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Abstract

This note derives fundamental tools for analytically minimizing f(x) ∈ R over a feasible set P defined by
inequality and equality constraints. Under certain conditions, a local optimum is a KKT point: a stationary point
of the Lagrangian where the gradient of f balances the gradients of the active constraints (18). The Lagrangian
is naturally motivated as an adversarial enforcement of the constraints (31). Switching the order of the players
leads to the simple yet elegant theory of duality, which allows us to guarantee the existence and optimality of a
KKT point for convex problems holding strong duality (Section 6). The convex theory extends to generalized
inequalities and can handle structured constraints such as positive-definiteness of a matrix (Section 7). More
generally, we may examine the geometry of feasible directions (Figure 1). Under mild requirements, most usefully
LICQ (i.e., active constraints have linearly independent gradients), feasible directions form a linear cone and
a theorem of the alternative forces every local optimum to satisfy the KKT conditions. Thus convex or not,
one can enumerate all KKT points to obtain 100% recall on globally optimal solutions. This allows us to easily
analyze nonconvex problems. For instance, we discover that a quadratic objective with mixed eigenvalues may
be full of saddle points (Lemma 4.4) but exactly solvable—one of the small miracles in optimization.

Cheatsheet for practitioners

• If f and the inequality constraints are convex; the equality constraints are affine; and either

– f and the inequality constraints are also affine (linear program), or

– The interior of P is not empty (aka. Slater’s condition);

then strong duality holds; any KKT point is a global minimum.

• Otherwise, first make sure that LICQ holds at all x ∈ P so that all local minima are KKT points. Then
find all KKT points x1 . . . xn ∈ P and select x⋆ = argmini f(xi).
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Figure 1: Linearizing the tangent cone allows for a simple geometric view in which feasible directions must move
“away” from the active constraint gradients (annotation in Appendix A.1).

1 Feasible Directions

Any hypothesis space P ⊆ Rd can be expressed with m inequality and r equality constraints:

P =
{
x ∈ Rd : h(x) ≤ 0m, l(x) = 0r

}
(1)

We assume that P is nonempty, and that hi(x) ∈ R and lj(x) ∈ R are continuously differentiable. P is not
necessarily closed, e.g., P =

{
x ∈ R : 1

x ≥ 0
}
= (0,∞). The set of feasible directions at x ∈ P is given by

T (x) =
{
t ∈ Rd : ∃ϵ > 0 such that x+ ηt ∈ P ∀η ∈ (0, ϵ)

}
(2)

(2) is also called the tangent cone.1 Note that T (x) is nontrivial only at boundary points where some contraint
is “active” since T (x) = Rd at interior points. We will write

I(x) = {i : hi(x) = 0} ⊆ {1 . . .m}

to denote the active inequality constraints at x ∈ P.

1.1 Linearized Tangent Cone

We may define a first-order approximation Tlinear(x) ≈ T (x), aka. the linearized tangent cone (Figure 1):

Tlinear(x) :=
{
t ∈ Rd : ∇hi(x)⊤t ≤ 0 ∀i ∈ I(x)

∧
∇lj(x)⊤t = 0 ∀j

}
(3)

(3) is a necessary condition for feasible directions since the first-order term dominates lower-order terms. If the
constraints happen to be locally so simple that they can be completely specified by the first-order information, (3)
is also a sufficient condition. All omitted proofs are in Appendix E unless said otherwise.

Lemma 1.1. At any x ∈ P, we have T (x) ⊆ Tlinear(x).

Lemma 1.2. Let x ∈ P and suppose that in a neighborhood of x: (1) hi is concave for all i ∈ I(x) and (2)
lj is affine for all j. Then Tlinear(x) ⊆ T (x).

However, Tlinear(x) may contain spurious directions if the first-order information is not enough. The quickest way
to see this is when all active constraints have zero gradients. Then Tlinear(x) = Rd, but a nonlinear constraint may
still influence directions. Consider the example

P =
{
x ∈ R : x3 ≤ 0

}
= (−∞, 0]

1“Tangent” because it characterizes the surrounding topology at x, and “cone” because if t ∈ T (x) then αt ∈ T (x) for any α > 0.
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At x = 0 (i.e., the saddle point of the inequality constraint h(x) = x3), it is clear that T (0) = (−∞, 0] by the
original definition (2). But since h′(0) = 0, we have Tlinear(0) = (−∞,∞).2 Thus we at least need active constraint
gradients to be nonzero at boundary points. However, this may not be enough if there are multiple active constraints.
Consider the example

P = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x2 − (1− x1)
3 ≤ 0}

x1

x2

P

At the boundary point x = (1, 0), it is clear that T (1, 0) = {(x1, 0) : x1 ≤ 0}. The two inequality constraints
h2(x) = −x2 and h3(x) = x2 − (1− x1)3 are active with gradients ∇h2(x) = (0,−1) and ∇h3(x) = (3(1− x1)2, 1).
Since ∇h2(1, 0) = (0,−1) and ∇h3(1, 0) = (0, 1), we have the wrong tangent cone Tlinear(1, 0) = {(x1, 0) : x1 ∈ R}.
Intuitively, the gradients fail to characterize the interaction between the active constraints (despite being nonzero)
because their directions are redundant. This motivates LICQ.

Definition 1.1. We say linear independence constraint qualification (LICQ) holds at x ∈ P if all
active constraint gradients are linearly independent.

Note that LICQ requires the active constraint gradients to be nonzero. It also implies that the number of active
constraints is at most d. This turns out to be a sufficient condition for every t ∈ Tlinear(x) to be a genuine feasible
direction.

Lemma 1.3. If LICQ holds at x ∈ P, then Tlinear(x) ⊆ T (x).

The proof is fairly sophisticated and relies on the implicit function theorem. It is given in Appendix E.

Summary. The linearized tangent cone overestimates the tangent cone. It is exact if active constraints are simple
(concave for inequality, affine for equality) or have linearly independent gradients.

1.2 Secant Cone

We may define the secant cone as the directions from x ∈ P to all feasible points, more formally

Tsecant(x) =
{
α(x′ − x) ∈ Rd : x′ ∈ P, α ∈ (0,∞)

}
(4)

(“secant” because two points cut through P). It is intuitively clear that T (x) ⊆ Tsecant(x) with equality if P is
convex. See the proof by picture (or read the footnote).3

Nonconvex P

x

x′

×

Convex P

x

x′✓

2As an exercise, we can “fix” this example by using higher-order information. Since h′(0) = h′′(0) = 0 and h′′′(0) = 6, we have

h(0 + ηt) = h(0) + η3t3

6
h′′′(0) + o(η3) and obtain a correct third-order characterization Tcubic(0) =

{
t ∈ R : t3 ≤ 0

}
= T (0).

3If t ∈ T (x), x′ = x+ ηt ∈ P for some small enough η > 0, thus t = 1
η
(x′ −x) ∈ Tsecant(x). Conversely, if t = α(x′ −x) ∈ Tsecant(x),

then x+ ηt = (1− ηα)x+ ηαx′ is the step result. If P is convex, this is in P for all η ∈ (0, 1
α
).

4



Summary. The secant cone overestimates the tangent cone. It is exact if the feasible set is convex.

2 Minimization

Let f : Rd → R be continuously differentiable on P (1). We think of f as “loss” and solve

f⋆ = min
x∈P

f(x) (5)

A feasible point x⋆ ∈ P achieving f⋆ = f(x⋆) is called a global minimum of (5). Equivalently,

f(x⋆) ≤ f(x) ∀x ∈ P (6)

x⋆ does not necessarily exist even if f is bounded below. For instance, x2 ≥ 0 is not minimized by any x ∈ (0,∞)
(we can encode (0,∞) by the inequality h(x) = − 1

x ≤ 0). To handle this in the literature, authors often define

f⋆ = inf
x∈P

f(x)

which always exists under mild assumptions (P is nonempty and f is bounded below on P, a consequence of the
completeness of the real numbers), then say no x ∈ P may achieve f⋆. However, since we are almost always
interested in actually finding a minimum, we will avoid this treatment and simply say x⋆ does not exist.4

2.1 Local Minimum

We say x ∈ P is a (one-sided) local minimum of f if there is some ϵ > 0 such that for all η ∈ (0, ϵ)

f(x+ ηt) ≥ f(x) ∀t ∈ T (x) (7)

That is, in every feasible direction f is either locally constant or locally increasing. If f is locally increasing in every
t ∈ T (x), we call x a strict local minimum. It is clear from (6) that a global minimum is a local minimum. We
think of f(x+ ηt) as applying progressively small local corrections on f(x):

f(x+ ηt) = f(x) +

∞∑
k=1

ηk

k!
∇kf(x).contract(t) (8)

where ∇kf(x).contract(t) ∈ R is a k-th order polynomial of t ∈ Rd obtained by contracting the tensor ∇kf(x)

(e.g., ∇f(x)⊤t for k = 1). We write Rk+1(x + ηt) =
∑

i>k
ηi

i!∇if(x).contract(t) to denote the remainder after k
expansions.

Fact 2.1. If f is locally constant in t ∈ T (x), then ∇kf(x).contract(t) = 0 for all k ∈ N.

Fact 2.2. If f is locally increasing in t ∈ T (x), there is some k ∈ N with ∇kf(x).contract(t) > 0 such that for all
sufficiently small η > 0

f(x+ ηt) = f(x) +
ηk

k!
∇kf(x).contract(t) +Rk+1(x+ ηt) (9)

2.2 Optimality Test

We obtain a K-th order polynomial approximation of f(x + ηt) around x by cutting off (8) after the first K
expansions:

f (K)(x+ ηt) = f(x) +

K∑
k=1

ηk

k!
∇kf(x).contract(t) (10)

4To guarantee the existence of x⋆, we need stronger assumptions (e.g., if P is compact and f is continuous, we can invoke the extreme
value theorem).
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IsLocalMin
Input: x ∈ P, K ∈ N
Output: YES if x is a strict local minimum of f , NO if x is not a local minimum of f , MAYBE otherwise

• Initialize T ′(x)← T (x). For k = 1 . . .K

– If ∇kf(x).contract(t) < 0 for some t ∈ T ′(x), return NO.

– If ∇kf(x).contract(t) > 0 for all t ∈ T ′(x), return YES.

– Update T ′(x)←
{
t ∈ T ′(x) : ∇kf(x).contract(t) = 0

}
.

• Return MAYBE.

Figure 2: An iterative algorithm for analyzing the local minimality of a feasible point x up to the K-th order
test. With T (x) = Rd and K = 2, the algorithm reduces to the familiar unconstrained optimality test where we
first check if x is stationary, then check the eigenvalues of ∇2f(x) (if all positive, a strict local minimum; if all
nonnegative, possibly a local minimum; if some negative, not a local minimum).

Lemma 2.3. A local minimum x ∈ P of f is a local minimum of f (K). More specifically,

• If f is locally constant in t ∈ T (x), then f (K) is constant in t.

• If f is locally increasing in t ∈ T (x), then f (K) is locally increasing in t.

The converse is not true because Fact 2.1 can only be used one way. If f (K) is locally constant in t ∈ T (x), it could
simply be that it does not have enough information rather than f being locally constant in t. If f “reveals” its true
local behavior in a higher order term as decreasing, not constant or increasing, x is not a local minimum.

Example 2.1. Let f(x) = x3 over x ∈ R. We have f (2)(x+a) = x3+3ax2+3a2x with the remainder R3(x+a) = a3.
At x = 0, all expansion terms up to order K = 2 vanish, so f (2)(0+ a) = f (2)(0) = 0. In particular, f (2) is constant
in direction t = −1. However, f(0 + ηt) = −η3 < 0 = f(0) for any η > 0, thus f is decreasing in t.

In contrast, Fact 2.2 can be used the other way and we have the following result.

Lemma 2.4. If f (K) is locally increasing in t ∈ T (x), then f is also locally increasing in t.

Corollary 2.5. If x is a strict local minimum of f (K), it is also a strict local minimum of f .

By Lemma 2.3, we can rule out x ∈ P from being a local minimum of f unless x is a local minimum of f (K).
Checking the latter amounts to showing

K∑
k=1

ηk

k!
∇kf(x).contract(t) ≥ 0 ∀t ∈ T (x) (11)

for all small enough η > 0. We can eliminate the dependence on η by progressively increasing K. When K = 1,
(11) simplifies to

∇f(x)⊤t ≥ 0 ∀t ∈ T (x) (first-order test) (12)

If T (x) = Rd, it is equivalent to ∇f(x) = 0d (i.e., x is stationary or critical). Since T (x) ⊆ Tsecant(x) (see (4)),
the following condition

∇f(x)⊤(x′ − x) ≥ 0 ∀x′ ∈ P (13)
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xmin

xmax

xmin

xmax

Figure 3: Minimizing f(x) = x1 + x2 (not strictly convex). On the nonconvex circle (left) it has a non-minimum
xmax passing the first-order test since the loss stays constant in feasible directions. Over the convex ball (right), it
fails the first-order test since it has a loss-reducing direction toward xmin.

implies (12). They are equivalent if P is convex (Section 1.2). If x fails the first-order test, it is definitely not a
local minimum. If it passes, we only need to check t ∈ T (x) such that ∇f(x)⊤t = 0 since f is locally increasing in

t if ∇f(x)⊤t > 0 (Lemma 2.4). For such directions, we have f (2)(x) = f(x) + η2

2 t
⊤∇2f(x)t, thus (11) simplifies to

(with K = 2)

t⊤∇2f(x)t ≥ 0 ∀t ∈ T (x) : ∇f(x)⊤t = 0 (second-order test) (14)

If T (x) = Rd, combined with the first-order test which ensures ∇f(x) = 0d, it is equivalent to ∇2f(x) ⪰ 0. We
continue until no feasible direction remains whose lower-order contractions vanish. At this point, every feasible
direction already yields a strictly positive leading derivative, thus x is a strict local minimum of f (K) and must be
a strict local minimum of f . The verification algorithm is given in Figure 2.

2.2.1 Convex loss

If the loss f is convex and x ∈ P passes the first-order test (i.e., ∇f(x)⊤t ≥ 0 for all t ∈ T (x)), by the convexity of
f we have for all η > 0

f(x+ ηt) ≥ f(x) + η∇f(x)⊤t ≥ f(x) ∀t ∈ T (x) (15)

If f is strictly convex, the first inequality is strict and x is indeed a strict local minimum. Otherwise, it is possible
that f is just constant in all feasible directions t ∈ T (x) unless the feasible set is also convex.

Lemma 2.6. If both f and P are convex, x ∈ P is a global minimum iff it passes the first-order test.

Proof. One direction is given by the necessity of first-order optimality (i.e., if x is a global minimum, it has to
pass the first-order test). For the other direction, let x′ ∈ P be a different point with f(x′) < f(x) if there is any
(otherwise we are done). We will show that there is a decreasing feasible direction at x′, thus it fails the first-order
test. Specifically, the direction is t = x− x′. To see feasibility, we note x′ + ηt = (1− η)x′ + ηx ∈ P for all η ∈ [0, 1]
by the convexity of P. To see decreasing, we note

f(x′ + ηt) = f((1− η)x′ + ηx) ≤ (1− η)f(x′) + ηf(x) < f(x)

for all η ∈ (0, 1] by the convexity of f .

See Figure 3 for an illustration. Since (13) and (12) are equivalent when P is convex, the lemma is often stated as:

x⋆ = argmin
x∈P

f(x)
(f,P convex)⇔ ∇f(x⋆)⊤(x− x⋆) ≥ 0 ∀x ∈ P (16)

2.3 Local Maximum and Saddle Point

We may define a local maximum analogously. A point x ∈ P that has both increasing and decreasing feasible
directions t, t′ ∈ T (x) is called a saddle point. In particular, if x is stationary and the Hessian has both postive
and negative eigenvalues, it is a saddle point. The different types of stationary points are illustrated in Figure 4.
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max1 inconclusive saddle min1

𝒇

min2 max2

Figure 4: Optimality of f on various points over P ∈ R (the blue interval). The superscript indicates if the minimum
or maximum can be identified by the first-order or the second-order test.

3 Lagrangian

Given a loss function f : Rd → R over P =
{
x ∈ Rd : h(x) ≤ 0m, l(x) = 0r

}
, we first focus on identifying x ∈ P

that passes the first-order test (12)

∇f(x)⊤t ≥ 0 ∀t ∈ T (x)

upon which we may follow up with additional analysis (e.g., second-order test). Unless T (x) = Rd, we cannot just
hunt for x ∈ P that is stationary in f since it may pass the test with ∇f(x) ̸= 0d. Instead, we define a helper
function L : Rd × Rm × Rr → R called the Lagrangian

L(x, ρ, λ) := f(x) + ρ⊤h(x) + λ⊤l(x) (17)

Here, ρ ∈ Rm and λ ∈ Rr are called the Lagrangian multipliers corresponding to the m inequality and r equality
constraints.

3.1 KKT Conditions: Necessity

Definition 3.1. We say x ∈ Rd satisfies the KKT conditions if we can find ρ ∈ Rm and λ ∈ Rr such that

1. Primal feasibility: x ∈ P

2. Dual feasibility: ρ ≥ 0m

3. Complementary slackness: ρi = 0 whenever hi(x) < 0

4. Stationarity: ∇xL(x, ρ, λ) = 0d

Combined with primal feasibility, complementary slackness can be written in the product form: ρihi(x) = 0 for
each i = 1 . . .m. Then the stationarity condition asserts that

∇f(x) = −
∑

i∈I(x)

ρi∇hi(x)−
r∑

j=1

λj∇lj(x) (18)

where I(x) = {i : hi(x) = 0} ⊆ {1 . . .m}. Geometrically, ∇f(x) ∈ Rd must be “cancelled out” by some restricted
linear combination of ∇hi(x),∇lj(x) ∈ Rd where hi, lj are active constraints at x. Another useful way to summarize
the KKT conditions is that ∇f(x) ∈ Rd must lie inside the cone spanned by active constraint gradients under dual
feasibility (“KKT cone”)

K(x) = {−∇h(x)ρ−∇l(x)λ : λ ∈ Rr, ρ ≥ 0m with ρi = 0 for i ̸∈ I(x)} ⊆ Rd (19)

where ∇h(x) ∈ Rd×m and ∇l(x) ∈ Rd×r are Jacobians.
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Figure 5: We can visually verify Lemma 3.1 on the example in Figure 3 (annotation in Appendix A.2). The circle

P corresponds to an equality constraint l(x) = 0 and has two KKT points x ∈ P where ∇f(x) = ±
√
2
2 ∇l(x). The

ball P corresponds to an inequality constraint h(x) ≤ 0 and has one KKT point x ∈ P where ∇f(x) = −
√
2
2 ∇h(x).

Note that ∇f(x) and ∇h(x) point in the opposite opposite directions by dual feasibility.

Lemma 3.1. If x ∈ Rd satisfies the KKT conditions, it passes the first-order test.

Proof. Pick any t ∈ T (x). Since T (x) ⊆ Tlinear(x), we have ∇hi(x)⊤t ≤ 0 for all i ∈ I(x) and ∇lj(x)⊤t = 0 for all
j (see (3)). From (18), we have

∇f(x)⊤t = −
∑

i∈I(x)

ρi∇hi(x)⊤t−
r∑

j=1

λj∇lj(x)⊤t ≥ 0

Thus any point that passes the first-order test necessarily satisfies the KKT conditions. See Figure 5 for an
illustration.

3.2 KKT Conditions: Sufficiency

The proof of Lemma 3.1 relies on the fact that T (x) ⊆ Tlinear(x) to linearize a feasible direction (Section 1.1). Since
the converse does not hold, we should not be surprised that x ∈ P may pass the first-order test but fail the KKT
conditions if T (x) ̸= Tlinear(x). For instance, recall the example

P =
{
x ∈ R : x3 ≤ 0

}
= (−∞, 0]

where T (0) = (−∞, 0] and Tlinear(0) = (−∞,∞). If we minimize f(x) = −x over P, clearly x = 0 is a local
minimum and thus passes the first-order test. But since ∇f(0) = −1 is not in the span of the active constraint
gradient ∇h(0) = 0, it cannot satisfy the KKT conditions. Similarly, recall the example

P =
{
x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x2 − (1− x1)3 ≤ 0

}
x1

x2

P

where T (1, 0) = {(x1, 0) : x1 ≤ 0} and Tlinear(1, 0) = {(x1, 0) : x1 ∈ R}. If we minimize f(x) = −x1 over P,
x = (1, 0) is a local minimum and thus passes the first-order test. But since ∇f(1, 0) = (−1, 0) is not in the span of
the two active constraint gradients ∇h2(1, 0) = (0,−1) and ∇h3(1, 0) = (0, 1), it cannot satisfy the KKT conditions.
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3.2.1 Constraint qualifications (CQs)

Given the above cases of degeneracy, the following result is natural.

Lemma 3.2. If x ∈ P is a local minimum of f and T (x) = Tlinear(x), it satisfies the KKT conditions.

Proof. It is sufficient to show that ∇f(x) is inside the KKT cone (19). A classical theorem of the alternative gives
exactly this result (see Nocedal and Wright (1999) for a proof).

Farkas’ lemma Let K = {Bρ+ Cλ : ρ ≥ 0m, λ ∈ Rr} ⊆ Rd be a cone parameterized by any B ∈ Rd×m and
C ∈ Rd×r. Given any g ∈ Rd, either g ∈ K or there is some seperating hyperplane t ∈ Rd such that (i) g⊤t < 0,
(ii) B⊤t ≥ 0m, and (iii) C⊤d = 0r.

Since x passes the first-order test and T (x) = Tlinear(x), every t ∈ Rd satisfying ∇hactive(x)⊤t ≤ 0mx and ∇l(x)⊤t =
0r satisfies ∇f(x)⊤t ≥ 0. By Farkas’ lemma,

∇f(x) ∈ {−∇hactive(x)ρactive −∇l(x)λ : ρactive ≥ 0m, λ ∈ Rr}

Pick any associated ρactive, λ and define ρ ∈ Rm by ρi = ρactive,i if i ∈ I(x) and ρi = 0 otherwise. Then ∇f(x) =
−∇h(x)ρ−∇l(x)λ ∈ K(x).

The following corollaries are immediate from Lemma 1.2 and 1.3.

Corollary 3.3. If x ∈ P is a local minimum of f and LICQ holds at x, it satisfies the KKT conditions.

Corollary 3.4. If x ∈ P is a local minimum of f and hi is locally concave for all i ∈ I(x) and lj is locally
affine for all j, it satisfies the KKT conditions.

Summary. KKT⇒first-order test requires no CQs. Locally optimal⇒KKT requires CQs. Beware that even with
CQs, not all KKT points are necessarily locally optimal; they are simply guaranteed to contain all locally optimal
solutions, and may contain non-solutions that pass the first-order test (e.g., saddle points).

3.2.2 Convex case

The following constraint qualification is central in convex analysis. While it is possible to prove this result without
relying on duality, the argument is simpler with it, so we defer the proof to Section 6.

Lemma 3.5. Suppose that f, h1 . . . hm, l1 . . . lr are all affine, or

1. f and h1 . . . hm are convex; l1 . . . lr are affine, and

2. (Slater’s condition) There exists a strictly feasible point, namely x ∈ Rd such that h(x) < 0m and
l(x) = 0r,

Then x ∈ P is a global minimum of f iff it satisfies the KKT conditions.

4 Ball Constraint

A common feasible set is a “ball” P = {x : h(x) ≤ 0} where

h(x) = ||x|| − C (20)
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||·|| : Rd → R is some norm (thus convex) and C > 0 controls the radius. One class of norms is the “weighted”
Euclidean norm

||x||A =
√
x⊤Ax (A ≻ 0) (21)

yielding a weighted Euclidean ball. Another class of norms is the lp norm

||x||p = (|x1|p + · · ·+ |xd|p)1/p (p ≥ 1) (22)

yielding an lp ball.5 Both classes include the standard Euclidean norm as a special case (with A = Id and p = 2).

4.1 Linear Objective

Pick any A ≻ 0 and a nonzero g ∈ Rd and consider

f⋆ = min
x∈Rd: ||x||A≤C

g⊤x (23)

Note that g = ∇f(x). See Figure 5 right for an illustration.

Lemma 4.1. (23) is uniquely minimized by x⋆ = −ηA−1g where η = C/ ||g||A−1 > 0. The minimum value is
f⋆ = −C ||g||A−1 .

Example 4.1 (Steepest descent). Let l : Rd → R be a loss function differentiable at θ ∈ Rd (and not flat). The
steepest descent step δ ∈ Rd minimizes the linear approximation l(θ + δ) ≈ l(θ) +∇l(θ)⊤δ around θ. Since this
approximation is only locally accurate, we limit the size of δ by ||δ||A ≤ 1. By Lemma 4.1, we have

δ⋆ = − 1

||∇l(θ)||A−1

A−1∇l(θ)

yielding the loss reduction l(θ+ δ) ≈ l(θ)− ||∇l(θ)||2A−1 . Gradient descent, Newton’s method, and natural gradient
are special cases of this solution with A equal to the identity, Hessian, and Fisher information matrix.

Example 4.2 (Dual norm). For any norm ||·|| : V → R on a vector space V , the dual norm ||·||∗ : V → R is
defined as ||v||∗ = maxw∈V : ||w||≤1 v

⊤w. By Lemma 4.1, the dual norm of ||·||A : Rd → R is

||v||A,∗ = ||v||A−1

4.2 Quadratic Objective

Pick any nonzero symmetric matrix H ∈ Rd×d (otherwise x⊤Hx may not be real) and consider6

f⋆ = min
x∈Rd: ||x||2≤1

x⊤Hx (24)

Note that H = ∇2f(x).

Lemma 4.2. If H ⪰ 0, (24) is minimized by any x⋆ ∈ null (H)∩{x : ||x||2 ≤ 1} (in particular, uniquely by x⋆ = 0d
if H ≻ 0). The minimum value is f⋆ = 0.

Lemma 4.3. Suppose H ̸⪰ 0. Let v1 . . . vd ∈ Rd be orthonormal eigenvectors of H with eigenvalues λ1 ≥ · · · ≥ λd.
Then (24) is minimized by x⋆ = vd. The minimum value is f⋆ = λd < 0.

Lemma 4.4. Suppose H ̸⪰ 0. Let v1 . . . vd ∈ Rd be orthonormal eigenvectors of H with eigenvalues λ1 > λ2 ≥
· · · ≥ λd−1 > λd. Then v2 . . . vd−1 are saddle points of (24).

Lemma 4.4 holds because we can take a step in v1 to increase the loss and in vd to decrease the loss from any of
v2 . . . vd−1. Remarkably, despite the saddle points, we can exactly solve (24) in O(d2) time (e.g., power iteration).

5(22) is convex for every p ≥ 1 (including p = ∞, i.e., the uniform norm ||x||∞ = maxdi=1 |xi|).
6WLOG we fix the ball’s shape A = Id and radius C = 1 (otherwise, use the substitution y = C−1A1/2x).
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Example 4.3 (Top eigenvector). While we use minimization in (24) to stay consistent with our loss-minimizing
approach, the typical variational characterization of eigenvectors uses maximization. But we can easily cover this
case by

f⋆ = max
x∈Rd: ||x||2≤1

x⊤Hx = −
(

min
x∈Rd: ||x||2≤1

x⊤(−H)x

)
(25)

It follows that f⋆ = 0 if H ⪯ 0 (achieved by any vector of length ≤ 1 in the null space of H) and f⋆ = λ1 if H has
a positive eigenvalue (achieved by v1).

4.3 Convex Objective

Let f : Rd → R be any differentiable convex loss and ||·|| : Rd → R any norm. We deliberately keep the norm
general (e.g., weighted Euclidian norm, lp norm). The “hard” vs “soft” ball constraint is

f⋆hard = min
x∈Rd: ||x||≤C

f(x) (26)

f⋆soft = min
x∈Rd

f(x) +D ||x|| (27)

Lemma 4.5. If f⋆hard = f(x⋆) in (26) is achieved “interestingly” by a boundary point ||x⋆|| = C with ∇f(x⋆) ̸= 0d,
then x⋆ is also a minimizer of (27) for some D > 0 (with f⋆soft = f⋆hard +DC).

Lemma 4.6. If f⋆soft = f(x⋆) in (27) is achieved “interestingly” by a nonzero x⋆ ∈ Rd, then x⋆ is also a (boundary-
point) minimizer of (26) with C = ||x⋆|| (with f⋆soft = f⋆hard +DC).

Nonconvex objective. The equivalence between (26) and (27) only holds for convex functions, but practitioners
often invoke this for nonconvex objectives as well (e.g., in deep learning). This is roughly justified if the region of
interest is “convex enough”, but in general there is no justification.

5 Other Applications

5.1 Scaling Law

The Chinchilla scaling law (Hoffmann et al., 2022) predicts the expected loss L(N,D) ∈ R from the model and data
sizes N,D > 0 as

L(N,D) = E +
A

Nα
+

B

Dβ
(28)

where E,A,B, α, β > 0 are estimated from samples of (N,D,L) (Approach 3, Appendix C). A compute budge
C > 0 yields the feasible range of N,D by

P =
{
(N,D) ∈ R2 : 6ND = C

}
where we omit enforcing positivity since we can always filter out negative solutions later if we have any. LICQ holds
on all of P, thus any local optimum is a KKT point. The Lagrangian is

L(N,D, λ) = E +
A

Nα
+

B

Dβ
+ λ(6ND − C)

Stationarity ∇(N,D)L(N,D, λ) = (0, 0) gives us

∂L(N,D, λ)

∂N
= − αA

Nα+1
+ 6λD = 0 ⇔ λ =

αA

6DNα+1

∂L(N,D, λ)

∂D
= − βB

Dβ+1
+ 6λN = 0 ⇔ λ =

βB

6NDβ+1

from which we have Nα

Dβ = αA
βB . Primal feasibility (N,D) ∈ P gives us D = C

6N and N = C
6D . Solving the equations,

we get

N = G

(
C

6

)b

D = G−1

(
C

6

)a

G =

(
αA

βB

) 1
α+β

a =
α

α+ β
b =

β

α+ β
(29)
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We see that N,D > 0, thus no need to worry about negative solutions.7 Since the KKT point is unique, (29) must
be the global minimum. It also establishes a relation between the optimal model and data sizes as

N = G (GD)
β
α D = G−1

(
G−1N

)α
β (30)

Empirical fits show α ≈ β (i.e., model and data should scale jointly). Practitioners often fix α = β and find that
D = G−2N ≈ 20N .

6 Duality

It is easy to see that primal feasibility P =
{
x ∈ Rd : h(x) ≤ 0m, l(x) = 0r

}
can be enforced “softly” by

f⋆ = min
x∈P

f(x) = min
x∈Rd

max
ρ≥0m
λ∈Rr

L(x, ρ, λ) (31)

where L(x, ρ, λ) = f(x) +
∑

i ρihi(x) +
∑

j λj lj(x) is the Lagrangian (17). This works because we propose x ∈ Rd

first; the “enemy” can send the loss to infinity if x violates any constraint. But suppose we let him attack first.
Specifically, the enemy maximizes the dual function

g(ρ, λ) := min
x∈Rd

L(x, ρ, λ) (32)

For simple problems, (32) has a closed-form solution and is potentially easier to analyze than the primal objective
f . This yields the dual problem:

g⋆ := max
ρ≥0m
λ∈Rr

g(ρ, λ) = max
ρ≥0m
λ∈Rr

min
x∈Rd

L(x, ρ, λ) (33)

Intuitively, the dual problem gives us an upper hand since we get a chance to counter the enemy’s attack. Thus we
always have weak duality:

g⋆ ≤ f⋆ (34)

(34) may not hold with equality and f⋆ − g⋆ ≥ 0 is called the duality gap. If f⋆ = g⋆, we say strong duality
holds. There are known sufficient conditions for strong duality to hold: see the list on Wikipedia. We focus on two
simplest conditions.

Fact 6.1. Strong duality holds if any of the following holds.

• (Linear program) f, h1 . . . hm, l1 . . . lr are affine (Section 6.3).

• (Convex program + Slater’s condition) f, h1 . . . hm are convex; l1 . . . lr are affine; there is a strictly
feasible primal point x̄, satisftying hi(x̄) < 0 for all i and li(x̄) = 0 for all j.

Proof sketch. Let C = {(f(x), h(x), l(x)) : x ∈ Rd} ⊂ R1+m+r. For any α < f⋆, y = (α, 0m, 0r) is outside C.

• (Linear) C is an affine image of Rd, so Farkas’ lemma yields a separating hyperplane through y.

• (Convex+Slater) C is convex and contains (f(x̄), h(x̄), l(x̄)) in its interior, so the supporting-hyperplane the-
orem provides the separation.

In either case we obtain a normal (θ, ρ, λ) with θ > 0, ρ ≥ 0, and θα ≤ θf(x)+ ρ⊤h(x)+λ⊤l(x) for all x. Rescaling
by θ (set θ = 1) gives α ≤ g(ρ, λ) ≤ g⋆ ≤ f⋆. Letting α ↑ f⋆ forces g⋆ = f⋆.

7The paper estimates A ≈ B but a = 0.46 and b = 0.54. This marginally disagrees with Approach 1 and 2 where a = b = 0.5. The
paper explains this is due to larger residuals on smaller models which are treated as outliers in Approach 3 with the Huber loss.
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Example 6.1 (Revisiting (23)). Pick any A ≻ 0, nonzero g ∈ Rd, C > 0 and consider

f⋆ = min
x∈Rd: ||x||A≤C

g⊤x

We can easily derive the dual function and the dual optimum:

g(ρ) =

{
− 1

4ρg
⊤A−1g − ρC2 if ρ > 0

−∞ if ρ = 0
g⋆ = −C ||g||A−1

achieved by ρ⋆ = ||g||A−1 /(2C) > 0. Since ||0d||A = 0 < C, Slater’s condition holds and we know off the bat that
strong duality holds, thus f⋆ = g⋆ = −C ||g||A−1 consistently with Lemma 4.1.

Example 6.2 (Exercise 5.21 of Boyd and Vandenberghe (2014)). Consider

f⋆ = min
x,y>0: x2

y ≤0

e−x = 1 (35)

(achieved by x⋆ = 0). Treating y > 0 as a domain restriction, we consider only the inequality constraint h(x, y) = x2

y
which is convex over x ∈ R and y > 0. For all ρ ≥ 0, the dual function is

g(ρ) = inf
x,y>0

e−x + ρ
x2

y
= inf

x
e−x = 0

(the infimum is achieved in the limit x, y → ∞ and not attained). Thus g⋆ = 0 < 1 = f⋆ and strong duality fails,
even though (35) is convex.

A central result is the following:

Lemma 6.2. If x ∈ P, ρ ≥ 0m, and λ ∈ Rr satisfy f(x) = g(ρ, λ), then f(x) = f⋆ = g⋆ = g(ρ, λ).

Proof. The statement follows from weak duality g(ρ, λ) ≤ g⋆ ≤ f⋆ ≤ f(x) and the premise f(x) = g(ρ, λ).

Thus if we find any feasible points x, ρ, λ holding the “certificate of optimality” f(x) = g(ρ, λ), strong duality
holds—with them being solutions. This makes them a saddle point of the Lagrangian (assuming suitable constraint
qualifications).8

6.1 KKT Conditions and Strong Duality

Lemma 6.3. The KKT conditions (Definition 3.1) are necessary for strong duality.

Proof. Suppose strong duality f(x⋆) = f⋆ = g⋆ = g(ρ⋆, λ⋆) holds for some x⋆ ∈ P and ρ⋆ ≥ 0m, λ
⋆ ∈ Rr. The

primal and dual feasibility conditions are immediately satisfied. We observe

f(x⋆) = g(ρ⋆, λ⋆) := min
x∈Rd

f(x) +

m∑
i=1

ρ⋆i hi(x) +

r∑
j=1

λ⋆j lj(x) ≤ f(x⋆) +
m∑
i=1

ρ⋆i hi(x
⋆) +

r∑
j=1

λ⋆j lj(x
⋆) ≤ f(x⋆)

The last inequality follows from the feasibility of x⋆, ρ⋆, λ⋆. Therefore the inequalities are equalities. To check
stationarity, we write the first inequality as

L(x⋆, ρ⋆, λ⋆) = min
x∈Rd

L(x, ρ⋆, λ⋆)

which shows that x = x⋆ is a stationary point of L(x, ρ⋆, λ⋆), thus 0d ∈ ∂xL(x⋆, ρ⋆, λ⋆). To check complementary
slackness, we write the last inequality as

m∑
i=1

ρ⋆i hi(x
⋆) = 0

Since ρ⋆i hi(x
⋆) ≤ 0 for all i, it must be that ρ⋆i hi(x

⋆) = 0 for all i.
8More specifically, since the KKT conditions must hold at x, ρ, λ, they are stationary points of the Lagrangian L. From here, we can

increase L along x and decrease L along ρ, λ.
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Lemma 6.4. If f and h1 . . . hm are convex, and l1 . . . lr are affine, then the KKT conditions are sufficient
for strong duality.

Proof. By premise, the Lagrangian

L(x, ρ, λ) = f(x) +

m∑
i=1

ρihi(x) +

r∑
j=1

λj lj(x) (36)

is convex in x ∈ Rd for any ρ ≥ 0m, and λ ∈ Rr (the unrestricted sign of λj requires lj to be affine so that λj lj(x)
is affine and preserves convexity). Let x⋆ ∈ P be a KKT point with Lagrangian multipliers ρ⋆ ≥ 0m, λ

⋆ ∈ Rr.
By complementary slackness and primal feasibility, we have L(x⋆, ρ⋆, λ⋆) = f(x⋆). By stationarity of x⋆ and the
convexity of (36), L(x⋆, ρ⋆, λ⋆) = g(ρ⋆, λ⋆). Since the two values match, x⋆, ρ⋆, λ⋆ hold the certificate of optimality
(Lemma 6.2) and it must be that f(x⋆) = f⋆ = g⋆ = g(ρ⋆, λ⋆).

Lemma 6.4 does not guarantee that if the problem is convex (with affine equality), strong duality holds. This is
because there may be no KKT point: (35) is an example. However, if we do have strong duality, the convexity
assumption guarantees that an optimal solution is equivalent to a KKT point.

Lemma 6.5. Suppose strong duality holds: f⋆ = g⋆. If f and h1 . . . hm are convex, l1 . . . lr are affine, then
x⋆ ∈ P, ρ⋆ ≥ 0m, and λ⋆ ∈ Rr attain the optimum f(x⋆) = f⋆ = g⋆ = g(ρ⋆, λ⋆) iff they satisfy the KKT
conditions.

Proof. (optimum ⇒ KKT) The primal and dual feasibility conditions are satisfied by premise. From g(ρ⋆, λ⋆) :=
minx∈Rd L(x, ρ⋆, λ⋆) and strong duality g(ρ⋆, λ⋆) = f(x⋆), it follows that x⋆ is an unrestricted minimum and
must satisfy the stationarity condition 0 ∈ ∂xL(x⋆, ρ⋆, λ⋆). From the implied equality L(x⋆, ρ⋆, λ⋆) = f(x⋆) and
feasibility, we must have the complementary slackness condition: ρ⋆i hi(x

⋆) = 0 for all i. (KKT ⇒ optimum) This
is Lemma 6.4.

Combining Lemma 6.5 and Fact 6.1, we obtain Lemma 3.5, which we restate below as a corollary.

Corollary 6.6. Suppose that (1) f, h1 . . . hm, l1 . . . lr are all affine, or (2) f and h1 . . . hm are convex; l1 . . . lr
are affine; and there exists a strictly feasible point. Then x⋆ ∈ P is a global minimum of f and ρ⋆ ≥ 0m,
λ⋆ ∈ Rr are a global maximum of g iff they satisfies the KKT conditions.

6.2 SVM Dual

Let X ∈ RN×d and y ∈ {±1}N where the i-th row xi ∈ Rd of X represents a d-dimensional input vector and yi is
the corresponding binary label. Given some C > 0, the primal SVM problem is

w⋆, ξ⋆ = argmin
w∈Rd, ξ∈RN : y⊙Xw≥1N−ξ, ξ≥0N

1

2
||w||22 + C ⟨1N , ξ⟩

Thanks to the slack variables, the primal problem is strictly feasible and strong duality holds. The Lagrangian is

L(w, ξ, ρ, µ) =
1

2
||w||22 + C ⟨1N , ξ⟩+ ⟨ρ, 1N − ξ − y ⊙Xw⟩ − ⟨µ, ξ⟩

Since L is convex in w ∈ Rd and linear in ξ ∈ RN , and

∇wL(w, ξ, ρ, µ) = 0d ⇔ w = X⊤(ρ⊙ y)
∇ξL(w, ξ, ρ, µ) = 0N ⇔ µ = C1N − ρ

the Lagrangian dual function is

g(ρ, µ) = ⟨ρ, 1N ⟩ −
1

2
(ρ⊙ y)⊤XX⊤(ρ⊙ y)
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While g is just a function of ρ, the constraint µ = C1N − ρ ≥ 0 must be enforced. This creates the box constraint
0N ≤ ρ ≤ C1N as part of dual feasibility, and the dual problem is

ρ⋆ = argmax
0N≤ρ≤C1N

⟨ρ, 1N ⟩ −
1

2
(ρ⊙ y)⊤XX⊤(ρ⊙ y)

where XX⊤ ∈ RN×N is the kernel matrix that enables kernelized SVMs. By complementary slackness,

ρ⋆i (1− ξ⋆i − yi ⟨w⋆, xi⟩) = 0 ⇔ ρ⋆i = 0 ∨ yi ⟨w⋆, xi⟩ = 1− ξ⋆i

Thus ρ⋆i > 0 implies yi ⟨w⋆, xi⟩ ≤ 1: in this case xi is called a support vector since w⋆ =
∑N

i=1: ρ⋆
i >0 ρ

⋆
i yixi.

Furthermore, suppose ρ⋆i < C. Note again by complementary slackness,

µ⋆
i ξ

⋆
i = 0 ⇔ µ⋆

i = 0 ∨ ξ⋆i = 0

Thus µ⋆
i = C−ρ⋆i > 0 implies ξ⋆i = 0. Combining these observations, we see that if 0 < ρ⋆i < C, then yi ⟨w⋆, xi⟩ = 1.

6.3 Linear Programs

If the objective f and the constraints h1 . . . hm, l1 . . . lr are all affine, we may standardize the problem as follows:

1. Write each variable as xi = x+i − x−i where x+i , x
−
i ≥ 0.

2. Write each equality constraint a⊤x+ β = 0 as a⊤x+ β ≥ 0 and −a⊤x− β ≥ 0.

3. Write each inequality constraint a⊤x+ β ≤ 0 as a⊤x+ β + s = 0 where s ≥ 0.

As a result, we can always write a linear program in the so-called canonical form:

f∗ := min
x≥0d: Ax≥b

c⊤x c ∈ Rd, A ∈ Rm×d, b ∈ Rm (37)

The Lagrangian and the Lagrangian dual function are

L(x, ρ, µ) = c⊤x+ ρ⊤(b−Ax)− µ⊤x ∀x ∈ Rd, ρ ≥ 0m, µ ≥ 0d

g(ρ, µ) = min
x∈Rd

c⊤x+ ρ⊤(b−Ax)− µ⊤x ∀ρ ≥ 0m, µ ≥ 0d

Given any ρ ≥ 0m and µ ≥ 0d, a minimizer x ∈ Rd of the Lagrangian must satisfy

∇xL(x, ρ, µ) = c−A⊤ρ− µ = 0d

Thus by fixing c = A⊤ρ+ µ in the dual function, we have the dual problem

g∗ = max
ρ≥0m, µ≥0d: c=A⊤ρ+µ

b⊤ρ = max
ρ≥0m: A⊤ρ≤c

b⊤ρ (38)

where the last equality follows by treating µ ≥ 0d as a slack variable. Strong duality always holds in linear programs,
so (37) and (38) are equivalent. This has a natural interpretation.

• In the primal (37), we buy d raw ingredients x1 . . . xd ≥ 0 to minimize the total cost c⊤x ∈ R, while meeting
minimum production bars Ax ≥ b in m products.

• In the dual (38), we assign prices ρ1 . . . ρm ≥ 0 to m products to maximize the total profit b⊤ρ, while staying
within our budget A⊤ρ ≤ c when purchasing d raw ingredients.

A linear program is a special case of semidefinite program (Section 7.1).
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7 Matrix Extensions

Conic optimization generalizes convex analysis to structured inequalities (Appendix D). In this section, we focus on
the special case of the Loewner order on symmetric matrices. We denote

Sd :=
{
X ∈ Rd×d : X = X⊤} (vector space of symmetric matrices)

Sd
+ :=

{
X ∈ Sd : X ⪰ 0

}
(convex cone of PSD matrices)

To impose structured inequality constraints, we assume h1 . . . hm : Sd → Sd defining some transformation of X
inside Sd and assert hi(X) ⪯ 0. We assume r equality constraints lj(X) = 0 defined by l1 . . . lr : Sd → R. The
hypothesis space is

P =
{
X ∈ Sd : h(X) ⪯ 0m, l(X) = 0r

}
(39)

where ⪯ is applied to each of the m matrices. Note that (39) is lacking scalar inequalities, but they add no modeling
power and are thus often omitted from the standard form. Specifically, if t : Sd → R enforces a scalar inequality,
we may write

t(X) ≤ 0 ⇔ t(X) + s = 0, s ≥ 0

where s can be absorbed into the system.9 The primal problem is

f⋆ := min
X∈P

f(X) = min
X∈P

max
ρ∈(Sd

+)m, λ∈Rr
L(X, ρ, λ) (40)

where the min-max formulation uses the Lagrangian

L(X, ρ, λ) = f(X) +

m∑
i=1

⟨ρi, hi(X)⟩+
r∑

j=1

λj lj(X) (41)

where ⟨A,B⟩ := tr
(
A⊤B

)
is the matrix inner product. Prominently, each ρi ∈ Sd

+ is itself a PSD matrix. To see
why we may restrict the dual space to PSD matrices, note that

• If B ⪯ 0, then ⟨A,B⟩ ≤ 0 for all A ⪰ 0.10

• If B ≻ 0, then ⟨A,B⟩ > 0 for some A ≻ 0.11

Thus if any inequality constraint is violated, the enemy can send the loss to infinity. The dual function and the
dual problem are

g(ρ, λ) := min
X∈Sd

L(X, ρ, λ) (42)

g⋆ := max
ρ∈(Sd

+)m, λ∈Rr
g(ρ, λ) = max

ρ∈(Sd
+)m, λ∈Rr

min
X∈Sd

L(X, ρ, λ) ≤ f⋆ (43)

where weak duality g⋆ ≤ f⋆ always holds. As before (Fact 6.1), strong duality holds under convexity + Slater (the
same supporting-hyperplane argument goes through). Recall a matrix-valued function h(X) ∈ Sd is convex iff

h(αX + (1− α)Y ) ⪯ αh(X) + (1− α)h(Y )

for all X,Y ∈ Sd and α ∈ [0, 1]. However, linearity alone is no longer sufficient for strong duality (Section 7.1), so
we only state the following.

9Alternatively, we may choose to keep it separate as usual (i.e., introduce a scalar Lagrangian multipler µ ≥ 0 for that inequality
and add µt(X) to the Lagrangian).

10Given A,C ⪰ 0, we have ⟨A,C⟩ = tr
(
A1/2CA1/2

)
=

∣∣∣∣A1/2C1/2
∣∣∣∣2
F

≥ 0. Set C = −B.
11E.g., take A = vv⊤ where λ = v⊤Bv > 0 is a positive eigenvalue of B.
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Fact 7.1. Strong duality holds in (43) if

• f and h1 . . . hm are convex; l1 . . . lr are affine, and

• (Slater for generalized inequalities) There exists a strictly primal feasible point, namely sX ∈ Sd such
that h( sX) ≺ 0m and l( sX) = 0r.

The new KKT conditions mirror the usual ones (Definition 3.1):

Definition 7.1. We say X ∈ Rd×d satisfies the KKT conditions if we can find ρ ∈ (Rd×d)m and λ ∈ Rr such
that

1. Primal feasibility: X ∈ P (39)

2. Dual feasibility: ρi ∈ Sd
+

3. Complementary slackness: ⟨ρi, hi(X)⟩ = 0 (equivalently, ρi = 0d×d whenever hi(X) ≺ 0)

4. Stationarity: ∇XL(X, ρ, λ) = 0d×d

Analogously as in Lemma 6.5, if strong duality holds, convexity guarantees that an optimal solution is equivalent
to a KKT point. Combining this with Fact 7.1, we summarize the result below:

Corollary 7.2. If (1) f and h1 . . . hm are convex; l1 . . . lr are affine, (2) there exists a strictly primal feasible
point, then strong duality holds g⋆ = f⋆ and attained by a KKT point (X⋆, ρ⋆, λ⋆) ∈ Sd × (Sd

+)
m × Rr.

7.1 Semidefinite Programs (SDP)

A semidefinite program (SDP) generalizes a linear program (Section 6.3) from Rd to Sd. Given C,A1 . . . Ar ∈ Sd

and b ∈ Rr, it solves

f⋆ := min
X∈Sd: ⟨Aj ,X⟩=bj ∀j

⟨C,X⟩ (44)

The Lagrangian is

L(X, ρ, λ) = ⟨C,X⟩ − ⟨ρ,X⟩+
r∑

j=1

λj (bj − ⟨Aj , X⟩) (45)

Stationarity requires ρ = C −∑r
j=1 λjAj , implying the dual function

g(ρ, λ) =

{
b⊤λ if ρ = C −∑r

j=1 λjAj

−∞ otherwise
(46)

Folding in the dual feasibility ρ ⪰ 0, we have the dual problem

g⋆ = max
λ∈Rr:

∑r
j=1 λjAj⪯C

b⊤λ

which is also an SDP.12 Strong duality holds if (44) or (47) has a strictly feasible point (Slater’s condition for
the PSD cone). An SDP can be solved efficiently in practice, approximately in polynomial time (e.g., by the
ellipsoid/interior-point methods).

12This uses an equivalent definition of SDP

min
x∈RK :

B0+x1B1+···+xKBK⪰0

c⊤x (47)

where B0, B1, . . . , BK ∈ Sd and c ∈ RK . It can be shown that (47) can be written as (44) by setting X = B0 + x1B1 + · · · + xKBK

and taking ck = ⟨C,Bk⟩.
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7.2 AdaGrad Lemma

We use the following fact without proof.

Fact 7.3. If P ⪰ 0, f(X) = tr
(
X−1P

)
is convex over X ≻ 0; strictly convex if P ≻ 0.

Lemma 7.4 (Duchi et al. (2011), Lemma 15). Pick P ⪰ 0 and c > 0. Let

f⋆ = min
X∈Sd

+: tr(X)≤c
tr
(
X−1P

)
(48)

If P ≻ 0, the unique solution and its objective are as follows:

X⋆ =
c

tr
(
P 1/2

)P 1/2 f⋆ =
1

c
tr
(
P 1/2

)2
If P is rank-deficient, (48) admits the same infimum f⋆ = c−1tr

(
P 1/2

)
but it is not attained by any X ≻ 0.

Proof. We may assume X ≻ 0 since the objective is undefined otherwise. Given Fact 7.3, clearly Corollary 7.2 holds
(i.e., convex + Slater). The Lagrangian is

L(X, ρ, µ) = tr
(
X−1P

)
− ⟨ρ,X⟩+ µ(tr (X)− c)

Since X ≻ 0, we immediately get ρ = 0d×d by complementary slackness. Stationarity −X−1PX−1 − µId = 0d×d

(and feasibility) then enforces that the solution and its objective must have the form

X =
1√
µ
P 1/2 f(X) =

√
µtr
(
P 1/2

)
which is unique since the PSD square root is unique. Since we want to minimize f(X), we seek the smallest feasible
µ ≥ 0. The constraint tr (X) ≤ c implies

√
µ ≥ (1/c)tr

(
P 1/2

)
. This yields the statement. For the rank-deficient

case, we refer to the paper.
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A Illustrations

A.1 Linearized Feasible Directions (Section 1.1)

Ball. The inequality constraint h(x) = x21 + x22 − 1 ≤ 0 yields P =
{
x ∈ R2 : x is inside the unit ball

}
. At

x = (1, 0) ∈ P, the constraint is active (i.e., h(1, 0) = 0). Since ∇h(1, 0) = (2, 0), the linearized tangent cone is
Tlinear(1, 0) =

{
t ∈ R2 : t1 ≤ 0

}
(i.e., the left half-plane). In contrast, the contraint is inactive at x = (0, 0) ∈ P

(i.e., h(0, 0) = −1 < 0), thus T (0, 0) = R2.

Circle. The equality constraint l(x) = x21 + x22 − 1 = 0 yields P =
{
x ∈ R2 : x lies on the unit circle

}
. At

x = (1, 0) ∈ P, we have ∇l(1, 0) = (2, 0), thus Tlinear(1, 0) =
{
t ∈ R2 : t1 = 0

}
(i.e., all vertical vectors).

Line. The equality constraint l(x) = x1 + x2 = 0 yields P =
{
x ∈ R2 : x lies on the main diagonal line

}
. At any

x ∈ P, we have ∇l(x) = (1, 1), thus Tlinear(x) =
{
t ∈ R2 : t1 + t2 = 0

}
= P.

A.2 KKT Conditions: Necessity (Section 3.1)

The loss to minimize is the linear plane f(x) = x1 + x2. The unit circle can be specified with the single equality
constraint l(x) = x⊤x− 1 = 0. The Lagrangian is

L(x, λ) = 1⊤2 x+ λ(x⊤x− 1)

For x ∈ R2 to be a KKT point, it must be feasible (i.e., x⊤x = 1) and have some λ ∈ R such that

∇xL(x, λ) = 12 + 2λx = 02

We see that λ = 0 fails, thus we may assume that λ ̸= 0 and rewrite the stationarity condition as x = (− 1
2λ ,− 1

2λ ).

Then since x must be feasible, we must have x⊤x = 1
2λ2 = 1 or λ = ±

√
2
2 . Thus there are two KKT points:

x(1) =

(
−
√
2

2
,−
√
2

2

)
x(2) =

(√
2

2
,

√
2

2

)

Now consider the unit ball, i.e., x ∈ R2 satisfying h(x) = x⊤x− 1 ≤ 0. The Lagrangian is

L(x, ρ) = 1⊤2 x+ ρ(x⊤x− 1)

For x ∈ R2 to be a KKT point, it must be feasible (i.e., x⊤x ≤ 1) and have some ρ ≥ 0 such that

∇xL(x, λ) = 12 + 2ρx = 02

Again, we rule out ρ = 0 and assume that ρ > 0. Then by complementary slackness, the constraint must be active.
Rewriting the stationarity condition as x = (− 1

2ρ ,− 1
2ρ ) and solving for ρ ∈ R such that x⊤x = 1, we conclude that

ρ = ±
√
2
2 . By dual feasibility, we conclude ρ =

√
2
2 . Thus there is one KKT point:

x(1) =

(
−
√
2

2
,−
√
2

2

)

B Approximation Error of a Two-Layer Regressor

We consider regression f : Rd → R with squared loss l(f(x), y) = (f(x)− y)2. Let f⋆(x) = E[Y |X = x] denote the
Bayes-optimal regressor. Let

HN =

{
hN (x) =

N∑
i=1

uiσ(a
⊤
i x+ bi) : a1 . . . aN ∈ Rd, b, u ∈ RN

}
(49)
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denote the hypothesis class of two-layer networks with N hidden units and activation σ (total N(d+2) parameters).
For a random unbiased predictor h (i.e., random weights), its approximation error can be written as

E[L(h)]− L(f⋆) = E[(h(X)− f⋆(X))2] = Var (h) (50)

by the property of squared loss. Under mild boundedness assumptions, we can write f⋆ as an integral of single-
neuron network (“Barron form”):

f⋆(x) =

∫
Rd×R

s(a, b)σ(a⊤x+ b)d(a, b) (51)

with a finite “Barron norm” B =
∫
Rd×R |s(a, b)| d(a, b) > 0. (49) is viewed as a discrete version of (51). We craft a

random hypothesis hN ∈ HN as follows:

p(a, b) =
|s(a, b)|
B

ui =
B

N
sign(s(ai, bi))

(a1, b1) . . . (aN , bN ) ∼ p hN (x) =

N∑
i=1

uiσ(a
⊤
i x+ bi)

This construction gives

E[hN (x)] = BE[sign(s(a, b))σ(a⊤x+ b)]

= B

(∫
Rd×R

|s(a, b)| sign(s(a, b))
B

× σ(a⊤x+ b)d(a, b)

)
=

∫
Rd×R

s(a, b)σ(a⊤x+ b)d(a, b)

= f⋆(x)

Assuming Var
(
σ(a⊤x+ b)

)
≤ Cx for (a, b) ∼ p,

Var (hN (x)) ≤ B2Cx

N
⇒ Var (hN ) ≤ C

N

(
C = B2E[CX ]

)
Thus hN → f⋆ is a Monte-Carlo estimator of the Bayes-optimal regressor, getting more accurate with a wider
width. Plugging it in (50) as an inferior to the best hypothesis h⋆N = argminhN∈HN

L(hN ), we have

L(h⋆)− L(f⋆) ≤ E[L(hN )]− L(f⋆) ≤ C

N
≤ C√

N
(52)

Note that we actually have a stronger upper bound O(N−1). But the weaker inverse square-root bound O(N−1/2)
(which is valid) is often invoked instead for convenience. The latter also appears when we analyze the nonasymptotic
risk, e.g., by Chebyshev, defining the random excess Z = L(hN )− L(f⋆),

Pr

(
Z >

C√
N

)
<

E[Z]

C/
√
N
≤ C/N

C/
√
N

=
1√
N

C Chinchilla Approaches

The pioneering work of Chinchilla explores three approaches to modeling the relationship between the loss L, model
size N , data size D, and compute budget C. A quick summary is

1. Create an envelop of loss curves across model/data sizes and predict the optimal N ∝ Ca and D ∝ Cb.

2. Create isoFLOP curves across compute budgets (only using the final losses), use their minima to predict the
optimal N ∝ Ca and D ∝ Cb.

3. Directly model L = O(N−α +D−β), which is fit on the training runs from Approach 1 and 2. This yields the
optimal N ∝ Ca and D ∝ Cb subject to C = FLOP(N,D) (Section 5.1).
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C.1 Approach 1

We first obtain 28 FLOP-to-loss curves ϕ1 . . . ϕ28 : R→ R by running the following 28 workloads:

• For 7 model sizes N ∈ {0.075B, 0.25B, 0.5B, 1B, 2.5B, 5B, 10B}:

– For 4 data sizes D ∈
{
Dmin(N), 161/3Dmin(N), 162/3Dmin(N), 16Dmin(N)

}
:

∗ Train a N -parameter model on D tokens (cosine decay to 0.1 of the peak LR).

∗ Smooth the resulting FLOP-to-loss curve to obtain ϕ : [0, C]→ R where C = FLOP(N,D).

The compute-optimal envelope is then

ψ(C) =
28
min
i=1

ϕi(C)

We specify a data schedule that satisfies Cmax(N) = FLOP(N,Dmax(N)) ≥ Cmin(N
′) = FLOP(N ′, Dmin(N

′))
where N ′ > N is the next model size. Since every loss curve starts from the same (untrained) loss at C = 0, this
ensures that the envelope never has a “vertical gap”. (It is still possible to have a change of slope at points where
argmin changes.) Setting Dmin(75M) = 7B as the smallest data size, and using a generous overlap Cmax(N) =
6Cmin(N

′) with the heuristic C = 6ND, we can replicate the data points in the paper’s plot (Figure 2, note the
log-log scale):

N D1 D2 D3 D4

0.075 7 18 44 112
0.25 6 14 36 90
0.5 7 19 47 119
1 10 25 63 159
2.5 11 27 67 170
5 14 36 90 227
10 19 48 120 302

(in billions)

The workloads can be executed in a reasonably quick period of time. Concretely, the largest workload would take
roughly 2–3 days on a v5p-512 TPU cluster (assuming 170 TFLOP/s per core). Let N(C), D(C) denote the optimal
model and data size for compute C. We prepare 1500 labeled data points (Ci, N(Ci), D(Ci)) where Ci is log-spaced
between 6× 1018 and 2× 1022 (corresponding to the gray dots in the plot), and fit

A⋆, a⋆ = argmin
A,a∈R

1500∑
i=1

(logN(Ci)− logA− a logCi)
2

B⋆, b⋆ = argmin
B,b∈R

1500∑
i=1

(logD(Ci)− logB − b logCi)
2

Then for any new compute C, we predict the optimal model and data sizes as N⋆ = A⋆Ca⋆

and D⋆ = B⋆Cb⋆ .
The paper estimates a⋆ = b⋆ = 0.5, suggesting that both the model and data sizes should grow at equal rate in
compute, proportionally to

√
C. While the paper does not reveal the slopes A⋆, B⋆, it reveals the prediction for

their compute budget C = 5.76× 1023 as N⋆ = 67B and D⋆ = 1.5T (22.4 tokens per parameter), establishing the
famous Chinchilla-optimal rule of thumb D⋆ ≈ 20N⋆.13

C.2 Approach 2

We first obtain losses(C) per compute budget C by running the following ≈99-135 workloads:

• For 9 FLOP budgets C ∈ {6, 10, 30, 60, 100, 300, 600, 1000, 3000} × 1018:

– losses(C) = [ ]

– For ≈11–15 model sizes N ∈ {0.07B, 0.22B, 0.7B, 1.5B, 2.2B, 3.5B, 5B, 7B, 10B, 12B, 16B} (hypothet-
ical):

13From the prediction, we can actually infer A⋆ ≈ 0.088 and B⋆ ≈ 1.98.
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∗ Train a N -parameter model on D = C/(6N) tokens (cosine decay to 0.1 of the peak LR).

∗ Take the final loss Lfinal (after smoothing).

∗ losses(C).append(Lfinal)

The FLOP range is similar to Approach 1 (1018–1022).
The model sizes are hypothetical as the paper does not
reveal their values (other than they go up to 16B). We
assume that they range from 70M to 16B in half-decade
(
√
10, or 1

2 -step in log space) to ensure even spacing while
having enough samples, and that they are adjusted as
needed to ensure practicality (e.g., skip if D = C/(6N) is
too small/large) and clear visibility of a compute-optimal
size (e.g., add a few fine-grained points around the pre-
dicted optimal N⋆ from Approach 1). These experiments
yield isoFLOP curves as shown to the right (from the pa-
per).

Since each isoFLOP curve looks like a parabola in log space, we fit L ≈ βC(logN − αC)
2 + γC for each C and

use the minimum N⋆ = 10αC and the corresponding data size D⋆ = C/(6N⋆) to create 9 labeled data points
(C,N⋆, D⋆). On these data points, we again fit power laws N⋆ ∝ Ca and D⋆ ∝ Cb. The paper estimates a⋆ = 0.49
and b⋆ = 0.51. The paper again reveals the prediction for their compute budget: N⋆ = 63B and D⋆ = 1.4T (22.2
tokens per parameter).

C.3 Approach 3

Let l : ∆V−1 × V → R denote the next-word cross-entropy loss. Let pop denote a population distribution over
context-word pairs (X,Y ) ∈ VT × V defining the true risk of a language model f : VT → ∆V−1 as L(f) =
E[l(f(X), Y )] ∈ R. Let HN denote the hypothesis class of N -parameter transformers following a fixed blueprint.

Let (x1, y1) . . . (xD, yD) ∼ pop denote D iid samples defining the empirical risk L̂(f) = (1/D)
∑D

i=1 l(f(xi), yi).
We have the usual players

f⋆ = argmin
f

L(f) (Bayes optimal)

h⋆ = argmin
h∈HN

L(h) (best transformer)

ĥ = argmin
h∈HN

L̂(h) (best finite-sample transformer)

plus the actual h̃ ∈ HN we train in practice which has optimization flaws so that L̂(h̃) > L̂(ĥ). We have the error
decomposition

L(h̃) = L(f⋆)︸ ︷︷ ︸
irreducible error

+ L(h⋆)− L(f⋆)︸ ︷︷ ︸
approximation error

+L(ĥ)− L(h⋆)︸ ︷︷ ︸
estimation error

+ L(h̃)− L(ĥ)︸ ︷︷ ︸
optimization error

Research on the universality of neural networks gives some guidance on the approximation error. For instance,
optimal width-N two-layer regressors reduce the approximation error at a dimension-free rate of O(N−1/2) (Barron,
1993), see Appendix B for a proof sketch. The estimation error is the expected regret (of a single hypothesis rather
than an online learning algorithm), which has the well-known lower bound of O(D−1/2). Thus Chinchilla defines

L(N,D) = E +
A

Nα
+

B

Dβ
(53)

to predict the risk of an N -parameter transformer trained on D tokens. The parameters α, β,A,B,E ∈ R are
regressed on the training runs from Approach 1 and 2 (total n ≈ 130–160 labeled points). To combat outliers,
Chinchilla uses the Huber loss (i.e., squared loss for residuals ≤ δ, appropriately scaled absolute loss for larger
residuals); tiny δ = 0.001 is found to be necessary to handle sensitive residuals. Since N,D are large values, (53) is
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computed in log space for numerical stability using the log-sum-exp trick: define e = logE, a = logA, and b = logB
and write

logL(N,D) = log (exp(e) + exp(a− α logN) + exp(b− β logD))

= µ+ log (exp(e− µ) + exp(a− α logN − µ) + exp(b− β logD − µ))
= LSE(e, a− α logN, b− β logD)

where µ = max(e, a− α logN, b− β logD). Thus the optimization problem is

α⋆, β⋆, a⋆, b⋆, e⋆ = argmin
α,β,a,b,e∈R

n∑
i=1

Huberδ=0.001(logLi − LSE(e, a− α logNi, b− β logDi)) (54)

where we can recover E⋆ = exp(e⋆), A⋆ = exp(a⋆), and B⋆ = exp(b⋆). Since this is a 5-dimensional problem on
a couple hundred points, we can use computationally costly algorithms (the paper uses LBFGS, but even that is
not necessary, e.g., we can use exact Newton). The problem is nonconvex, so Chinchilla sweeps a grid of values for
initialization that is large enough to strictly contain the optimal initialization inside the grid. Chinchilla reports
E⋆ = 1.69, A⋆ = 406.4, B⋆ = 410.7, α⋆ = 0.34, and β⋆ = 0.28. The finding β⋆ < 0.5 is consistent with the estimation
error lower bound (i.e., the risk decays slower than what is possible). The finding α⋆ < 0.5 is inconsistent with the
approximation upper bound, but the theorem applies to a different architecture and loss.

C.3.1 Data-constrained extension

Chinchilla assumes that the D tokens carry the same amount of information (i.e., they are iid samples). Muennighoff
et al. (2023) propose to model data epoching by assuming that

D = U + (1− δ)U + (1− δ)2U + · · ·+ (1− δ)RDU (55)

where U is the number of “unique” tokens, RD the number of epochs, and δ ∈ (0, 1) a discount factor.14 We express
(55) as D ≈ U + αU for interpretability. Taking the geometric sum and defining R∞

D := 1−δ
δ , we have

D = U +R∞
D

(
1− (1− δ)RD

)
U (56)

where D = U +R∞
DU in the limit RD →∞ (i.e., the most we can “squeeze out” of U tokens by epoching is R∞

DU
additional tokens). The authors further simplify the form as a function of RD

R∞
D

by assuming that δ ≈ 0. In this case,

δ = 1
R∞

D +1 ≈ 1
R∞

D
and 1− δ ≈ e−δ, which imply

D ≈ U +R∞
D

(
1− e−

RD
R∞

D

)
U (57)

Similarly, Chinchilla assumes that the N parameters are equally valuable, but in practice they have decreasing
marginal utility. For instance, with U = 10 tokens, increasing the model size from from 1 to 10 parameters
reduces the loss much faster than from 101 to 110. The authors use a symmetric parameterization to model excess
parameters:

N ≈ N(U) +R∞
N

(
1− e−

RN
R∞

N

)
N(U) (58)

where N(U) = G(UG)α/β is the Chinchilla-optimal model size for U unique tokens (30) and RN is the “model
epochs”, yielding N = N(U) +R∞

NN(U) in the limit RN →∞. Plugging these in the Chinchilla loss (53), we have

L(U,RD, RN ) = E +
A(

N(U) +R∞
N

(
1− e−

RN
R∞

N

)
N(U)

)α +
B(

U +R∞
D

(
1− e−

RD
R∞

D

)
U

)β
(59)

14Note that even this is a vast simplification of the real-world setting where we use a data mixture with different epoching specifications
(e.g., 20 epochs on Wikipedia, but 0.3 epoch on Common Crawl). Since real pretraining does not neatly decompose into epoching over
U tokens, it is not entirely clear how to use this extension for practical purposes. The paper addresses this point by empirically showing
that inherent duplication in U does not change the optimal epoch. Note also that a major “bug” in this formulation is that epoching
can only further reduce the loss, which fails to model overfitting. The paper addresses this point by decaying the exponent β instead
of increasing D, but it results in a poor fit
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which can be used to predict losses corresponding to unique data, data epochs, and model epochs. We fit (59)
in two steps. First, α = β, a, b, e are learned by (54) on the U unique tokens, resulting in N(U) = 0.051U (or
U = 19.6N(U)). Then R∞

D , R
∞
N are learned over n = 182 samples of (Ui, RD,i, RN,i, Li) where the unique tokens U

and the data/model epochs RD, RN are varied (1–500 epochs) covering model sizes (58) from 7M to 9B:

min
R∞

D ,R∞
N ∈R

n∑
i=1

Huberδ=0.001

(
logLi−

LSE

(
e, a− α log

(
N(Ui) +R∞

N

(
1− e−

RN,i
R∞

N

)
N(Ui)

)
, b− β log

(
Ui +R∞

D

(
1− e−

RD,i
R∞

D

)
Ui

)))
(60)

Given the flawed formulation that does not allow for nonmonotonic loss reduction, the samples are noisy (e.g.,
double descent with data epoching). The authors nonetheless fit R∞

D = 15.4 and R∞
N = 5.3, suggesting that we

squeeze out more from data epoching than model epoching. Here is a plot from the paper:

The data points correspond to training on U = 100M unique tokens with epoching (N(U) = 5.1M). The isoloss
contours are interpolated from the data points on the left and predicted by (59) on the right; in the latter case, the
convex shape is because epoching cannot increase the loss. Both (53) and (59) reasonably predict the location of
optimal model-data without epoching (black star), but the latter becomes more accurate with epoching (white star)
because it models diminishing returns. A limitation is that it does not give a closed-form solution for compute-
optimal U,RD, RN , unlike Chinchilla which gives a closed-form solution for compute-optimal N,D (the above
frontier is drawn by plotting), but one may consider numerically minimizing (59) subject to compute constraints
(e.g., grid search). The paper finds that for fixed U , the loss predicted by (59) closely matches the Chinchilla loss
up to RD = 4 data epochs across different model sizes (i.e., up to 4 epochs, the repeated data is as good as new for
the purpose of reducing the test loss).

D Conic Optimization

D.1 Convex Cones and Generalized Inequality

A cone K ⊆ V is a subset of an inner product vector space V such that x ∈ K implies αx ∈ K for all α ≥ 0. The
dual cone of K is K∗ := {y ∈ V : ⟨x, y⟩ ≥ 0 ∀x ∈ K}. A cone K is convex if every conic (i.e., nonnegative linear)
combination is contained in K. A cone K is proper if convex, closed, int(K) ̸= ∅, and “pointed” (−x, x ∈ K
implies x = 0). A proper cone K defines a generalized inequality by

x ⪯K y ⇐⇒ y − x ∈ K
x ≺K y ⇐⇒ y − x ∈ int(K)
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It preserves most properties of ordinary inequality (e.g., transitive), but it is a partial ordering over V (e.g., not
every pair is comparable). This makes the notion of minimum and maximum subtle (e.g., minimum ̸= minimal, no
least upper bounds). Given a proper cone K ⊆ V , a function f : X → V is called K-convex if f(αx+(1−α)y) ⪯K

αf(x) + (1− α)f(y) for all x, y ∈ X and α ∈ [0, 1].

Examples

• A subspace S ⊆ Rd is a cone. Its dual cone is the orthogonal complement S⊥ (why?).

• The nonnegative orthant Rd
≥0 ⊂ Rd is a proper cone. Its dual cone is itself (“self-dual”). The associated

inequality is componentwise inequality.

• The set of PSD matrices Sd
+ ⊂ Sd is a proper cone. Its dual cone is itself (again, self-dual)—we leave the

proof as a quick exercise. The associated generalized inequality is Loewner order. Section 7 focuses on this
special case.

D.2 Generalized KKT Conditions

Assume an objective function f : X → R for some vector space X , hi : X → Vi corresponding to a proper cone
Ki ⊆ Vi for i = 1 . . .m, and lj : X → R for j = 1 . . . r. Consider

f⋆ := min
x∈X :

hi(x)⪯Ki
0 ∀i=1...m

lj(x)=0 ∀j=1...r

f(x) (61)

The corresponding Lagrangian is

L(x, ρ = {ρi}mi=1 , λ) = f(x) +

m∑
i=1

⟨ρi, hi(x)⟩+
r∑

j=1

λj lj(x) (62)

where ρi ∈ Vi.

Definition D.1. If (x⋆, ρ⋆, λ⋆) ∈ X × (×m

i=1
Vi)× Rr satisfy

1. Primal feasibility: hi(x
⋆) ⪯Ki 0 for all i and l(x⋆) = 0r

2. Dual feasibility: ρ⋆i ⪰K∗
i
0 for all i

3. Stationarity: ∇xL(x
⋆, ρ⋆, λ⋆) = 0

4. Complementary slackness: ⟨ρi, hi(x)⟩ = 0 for all i = 1 . . .m

then we say (x⋆, ρ⋆, λ⋆) satisfy the KKT conditions.

D.3 Generalized Duality

For the dual function is g(ρ, λ) := minx∈X L(x, ρ, λ), the dual problem is

g⋆ := max
ρi∈Vi:ρi⪰K∗

i
0, λ∈Rr

g(ρ, λ) (63)

where weak duality g⋆ ≤ f⋆ holds.

Lemma D.1. If

1. f : X → R is convex, hi : X → Vi is Ki-convex for i = 1 . . .m; l1 . . . lr are affine, and

2. There exists a strictly primal feasible point, namely x ∈ X such that hi(x) ≺Ki
0 and l(x) = 0r,

then strong duality holds g⋆ = f⋆ and the dual optimum is attained.
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E Proofs and Lemmas

Proof of Lemma 1.1. Pick any t ∈ T (x).
1. Pick any i ∈ I(x). The definition (2) implies that for all sufficiently small η > 0

hi(x+ ηt) = hi(x) + η∇hi(x)⊤t+ o(η) ≤ 0 (64)

Since hi(x) = 0, (64) is equivalent to ∇hi(x)⊤t+ o(η)
η ≤ 0. Thus we must have

lim
η→0+

∇hi(x)⊤t+
o(η)

η
= ∇hi(x)⊤t ≤ 0

2. Pick any j. Similarly by definition, t ∈ T (x) satisfies for all sufficiently small η > 0

lj(x+ ηt) = lj(x) + η∇lj(x)⊤t+ o(η) = 0 (65)

Since lj(x) = 0, (65) is equivalent to ∇lj(x)⊤t+ o(η)
η = 0. Thus we must have

lim
η→0+

∇lj(x)⊤t+
o(η)

η
= ∇lj(x)⊤t = 0

In conclusion, t ∈ Tlinear(x).

Proof of Lemma 1.2. Pick any t ∈ Tlinear(x).
1. Pick any i ̸∈ I(x). Then hi(x+ ηt) = hi(x) +O(η) ≤ 0 for all small enough η > 0 since hi(x) < 0.

2. Pick any i ∈ I(x). Then hi(x + ηt) ≤ hi(x) + η∇hi(x)⊤t ≤ η∇hi(x)⊤t ≤ 0 for all small enough η > 0. The
first inequality is because hi is locally concave, the second i ∈ I(x), and the third t ∈ Tlinear(x).

3. Pick any j. Then lj(x+ηt) = lj(x)+η∇lj(x)⊤t = 0 for all small enough η > 0. The first inequality is because
lj is locally affine, and the second equality is because x ∈ P and t ∈ Tlinear(x).

Thus t ∈ T (x).

Proof of Lemma 1.3. Pick any t ∈ Tlinear(x). We want to show the existence of a limiting sequence

z(η) = x+ ηt+ o(η) (66)

where z(0) = x. Then since z(η)−x
η = t+O(1),

lim
η→0+

z(η)− x
η

= t

This validates t ∈ Tlinear(x) as a genuine feasible direction, i.e., t ∈ T (x). Let mx = |I(x)| ≤ m denote the number
of active inequality constraints at x (WLOG, we assume the first mx are active). Let cx : Rd → Rmx+r evaluate
these constraints and Ax ∈ R(mx+r)×d denote the gradients. Specifically,

cx(z) =



h1(z)
...

hmx
(z)

l1(z)
...

lr(z)


∈ Rmx+r Ax =



∇h1(x)⊤
...

∇hmx
(x)⊤

∇l1(x)⊤
...

∇lr(x)⊤


∈ R(mx+r)×d (67)

where cx(x) = 0mx+r and ∇cx(x) = Ax by definition. Now we define a helper function Rx : Rd × R→ Rd by

Rx(z, η) =

[
cx(z)

V ⊤(z − (x+ ηt))

]
∈ Rd (68)
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where z − (x + ηt) ∈ Rd is the correction needed for z to match x + ηt (see (66)) and V ∈ Rd×(d−mx−r) is an
orthonormal basis of null (Ax) ⊂ Rd. Note that

Rx(z, η) = 0d

enforces two conditions. First, z is feasible (since cx(z) = 0mx+r). Second, z − (x + ηt) ∈ row (Ax) (since
null (Ax) ⊥ row (Ax)). Intuitively, the second condition allows for a “wiggle room” for the correction to achieve its
goal. At any η, the Jacobian of Rx with respect to z is

∇zRx(z, η) =

[
∇cx(z)
V ⊤

]
∈ Rd×d (69)

Evaluating the Jacobian at z = x and η = 0, we have

∇zRx(x, 0) =

[
Ax

V ⊤

]
∈ Rd×d (70)

By LICQ at x, Ax ∈ R(mx+r)×d is full-rank (see (67)). By definition, the columns of V ∈ Rd×(d−mx−r) are linearly
independent of the rows of Ax. Therefore, (70) is an invertible d× d matrix. Now we invoke the implicit function
theorem: since

• Rx(z, η) is continuously differentiable.

• Rx(x, 0) = 0d

• ∇zRx(x, 0) ∈ Rd×d is invertible.

there exists a smooth sequence z(η) ∈ Rd in η around 0 such that

1. z(0) = x

2. Rx(z(η), η) = 0d for all η sufficiently close to 0

The final step is to show that this sequence satisfies (66). Since z : R → Rd is elementwise smooth in η ∈ R, let
z′ : R→ Rd denote the Jacobian (i.e., z′i(η) =

∂zi(η)
∂η ).

Lemma. z′(0) = t

(66) follows from the lemma since

z(η) = z(0) + ηz′(0) + o(η) = x+ ηt+ o(η)

Proof of the lemma. Denote the Jacobian of Rx(z(η), η) ∈ Rd with respect to η ∈ R by

J(η) = ∇zRx(z(η), η)z
′(η) +∇ηRx(z(η), η)

which uses the chain rule. We have ∇zRx(z(η), η) = (∇cx(z(η)), V ⊤) ∈ Rd×d from (69). For the second term, we
see ∇ηRx(z(η), η) = (0mx+r,−V ⊤t) ∈ Rd from (68). Thus at η = 0, since z(0) = x by Condition 1,

J(0) = ∇zRx(z(0), 0)z
′(0) +∇ηRx(z(0), 0) =

[
Axz

′(0)
V ⊤(z′(0)− t)

]
At the same time, since Rx(z(η), η) = 0d for η sufficiently close to 0 by Condition 2, we must have J(η) = 0d
(differentiate both sides with respect to η) identically for that neighborhood. This implies J(0) = 0d. This
condition states that (i) z′(0) ∈ null (Ax), and (ii) z′(0) − t ∈ row (Ax). The only way to satisfy this is z′(0) = t
since null (Ax) ⊥ row (Ax).

Proof of Fact 2.1 and 2.2. Fact 2.1 has to be true if we were to have f(x+ ηt) = f(x) for arbitrarily small η > 0 in

(8). To see Fact 2.2, by premise there is some ϵ > 0 such that f(x+ ηt)− f(x) =∑∞
i=1

ηi

i!∇if(x).contract(t) > 0
for all η ∈ (0, ϵ). This implies that it cannot be ∇if(x).contract(t) = 0 for all i ∈ N. Let k be the index of the

first nonzero term. Then f(x + ηt) − f(x) = ηk

k!∇kf(x).contract(t) + Rk+1(x + ηt) for all η ∈ (0, ϵ). Since this
must stay positive and Rk+1(x+ ηt) = o(ηk), we must have ∇kf(x).contract(t) > 0.
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Proof of Lemma 2.3. Pick any t ∈ T (x). If f is locally constant in t, from Fact 2.1 we trivially have f (K)(x+ ηt) =
f (K)(x) for all η ∈ R. Now assume f is locally increasing in t. Since f(x+ ηt) = f (K)(x+ ηt) +RK+1(x+ ηt) and
RK+1(x) = 0,

f (K)(x+ ηt)− f (K)(x) = (f(x+ ηt)− f(x))−RK+1(x+ ηt) (71)

By Fact 2.2, there is some k ∈ N such that f(x+ ηt)− f(x) = ηk

k!∇kf(x).contract(t) +Rk+1(x+ ηt) for all small
enough η > 0 where ∇kf(x).contract(t) > 0. Plugging this in (71), we have

f (K)(x+ ηt)− f (K)(x) =
ηk

k!
∇kf(x).contract(t) > 0

for all small enough η > 0.

Proof of Lemma 2.4. Rearranging (71), we have

f(x+ ηt)− f(x) =
(
f (K)(x+ ηt)− f (K)(x)

)
+RK+1(x+ ηt)

Applying Fact 2.2 to f (K), there is some k ≤ K such that f (K)(x + ηt) − f (K)(x) = ηk

k!∇kf(x).contract(t) +
Rk+1(x+ ηt) for all small enough η > 0 where ∇kf(x).contract(t) > 0. Thus

f(x+ ηt)− f(x) = ηk

k!
∇kf(x).contract(t) +Rk+1(x+ ηt) +RK+1(x+ ηt)

for all small enough η > 0. Since the remainder terms are o(ηk) and the non-remainder term is ηkc for some c > 0,
the RHS is eventually positive (equivalently f(x+ ηt) > f(x)) for all small enough η > 0.

Proof of Corollary 2.5. Since x ∈ P is a strict local minimum of f (K) over P, there exist ϵ1, δ > 0 such that for all
η ∈ (0, ϵ1)

f (K)(x+ ηt) ≥ f (K)(x) + δ ∀t ∈ T (x)

Since
∣∣f(x+ ηt)− f (K)(x+ ηt)

∣∣ = o(ηK), we can find some ϵ2 > 0 small enough to ensure that for all η ∈ (0, ϵ2)

f (K)(x+ ηt)− f(x+ ηt) <
δ

2

Let ϵ = min(ϵ1, ϵ2). Then for all η ∈ (0, ϵ),

f(x+ ηt) > f (K)(x+ ηt)− δ

2
≥ f (K)(x) +

δ

2
> f (K)(x) = f(x) ∀t ∈ T (x)

Thus x is a strict local minimum of f over P.

Proof of Lemma 4.1. Since C > 0, the origin is strictly feasible, thus Slater’s condition holds (Lemma 3.5). The
Lagrangian is

L(x, ρ) = g⊤x+ ρ(x⊤Ax− C2)

where ρ ≥ 0. Stationarity gives us g + 2ρAx = 0. Since g ̸= 0d, we cannot have ρ = 0, thus it must be that ρ > 0
and we can write

x = − 1

2ρ
A−1g (72)

Since ρ > 0, by complementary slackness x must be on the boundary. Solving for ρ > 0 in x⊤Ax = C2 gives us

ρ =
||g||A−1

2C

Plugging it in (72), we have the statement.

(An alternative proof is to first argue that (23) is achieved at the boundary ||x||A = C and convert the inequality
constraint to equality without changing the problem. While it simplifies the problem to solving a system of d + 1
equalities, the feasible set is now a (nonconvex) circle and we have to demonstrate the sufficiency of KKT (e.g., by
LICQ) and collect the minimum from the two resulting KKT points (Figure 5 left).)
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Proof of Lemma 4.2. The objective is convex and Slater’s condition holds. The Lagrangian is

L(x, ρ) = x⊤Hx+ ρ(x⊤x− 1)

Stationarity gives us (H + ρId)x = 0d. If ρ > 0, it requires the boundary condition ||x||2 = 1, but H + ρId is
invertible so that x = 0d (i.e., ρ > 0 is impossible). If ρ = 0, we have Hx = 0d, thus any x ∈ null (H) with ||x||2 ≤ 1
satisfies the condition and is a global minimum. The achieved objective is f⋆ = 0.

Proof of Lemma 4.3. Since f⋆ ≤ λd < 0, the solution must lie on the boundary. Thus we can write (24) as

f⋆ = min
x∈Rd: ||x||2=1

x⊤Hx (73)

The equality constraint l(x) = x⊤x − 1 has the gradient ∇l(x) = 2x, which is nonzero on the whole feasible set
Sd−1 (unit sphere), thus LICQ holds and all local minima of (73) are KKT points. The Lagrangian is

L(x, λ) = x⊤Hx+ λ(1− x⊤x)

Stationarity gives us Hx = λx. By primal feasibility x ∈ Sd−1, we have that x is a KKT point iff x is a unit-length
eigenvector of H with an eigenvalue λ ∈ R. Thus vd must be a global minimum in (73) (hence (24)), achieving
f⋆ = λd < 0.

Proof of Lemma 4.4. Since LICQ holds, the feasible directions at vi are given by the linearized tangent cone
Tlinear(vi) =

{
u ∈ Rd : u⊤vi = 0

}
, which includes vj for all j ̸= i. Taking a step η > 0 from vi in vj takes us

to

c(η) =
vi + ηvj
||vi + ηvj ||2

=
vi + ηvj√
1 + η2

∈ Sd−1

It is easy to verify that c(0) = vi and c
′(0) = vj . The loss at c(η) is

f(c(η)) = c(η)⊤Hc(η) = λi + η2(λj − λi) +O(η4) ⇒ lim
η→0+

f(c(η))


> f(vi) if λj > λi

= f(vi) if λj = λi

< f(vi) if λj < λi

That is, an infinitesimal feasible step from vi in vj can increase, decrease, or untouch the objective depending on
the gap λj − λi.

Proof of Lemma 4.5. Since (26) is convex and satisfies Slater’s condition, any minimizer x satisfies stationarity
0d ∈ ∇f(x)+ρ∂ ||x|| for some multiplier ρ ≥ 0. Since the minimizer x⋆ is nonstationary and nonzero, its associated
multiplier ρ⋆ > 0 must be positive. On the other hand, a minimizer of (27) is any stationary point x ∈ Rd satisfying
0d ∈ ∇f(x) +D∂ ||x||. Setting D = ρ⋆ gives the statement.

Proof of Lemma 4.6. We know 0d ∈ ∇f(x⋆) + D∂ ||x⋆||. Since x⋆ is nonzero, ∇f(x⋆) ̸= 0d. Since (26) is convex
and satisfies Slater’s condition, x is a minimizer iff it satisfies 0d ∈ ∇f(x) + ρ∂ ||x|| for some multiplier ρ ≥ 0 such
that ρ(||x|| − C) = 0. Setting ρ = D and C = ||x⋆||, we conclude that x⋆ is a minimizer.
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