i = \sum_{j \in \text{ch}(i)} \frac{dL^\omega(x_I)}{dx^j} \bigg|_{x_I = a_I} \cdot \frac{dx^j}{dx^i} \bigg|_{x_I = a_I} \in \mathbb{R}^{1 \times d^i} \, \text{(2)}$$

The first key observation is that the second term in the sum is simply the Jacobian of f^j, evaluated at $x^I_j = a^I_j$, with respect to x_i. But because $i \in \text{pa}(j)$, this can be analytically computed. For instance, if $f^j = \text{cmult}$ where $\text{cmult} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is defined as $\text{cmult}(x, x') := x \odot x'$ (Appendix H), then the Jacobian of cmult, evaluated at $(x, x') = (a, a')$, with respect to x is

$$\frac{d(x \odot x')}{dx} \bigg|_{(x, x') = (a, a')} = \text{diag}(a') \in \mathbb{R}^{d \times d}$$

The second key observation is that the first term in the sum is z^j, which can be recursively computed. In the base case $j = \omega$, this value is

$$\frac{dL^\omega(x_I)}{dx^\omega} \bigg|_{x_I = a_I} = \frac{dx^\omega}{dx^1} \bigg|_{x_I^1 = a_I^1} = 1$$

The following “backpropagation” procedure computes the value of z^i for every $i \neq \omega$ in runtime linear in $|A|$.

backpropagation

Input: computation graph $G = (V, A)$ in which $x^i = a^i$ is populated for all $i \in V$, topological ordering $\pi \in \Pi_G$

- Set $\omega = \pi(|V|)$ and initialize $z^\omega = 1$.
- For $k = |V| - 1 \ldots 1$,
 - Set $i = \pi(k)$ and compute
 $$z^i := \sum_{j \in \text{ch}(i)} z^j \frac{dx^i}{dx^j} \bigg|_{x_I^j = a_I^j}$$

As observed in the note by Michael Collins, another way to view the algorithm is a sum-product algorithm on a DAG (Appendix F.2) since

$$\frac{dL^\omega(x_I)}{dx^i} \bigg|_{x_I^1 = a_I^1} = \sum_{(i_1 \ldots i_n) \in P(i, \omega)} \frac{dx^\omega}{dx^{i_n-1}} \bigg|_{x_I^{i_n-1} = a_I^{i_n-1}} \cdot \cdots \cdot \frac{dx^2}{dx^{i_1}} \bigg|_{x_I^{i_1} = a_I^{i_1}}$$

But this view is not necessary to see the correctness of the algorithm.
A Notation

The set of unit vectors in \(\mathbb{R}^n\) is denoted by \(S^n := \{v \in \mathbb{R}^n : \|v\|_2 = 1\}\). The \(i\)-th standard basis vector in \(\mathbb{R}^n\) is denoted by \(e_i \in \{0,1\}^n\). The norm of a vector \(x \in \mathbb{R}^n\) is denoted by \(\|x\|\): we assume a fixed choice of \(\|\cdot\|\) (e.g., Euclidean), but we make no assumption about the choice. The \((n-1)\)-dimensional probability simplex is denoted by \(\Delta_{n-1} := \{v \in \mathbb{R}^n : v \geq 0, \|v\|_1 = 1\}\). The component-wise multiplication of vectors \(x,x' \in \mathbb{R}^n\) is denoted by \(x \odot x' \in \mathbb{R}^n\). The concatenation of vectors \(x \in \mathbb{R}^n\) and \(x' \in \mathbb{R}^n'\) is denoted by \(x \oplus x' \in \mathbb{R}^{n+n'}\). The sigmoid function is defined as \(\sigma(x) := \frac{1}{1 + \exp(-x)} - 1\). We write \(I_{n \times n}\) to denote the \(n \times n\) identity matrix, \(0_{m \times n}\) to denote the \(m \times n\) zero matrix, \(1_n\) and \(0_n\) to denote the \(n\)-dimensional vector of ones and zeros. Given a vector \(v \in \mathbb{R}^n\), \(\text{diag}(v) \in \mathbb{R}^{n \times n}\) refers to a diagonal matrix with \([\text{diag}(v)]_{i,i} = v_i\).

B Scalar-Valued Function of a Scalar Variable

Consider \(f : \mathbb{R} \to \mathbb{R}\) and \(a \in \mathbb{R}\).

B.1 Limit

The limit of \(f(x)\) as \(x\) approaches \(a\) is a constant \(L \in \mathbb{R}\) satisfying the following: given any \(\epsilon > 0\), we can find \(\delta > 0\) such that if \(x \in \mathbb{R}\) satisfies \(|x - a| < \delta\), then \(|f(x) - L| < \epsilon\). In this case, we say the limit exists and write

\[
\lim_{x \to a} f(x) = L
\]

(3)

Theorem B.1. If the limit of \(f(x)\) as \(x\) approaches \(a\) exists, then it is unique.

\(f\) is continuous at \(a\) if \(f(a) = \lim_{x \to a} f(x)\). Note that \(f\) may not be continuous but still have a limit at \(a\).

B.2 Derivative

The derivative of \(f\) at \(a\) is a unique scalar \(f'(a) \in \mathbb{R}\) such that

\[
\lim_{x \to a} \frac{f(x) - (f(a) + f'(a)(x - a))}{x - a} = 0
\]

(4)

This definition is equivalent to

\[
f'(a) := \lim_{\epsilon \to 0} \frac{f(a + \epsilon) - f(a)}{\epsilon}
\]

(5)

We say \(f\) is differentiable at \(a\) if \(f'(a)\) exists.

B.3 Chain Rule

We write

\[
\frac{df(x)}{dx} \bigg|_{x=a} \in \mathbb{R}
\]
to mean “the derivative of \(f : \mathbb{R} \to \mathbb{R} \) with respect to parameter \(x \) when \(x = a \).” This is of course just \(f'(a) \), but what if we introduce \(g : \mathbb{R} \to \mathbb{R} \) and want to compute
\[
\left. \frac{dg(f(x))}{dx} \right|_{x=a}
\]

The central tool for this problem is the chain rule
\[
\left. \frac{dg(f(x))}{dx} \right|_{x=a} = \frac{dg(y)}{dy} \bigg|_{y=f(a)} \times \frac{df(x)}{dx} \bigg|_{x=a}
\]
which can now be calculated as \(g'(f(a)) \times f'(a) \). Why is this true? A non-rigorous but illuminating argument is as follows. By the definition of the derivative (4)
\[
g(y) \approx g(b) + g'(b)(y - b) \quad \forall y, b \in \mathbb{R}
\]
\[
f(x) \approx f(a) + f'(a)(x - a) \quad \forall x, a \in \mathbb{R}
\]
Use \(y = f(x) \) and \(b = f(a) \), and expand \(f(x) \) by its linear approximation to have
\[
g(f(x)) \approx g(f(a)) + g'(f(a)) f'(a)(x - a) \quad \forall x, b \in \mathbb{R}
\]
This means that \(g'(f(a)) f'(a) \) is the derivative of \(g(f(x)) \) with respect to \(x \).

\section{Scalar-Valued Function of a Vector Variable}

Consider \(f : \mathbb{R}^n \to \mathbb{R} \) and \(a \in \mathbb{R}^n \).

\subsection{Limit}

The limit of a function of a vector variable is straightforward to generalize from the scalar-variable case. The limit of \(f(x) \) as \(x \) approaches \(a \) is a constant \(L \in \mathbb{R} \) satisfying the following: given any \(\epsilon > 0 \), we can find \(\delta > 0 \) such that if \(x \in \mathbb{R}^n \) satisfies \(||x - a|| < \delta \), then \(|f(x) - L| < \epsilon \). The uniqueness and continuity are derived similarly.

\subsection{Directional/Partial Derivative}

The directional derivative of \(f \) at \(a \) in the direction of \(v \in S^n \) is
\[
D_v f(a) := f'_v(0) = \lim_{\epsilon \to 0} \frac{f(a + \epsilon v) - f(a)}{\epsilon}
\]
where \(f_v : \mathbb{R} \to \mathbb{R} \) is defined by \(f_v(t) := f(a + tv) \). This is a natural reduction to the scalar-variable derivative (5) (equivalent when \(n = 1 \)). The \(i \)-th partial derivative of \(f \) at \(a \) is simply the directional derivative in the direction of \(e_i \):
\[
\frac{\partial f(a)}{\partial x_i} := D_{e_i} f(a) = \lim_{\epsilon \to 0} \frac{f(a_1, \ldots, a_i + \epsilon, \ldots, a_n) - f(a_1, \ldots, a_n)}{\epsilon}
\]

\subsection{Gradient}

The gradient of \(f \) at \(a \) is a unique vector \(\nabla f(a) \in \mathbb{R}^n \) such that
\[
\lim_{x \to a} \frac{f(x) - (f(a) + \nabla f(a)^T(x - a))}{||x - a||} = 0
\]
This is a natural generalization of the scalar-variable derivative (4) (equivalent when \(n = 1 \)). We say \(f \) is **differentiable at** \(a \) if \(\nabla f(a) \) exists.

Equivalently, the gradient of \(f \) at \(a \) is a unique vector \(\nabla f(a) \in \mathbb{R}^n \) such that

\[
D_v f(a) = \nabla f(a)^\top v \quad \forall v \in \mathcal{S}^n
\]

This version is useful because it tells us that for \(f(x) \) at \(x = a \), \(-\nabla f(a)/\|\nabla f(a)\|^2\) is the direction with the maximum rate of decrease \(-\|\nabla f(a)\|^2\), \(\nabla f(a)/\|\nabla f(a)\|^2\) is the direction with the maximum rate of increase \(\|\nabla f(a)\|^2\), and any direction orthogonal to \(\nabla f(a) \) does not change the function value.

C.4 Gradient as Partial Derivatives

It is easy to see that if \(f \) is differentiable at \(a \), then the gradient must have the form

\[
\nabla f(a) = \begin{pmatrix}
\frac{\partial f(a)}{\partial x_1} \\
\vdots \\
\frac{\partial f(a)}{\partial x_n}
\end{pmatrix}
\]

(10)

because the gradient must satisfy \([\nabla f(a)]_i = \nabla f(a)^\top e_i = D_{e_i} f(a) = \frac{\partial f(a)}{\partial x_i}\) for all \(i \in \{1 \ldots n\} \) by definition (9). However, \(f \) may not be differentiable at \(a \) even if all partial and directional derivatives exist at \(a \). The following result allows us to eliminate this subtlety.

Theorem C.1. *If the partial derivatives of \(f \) are continuous around \(a \), then \(f \) is differentiable at \(a \).*

We generally only discuss functions with continuous partial derivatives (thus differentiable), so we will use (10) as a definition of the gradient.

D Vector-Valued Function of a Vector Variable

Consider \(f : \mathbb{R}^n \to \mathbb{R}^m \) and \(a \in \mathbb{R}^n \). We will view \(f : \mathbb{R}^n \to \mathbb{R}^m \) simply as a concatenation of \(f_1 \ldots f_m : \mathbb{R}^n \to \mathbb{R} \). That is,

\[
f(x) = \begin{bmatrix}
f_1(x) \\
\vdots \\
f_m(x)
\end{bmatrix} \quad \forall x \in \mathbb{R}^n
\]

D.1 Total Derivative

The **total derivative** of \(f \) at \(a \) is a unique matrix \(T^f_a \in \mathbb{R}^{m \times n} \) such that

\[
\lim_{x \to a} \frac{||f(x) - (f(a) + T^f_a (x - a))||}{||x - a||} = 0
\]

(11)

This is a natural generalization of the gradient (8) (equivalent when \(m = 1 \)): the linear function \(f(a) + T^f_a (x - a) \) is a linear approximation of \(f(x) \) around \(a \). We say \(f \) is **differentiable at** \(a \) if \(T^f_a \) exists.
D.2 Total Derivative as Jacobian

It is easy to see that when \(f_1 \ldots f_m \) are differentiable, we have

\[
T^f_a = \begin{bmatrix}
\nabla f_1(a)^T \\
\vdots \\
\nabla f_m(a)^T
\end{bmatrix} =: J_f(a) \quad (12)
\]

where the matrix \(J_f(a) \in \mathbb{R}^{m \times n} \) whose \(i \)-th row is the gradient of \(f_i \) at \(a \) is called the **Jacobian** of \(f \) at \(a \). Thus we will equate the Jacobian with the total derivative.

It is useful to view the Jacobian in terms of scalar derivatives: the \((i,j)\)-th value of \(J_f(a) \in \mathbb{R}^{m \times n} \) is the derivative of \(f_i : \mathbb{R} \rightarrow \mathbb{R} \) with respect to \(x_j \in \mathbb{R} \) when \(x = a \),

\[
[J_f(a)]_{i,j} = \left. \frac{df_i(x)}{dx_j} \right|_{x=a} \quad (13)
\]

D.3 Chain Rule

We now revisit the chain rule. We write

\[
\left. \frac{df(x)}{dx} \right|_{x=a} \in \mathbb{R}^{m \times n}
\]

to mean “the Jacobian of \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) with respect to parameter \(x \) when \(x = a \).” This is of course just \(J_f(a) \), but what if we introduce \(g : \mathbb{R}^m \rightarrow \mathbb{R}^d \) and want to compute

\[
\left. \frac{dg(f(x))}{dx} \right|_{x=a} \in \mathbb{R}^{d \times n}
\]

Beautifully, the chain rule takes the same form in (14):

\[
\left. \frac{dg(f(x))}{dx} \right|_{x=a} = \left. \frac{dg(y)}{dy} \right|_{y=f(a)} \left. \frac{df(x)}{dx} \right|_{x=a} \quad (14)
\]

which can now be calculated as matrix product \(J_g(f(a))J_f(a) \). We can again convince ourselves that this is true by using the definition of the total derivative (11) to derive

\[
g(f(x)) \approx g(f(a)) + J_g(f(a))J_f(a)(x - a) \quad \forall x, b \in \mathbb{R}
\]

This means that \(J_g(f(a))J_f(a) \) is the total derivative of \(g(f(x)) \) with respect to \(x \).

Sum over derivatives. In scalar form, the chain rule states that the derivative of \(g_i(f(x)) \in \mathbb{R} \) with respect to \(x_j \in \mathbb{R} \) is

\[
\left. \frac{dg_i(f(x))}{dx_j} \right|_{x=a} = \sum_{k=1}^{m} \left. \frac{dg_i(y)}{dy_k} \right|_{y=f(a)} \times \left. \frac{df_k(x)}{dx_j} \right|_{x=a}
\]

This is almost the same as the scalar-variable chain rule (6) except that we sum over partial contributions from \(x_j \) through \(m \) arguments \(y_k = f_k(x) \) in \(g(y_1 \ldots y_m) \).
E Tensor-Valued Function of a Tensor Variable

Now that we have covered the case of a vector-valued function of a vector variable, we can easily extend it to the general case of

\[f : \mathbb{R}^{n_1 \times \cdots \times n_N} \rightarrow \mathbb{R}^{m_1 \times \cdots \times m_M} \]

with input tensor \(A \in \mathbb{R}^{n_1 \times \cdots \times n_N} \). This is achieved by “vectorizing” the tensor. For example, \(A \) is viewed as a vector of length \((n_1 \cdots n_N)\) whose indices

\[i \in \{1 \cdots (n_1 \cdots n_N)\} \]

are in one-to-one correspondence with tuples

\[(i_1, \ldots, i_M) \in \{1 \cdots n_1\} \times \cdots \times \{1 \cdots n_M\} \]

Let \(\text{ind}(i_1, \ldots, i_M) \) denote vector index corresponding to the tensor index tuple \((i_1, \ldots, i_M)\). Then the total derivative of \(f \) at \(A \) is viewed as a “matrix” of dimensions \((m_1 \cdots m_M) \times (n_1 \cdots n_N)\) with elements

\[
\begin{bmatrix}
\frac{df(X)}{dX} \\
X = A
\end{bmatrix}_{\text{ind}(i_1, \ldots, i_M), \text{ind}(j_1, \ldots, j_N)} = \frac{d f_{i_1 \ldots i_M}(X)}{d X_{j_1 \ldots j_N}} \bigg|_{X = A}
\]

(16)

Chain rule. Suppose we introduce

\[g : \mathbb{R}^{m_1 \times \cdots \times m_M} \rightarrow \mathbb{R}^{d_1 \times \cdots \times d_D} \]

and want to compute the total derivative of \(g(f(X)) \) with respect to \(X \) at \(A \). Again taking the vectorized view, we can invoke the chain rule in (14) and calculate

\[
\frac{dg(f(X))}{dX} \bigg|_{X = A} = \frac{dg(y)}{dy} \bigg|_{y = f(A)} \frac{df(X)}{dX} \bigg|_{X = A}
\]

Equivalently, the chain rule states that the total derivative of \(g \) on \(f \) is a \((D + N)\)-th order tensor of dimensions \((d_1 \times \cdots \times d_D \times n_1 \times \cdots \times n_N)\) whose \((i_1, \ldots, i_D, j_1, \ldots, j_N)\)-th element is

\[
\frac{dg_{i_1 \ldots i_D}(f(X))}{dX_{j_1 \ldots j_N}} \bigg|_{X = A} = \sum_{k_1 = 1}^{m_1} \cdots \sum_{k_M = 1}^{m_M} \frac{dg_{i_1 \ldots i_D}(B)}{dB_{k_1 \ldots k_M}} \bigg|_{B = f(A)} \times \frac{df_{k_1 \ldots k_M}(X)}{dX_{j_1 \ldots j_N}} \bigg|_{X = A}
\]
F Directed Acyclic Graph (DAG)

F.1 Terminology

A **directed graph** is a pair $G = (V, A)$ where $V = \{1, \ldots, |V|\}$ is a set of nodes and $A \subseteq V \times V$ is a set of directed arcs. We sometimes denote the head and tail of an arc $a = (i, j)$ by $a^h = i$ and $a^t = j$. A **directed acyclic graph (DAG)** is a directed graph with no cycles. Equivalently, a DAG is a directed graph with a **topological ordering**: a sequence π of V such that for every arc $(i, j) \in A$, i comes before j in π. Let Π_G denote the set of all topological orderings in G.

Given a node $i \in V$, we denote the set of its parents by $\text{pa}(i) := \{j \in V : (j, i) \in A\}$ and the set of its children by $\text{ch}(i) := \{j \in V : (i, j) \in A\}$. We say $i \in V$ is an **input node** if $\text{pa}(i) = \emptyset$. Let V_I and V_N denote the set of input and non-input nodes: together, they form a partition of V. We say $i \in V$ is an **output node** if $\text{ch}(i) = \emptyset$.

The set of **paths** from $i \in V$ to $j \in V$ where $i \neq j$ is

$$P(i, j) := \{a_1 \ldots a_n \in A^n : n \geq 2, a_1^h = i, a_n^t = j, a_k^t = a_{k+1}^h \forall k = 2 \ldots n\}$$

Denote the set of nodes that can reach $j \in V$ by $\rho(j) := \{i \in V : |P(i, j)| \geq 1\}$. Here is an example of a DAG (input nodes shaded for readability):

```
1 --2 --3 --4 --5
  \  \\
   \  \\
   \  \\
   \  \\
   \  \\
    \  \\
     \  \\
     \  \\
     \  \\
     \  \\
     6
```

- $V = \{1, 2, 3, 4, 5, 6\}$
- $A = \{(1, 3), (1, 5), (2, 4), (3, 4), (4, 6), (5, 6)\}$
- $\text{pa}(4) = \{2, 3\}$
- $\text{ch}(1) = \{3, 5\}$
- $\Pi_G = \{(1, 2, 3, 4, 5, 6), (2, 1, 3, 4, 5, 6)\}$
- $V_I = \{1, 2\}$
- $V_N = \{3, 4, 5, 6\}$
- $P(1, 6) = \{((1, 3), (3, 4), (4, 6)), ((1, 5), (5, 6))\}$
- $P(2, 6) = \{((2, 4), (4, 6))\}$
- $P(2, 5) = \emptyset$
- $\rho(6) = \{1, 2, 3, 4, 5\}$
- $\rho(5) = \{1\}$
- $\rho(4) = \{1, 2, 3\}$

F.2 Sum-Product Algorithm on DAGs

Let Q be any set equipped with associative binary operations $+$ and \ast. We assume that the multiplicative operation \ast is distributive over $+$. We assume that the additive operation $+$ is commutative but the multiplicative operation \ast may not be. For
instance, \(Q \) can be the set of matrices and \((+,*\) can be the matrix addition and multiplication (applicable only to matrices with correct dimensions).

Suppose we have a DAG \(G = (V,A) \) in which each arc \((i,j) \in A\) is associated with \(Q^{i \to j} \in Q \). A computation of interest is: given the last node \(t \in V \) in a topological ordering \(\pi \), calculate

\[
\mu(s) := \sum_{(a_1, \ldots, a_n) \in P(s,t)} \left(Q^{a_n \to t} \ast \ldots \ast Q^{a_1 \to s} \right)
\]

for all reachable \(s \in \rho(t) \). Note the reverse order of multiplication: because \(* \) is not commutative, it will be important to respect this order. For instance, in the above example DAG with \(t = 6 \), we have

\[
\mu(1) = (Q^{4 \to 6} \ast Q^{3 \to 4} \ast Q^{1 \to 3}) + (Q^{5 \to 6} \ast Q^{1 \to 5})
\]

Explicitly summing over all paths is not a good idea since the number of paths in \(P(s,t) \) may grow exponentially in the length of a path. For instance, in the following DAG

![DAG Diagram](image)

the number of paths in \(P(1,8) \) is \(3^6 = 729 \). However, observe that:

- If \(s \in \text{pa}(t) \):
 \[
 \mu(s) = Q^{s \to t}
 \]

- If \(s \not\in \text{pa}(t) \):

 \[
 \mu(s) = \sum_{(a_1, \ldots, a_n) \in P(s,t)} \left(Q^{a_n \to t} \ast \ldots \ast Q^{a_1 \to s} \right)
 \]

 \[
 = \sum_{i \in \text{ch}(s)} \left(\sum_{(a_2, \ldots, a_n) \in P(i,t)} \left(Q^{a_n \to t} \ast \ldots \ast Q^{a_2 \to s} \ast Q^{a_1 \to s} \right) \right)
 \]

 \[
 = \sum_{i \in \text{ch}(s)} \mu(i) \ast Q^{s \to i}
 \]

 where the third equality uses the distributivity of \(* \) over \(+\).

Thus we can use the following one-liner dynamic programming algorithm.
Input: $G = (V,A)$, topological ordering $\pi \in \Pi_G$, $t = \pi(|V|)$
Output: $\mu(s)$ in (17) for all $s \in \rho(t)$

- For $i = |V| - 1 \ldots 1$, set $s = \pi(i)$ and compute

 $$\mu(s) = \begin{cases}
 Q^{s \rightarrow i} & \text{if } s \in \text{pa}(t) \\
 \sum_{j \in \text{ch}(s)} \mu(j) * Q^{s \rightarrow j} & \text{else}
 \end{cases}$$

It is critical to follow a reverse topological ordering since it guarantees that $\mu(j)$ is computed for all children j of s before $\mu(s)$ is computed. The number of computation steps is $|A|$: in the example above, it is $51 \ll 729$.

G Forward Computation

forward
Input: computation graph $G = (V,A)$, output node $\omega \in V$, input value a_I
Output: $L^{\omega}(x_I) := x^{\omega}$ evaluated at a_I, topological ordering $\pi \in \Pi_G$

- $a^{\omega} \leftarrow \text{forward-rec}(G,\omega,a_I,\pi \leftarrow ())$
- Return (a^{ω},π).

forward-rec
Input: computation graph $G = (V,A)$, $i \in V$, input value a_I, topological ordering in construction π

- If $i \in V_I$ or a^i has already been calculated, just return a^i.
- Otherwise,
 - Calculate $a^i \leftarrow \text{forward-rec}(G,a_I,j,\pi)$ for each $j \in \text{pa}(i)$.
 - Set $\pi \leftarrow \pi + (i)$ and return $x^i \leftarrow f^i \left((a^i)_{j \in \text{pa}(i)} \right)$.
H Example Functions in a Computation Graph

H.1 Common Functions

\[\text{add} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d \]
\[\text{cmult} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d \]
\[\text{concat} : \mathbb{R}^d \times \mathbb{R}^{d'} \rightarrow \mathbb{R}^{d+d'} \]
\[\text{mult} : \mathbb{R}^{d \times d''} \times \mathbb{R}^{d' \times d''} \rightarrow \mathbb{R}^{d \times d'} \]
\[\text{pick} : \mathbb{R}^d \times \{1, \ldots, d\} \rightarrow \mathbb{R} \]
\[\text{pnl} : \mathbb{R}^{d \times \mathbb{Z}} \rightarrow \mathbb{R} \]
\[\text{pow} : \mathbb{R}^d \times \mathbb{Z} \rightarrow \mathbb{R}^d \]
\[\text{tanh} : \mathbb{R}^d \rightarrow \mathbb{R}^d \]
\[\text{logit} : \mathbb{R}^d \rightarrow \mathbb{R}^d \]
\[\text{sm} : \mathbb{R}^d \rightarrow \mathbb{R}^d \]

H.2 Jacobians

Multi-argument functions.

\[\text{add} \quad \frac{d(x + x')}{dx} = I_{d \times d} \quad \frac{d(x + x')}{dx'} = I_{d \times d} \]
\[\text{cmult} \quad \frac{d(x \odot x')}{dx} = \text{diag}(x') \quad \frac{d(x \odot x')}{dx'} = \text{diag}(x) \]
\[\text{concat} \quad \frac{d(x \oplus x')}{dx} = \begin{bmatrix} I_{d \times d} \\ 0_{d' \times d} \end{bmatrix} \quad \frac{d(x \oplus x')}{dx'} = \begin{bmatrix} 0_{d \times d'} \\ I_{d' \times d'} \end{bmatrix} \]
\[\text{mult} \quad \frac{d[UV]_{i,j}}{dU_{k,l}} = \begin{cases} V_{i,j} & \text{if } i = k \\ 0 & \text{else} \end{cases} \quad \frac{d[UV]_{i,j}}{dV_{k,l}} = \begin{cases} U_{i,k} & \text{if } j = l \\ 0 & \text{else} \end{cases} \]
\[\text{pick} \quad \frac{dpick(x, l)}{dx} = \delta_l \]
\[\text{pnl} \quad \frac{dpnls(x, l)}{dx_i} = \begin{cases} \text{sm}_i(x) - 1 & \text{if } i = l \\ \text{sm}_i(x) & \text{else} \end{cases} \]
\[\text{pow} \quad \frac{dpow(x, n)}{dx_j} = \begin{cases} n \times x_i^{n-1} & \text{if } i = j \\ 0 & \text{else} \end{cases} \]
Single-argument functions.

\[
\begin{align*}
\frac{dtanh(x)}{dx} &= \begin{cases}
 1 - \tanh(x_i)^2 & \text{if } i = j \\
 0 & \text{else}
\end{cases} \\
\frac{d\logit(x)}{dx} &= \begin{cases}
 \logit_i(x) \times (1 - \logit_i(x)) & \text{if } i = j \\
 0 & \text{else}
\end{cases} \\
\frac{dsm_i(x)}{dx} &= \begin{cases}
 sm_i(x) \times (1 - sm_i(x)) & \text{if } i = j \\
 -sm_i(x) \times sm_j(x) & \text{else}
\end{cases}
\end{align*}
\]

I. Practical Issues

I.1 Shape

Although we have followed the standard notation in vector calculus and defined the Jacobian of \(f_j : x_{i \in pa(j)} \rightarrow R^d \) with respect to \(x^i \) to be a \((d_j \times d^i)\) matrix so that \(z^i \in R^{1 \times d^i} \) in (2) is a row vector, in practice we want to make \(z^i \) a column vector to match the shape of \(x^i \in R^{d^i} \) (which we usually assume as a column vector). This is easily achieved by working with the transpose of (2). This means that we directly compute \(z^i \) as a column vector of length \(d^i \) given by summing over products of a \((d^i \times d^j)\) matrix and a column vector of length \(d^j \),

\[
z^i = \sum_{j \in ch(i)} J^j \times z^j
\]

where \(J^j \in R^{d^j \times d^i} \) is the transpose of the Jacobian, that is

\[
J^j_{k,l} = \frac{df_j^l(x_j^i)}{dx_k^j} \bigg|_{x_j^i = a_j^i}
\]

I.2 Propagating a Linear Transformation of the Gradient

Consider any node with a local function \(f \) with output dimension \(d \). For each of its parent variables \(p \in R^{d^p} \), let \(g^p \in R^{d^p} \) denote the gradient of \(p \) initialized to zero. Assuming that the gradient vector of the current node \(g \in R^d \) is complete, in light of (18) and the reverse topological traversal in backpropagation, the only calculation we need to perform is: for each parent variable \(p \),

\[
g^p \leftarrow g^p + J_f^p g
\]

where \(J_f^p \in R^{d^p \times d} \) denotes the Jacobian of \(f \) with respect to \(p \). Thus a central computational issue is to calculate the matrix-vector product \(J_f^p g \) as efficiently as possible. Rather than explicitly calculating the matrix \(J_f^p \) and then calculating the product, we use the closed-form expressions given below (obtained by using Jacobians in Section H.2).
Multi-argument functions.

\[
\text{add} \ (g \in \mathbb{R}^d) \quad J^x_{(x+x')} g = g \\
\text{cmult} \ (g \in \mathbb{R}^d) \quad J^x_{(x\odot x')} g = x' \odot g \\
\text{concat} \ (g \in \mathbb{R}^{d+d'}) \quad J^x_{(x\oplus x')} g = g_{1:d} \\
\text{mult} \ (g \in \mathbb{R}^{d\times d'}) \quad J^x_{(UV)} g = gV^\top \\
\text{pick} \ (g \in \mathbb{R}) \quad J^x_{\text{pick}(x,l)} g = ge_l \\
\text{pnls} \ (g \in \mathbb{R}) \quad J^x_{\text{pnls}(x,l)} g = g(\text{sm}(x) - e_l) \\
\text{pow} \ (g \in \mathbb{R}^d) \quad J^x_{\text{pow}(x,n)} g = n\text{pow}(x, n-1) \odot g
\]

Single-argument functions.

\[
\text{sm} \ (g \in \mathbb{R}^d) \quad J^x_{\text{sm}(x)} = \text{sm}(x) \odot g - \left(\sum_{i=1}^d [\text{sm}(x) \odot g]_i \right) \text{sm}(x)
\]