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1 Warmup

Let x = (x1 . . . xm) and y = (y1 . . . yn) be two sequences of tokens, aka. strings. We assume the lengths m,n are
known and a pair of tokens can be compared in constant time. We are interested in establishing a relationship
between x and y as efficiently as possible. The simplest relationship is string equality, which can be established
in O(m) time by comparing each pair of tokens. We must look at every token, so this is the best we can do.
However, the situation becomes trickier for even a slightly more complex relationship like if x is a substring of
y (i.e., x appears in y). Naively, we will compare x against every length-m span in y. This takes O(mn) time,
but it does not use the fact that consecutive spans overlap in all but two tokens. To that end, let us hash x to
a number H(x) ∈ N using O(m) time. Then we move through y one step at a time. At each step i, we hash
the corresponding span y(i) = (yi . . . yi+m−1) to H(y(i)) ∈ N, and compare x and y(i) only if H(x) = H(y(i)).
Hashing a length-m string generally takes O(m), but the stepwise span overlap allows us to compute a “rolling
hash” H(y(i)) = H(y(i−1)) −H(yi−1) +H(yi+m−1) in O(1) time. This is called the Rabin–Karp algorithm (Karp
and Rabin, 1987). It still has the worst-case runtime of O(mn) since we may always get a hash collision, but the
expected runtime of O(m+ n) assuming a good hash function. One should note, however, that in the typical case
in which m is small the overhead of hashing will actually make this algorithm slower than the naive algorithm.

What about non-Boolean relationships like the longest common substring between x and y? A straightforward
approach of comparing every substring pair for each length takes O(min(m,n)mn) time. Again, we should not have
to treat substrings independently. A standard approach to pairwise sequence analysis is dynamic programming in
which we define a table T ∈ Rmn where the base values T (i, 0) and T (0, j) are given and each T (i, j) is determined
by {T (k, l)}k<i,l<j so that we can incrementally expand the border. In this case, we may define T (i, j) to be the
length of the longest common substring ending at xi and yj . This has the base case of T (i, 0) = T (0, j) = 0 and
the main body of T (i, j) = T (i − 1, j − 1) + 1 if xi = yj , otherwise T (i, j) = 0. For instance, if x = BCFAB and
y = ABCDC, we have

where the actual longest common substrings (BC and AB) can be extracted easily. The runtime is O(mn). However,
even here the table seems wasteful since the cell (i, j) only uses one cell (i− 1, j − 1). Indeed, there is a O(m+ n)-
time algorithm based on generalized suffix trees. It builds a tree that captures all suffixes in x, y and returns the
substring corresponding to the lowest common ancestor node.

What about the longest common subsequence (LCS) between x and y? For clarification, in the algorithmic
term, x is a “subsequence” of y if x can be obtained by deleting some (or no) tokens in y. There are exponentially
many subsequences (vs quadratically many substrings), so the problem is considerably harder. In fact, the problem
is NP-hard in the general case of K sequences, but when K = 2 is held constant we can do much better. A
straightforward approach of checking every subsequence in x against y takes O(n2m) time. Again, we turn to
dynamic programming. Define T (i, j) to be the length of the LCS up to xi and yj . Note the subtle definitional
difference (“up to” vs “ending at”) which is more suitable for tracking subsequences. The base case is still T (i, 0) =
T (0, j) = 0. The main body is T (i, j) = max(T (i−1, j−1)+µLCS(xi, yj), T (i−1, j), T (i, j−1)) where µLCS(a, b) = 1
if a = b, otherwise µLCS(a, b) = −∞. For instance, if x = ABC and y = AAC, we have



The table solves the LCS subproblems for all positions (i, j) where optimal subsequences can be extracted by
backtracking to (0, 0). The solution is not unique. For instance, the partial LCS of x≤1 = A and y≤2 = AA can be
obtained by matching either AA or AA, corresponding to two different paths from (1, 2) to (0, 0).1 The runtime is
O(mn), exponentially better than the naive approach.

LCS can be framed as finding a highest scoring sequence alignment. A (global) sequence alignment of x, y ∈ V+

is a sequence pair x̄, ȳ ∈ (V ∪ {–})+ where – is a special “gap” token such that (1) |x̄| = |ȳ|, (2) x = x̄.delete(–),
(3) y = ȳ.delete(–), and (4)

(
x̄i

ȳi

)
̸=

(
–
–

)
for all i. The number of alignments is the number of ways x and y can be

merged, thus
(
m+n
m

)
= (m+n)!

m!n! .2 For instance, the subsequence pair (ABC,AAC) is associated with the alignment
(–ABC,AA–C):

A B C

A A C
≡

– A B

A A –

C

C

where each vertical move in backtracking introduces a gap for a token in x, each horizontal move introduces a gap
for a token in y, and each diagonal move consumes a token pair in x, y. The LCS solves

J⋆
LCS = max

x̄,ȳ∈A(x,y)

|x̄|∑
i=1

sLCS(x̄i, ȳi)

where A(x, y) is the set of all possible alignments of x, y and sLCS : (V ∪ {–})2 → R is a token-pair alignment score

sLCS(a, b) = max

{
0 if a = – or b = –

µLCS(a, b) otherwise

(recall µLCS(a, b) = 1 if a = b else −∞). Since the score of 0 can be always achieved by not aligning, the LCS
will never mismatch tokens. The dynamic programming table can be re-expressed as T (i, j) = highest score of any
alignment up to xi and yj where the alignment (x̄, ȳ) may end in either

(
xi

–

)
,
(
–
yj

)
, or

(
xi

yj

)
, and T (m,n) = J⋆

LCS.

2 Sequence Alignment

More generally, we may search for a sequence alignment while allowing for token mismatches. This can be achieved
by simply generalizing the token-pair alignment score to

s(a, b) = max

{
δ if a = – or b = –

µ(a, b) otherwise

where δ ≤ 0 is a penalty for introducing a gap and µ : V2 → R is any function. In the simple case we may define
µ(a, b) = sign (a = b), but it can be more elaborate (e.g., in biology, there is a whole pairwise score table like

1In many LCS formulations, the main body is specified as T (i, j) = T (i − 1, j − 1) + 1 if xi = yj , otherwise T (i, j) = max(T (i −
1, j), T (i, j − 1)). While correct, it fails to cover all possible solutions. In this example, it only yields AA.

2This is often approximated as 22n√
πn

for m = n by Stirling’s formula n! ≈
√
2πnn+ 1

2 e−n. The number of alignments
(m+n

m

)
is larger

than the number of subsequence pairs 2m+n because the latter does not count the multiple ways tokens can be skipped by introducing
gaps, corresponding to different paths in backtracking for the skipped tokens E.g., the subsequence pair ABC and AAC is associated

with two alignments:
(A–BC
AA–C

)
and

(AB–C
A–AC

)
.



BLOSUM). The optimization problem

J⋆ = max
x̄,ȳ∈A(x,y)

|x̄|∑
i=1

s(x̄i, ȳi) (1)

can be solved with essentially the same dynamic programming algorithm as LCS, where the base case is T (i, 0) = δi
and T (0, j) = δj (since we now have a nonzero penalty for a gap) and the main body is T (i, j) = max(T (i− 1, j −
1) + µ(xi, yi), T (i− 1, j) + δ, T (i, j − 1) + δ). This is called the Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970). Depending on the score specification we will have a different alignment. For example, aligning
(AB,BA) with µ(a, b) = sign (a = b),

δ = −1 ⇒

B A
0 −1 −2

A −1 −1 0
B −2 0 −1

(
A B –
– B A

)
δ = −2 ⇒

B A
0 −2 −4

A −2 −1 −3
B −4 −1 −2

(
A B
B A

)
Aside: the algorithm can be used to compute the edit distance between two sequences, in particular Levenshtein
distance (i.e., minimal number of edits to transform one to another), by defining the scores appropriately. In this
case, substitution corresponds to token-token matching; insertion/deletion corresponds to token-gap matching.

2.1 Segmental Gap Penalty

We can consider a more general version of (1)

J⋆
γ = max

x̄,ȳ∈A(x,y)

|x̄|∑
i=1: (x̄i ̸=–)∧(ȳi ̸=–)

µ(x̄i, ȳi) +
∑

g∈Gaps(x̄)∪Gaps(ȳ)

γ(|g|) (2)

where Gaps(x̄) is the set of all gap segments in x̄ (likewise for ȳ), and γ(k) ≤ 0 is an arbitrary gap penalty for a
segment of length k ≥ 1.3 Choosing the linear gap penalty γ(k) = δk reduces (2) to (1). It is possible to solve
(2) in O(mn2 + m2n) time by more careful dynamic programming, which involves case analysis to additionally
track the length of a gap. Define A(i, j), B(i, j), C(i, j) as the highest score of alignment up to xi and yj ending
in

(
xi

–

)
,
(
–
yj

)
,
(
xi

yj

)
, wherefore T (i, j) = max(A(i, j), B(i, j), C(i, j)). The base case is given by A(0, 0) = B(0, 0) =

C(0, 0) = 0, A(i, 0) = γ(i), B(0, j) = γ(j), and all other base values filled with −∞ (e.g., A(0, j) = −∞ because we
cannot have

(∅
–

)
). We have

A(i, j) = max

(
i

max
k=1

B(i− k, j) + γ(k),
i

max
k=1

C(i− k, j) + γ(k)

)
To see why, A(i, j) is the highest score of alignment up to xi and yj ending in

(
xi

–

)
. Such an alignment has one of

the following 2i suffixes:

xi

–

?i−1

yj

xi

–

xi−1

–

?i−2

yj

· · ·

xi

–

xi−1

–

. . .

· · ·

x1

–

?0

yj

where ?i−k ∈ {–, xi−k}

(we define x0 = ∅). The final gap in
(
xi

–

)
must be the k-th gap in some existing gap situation for which we have

already computed the optimal alignment, and this is where we apply the length-k gap penalty γ(k). Symmetrically,
B(i, j) = max(maxjk=1 A(i, j−k)+γ(k), maxjk=1 C(i, j−k)+γ(k)). The case for C is easy because there are only
three possible situations when aligning xi ↔ yj : C(i, j) = max(A(i−1, j−1), B(i−1, j−1), C(i−1, j−1))+µ(xi, yj).
An optimal alignment can be extracted by cross-table backtracking. This generalization using an arbitrary gap
penalty is referred to as the Smith-Waterman algorithm (Smith et al., 1981).

3This particular formulation is motivated to model the lengths of the introduced gaps. For instance, we can prefer a long single gap
over multiple short gaps by choosing a gap penalty satisfying γ(k + l) ≥ γ(k) + γ(l).



2.1.1 Affine gap penalty

Typically the only reason we consider the segmental gap penalty formulation (2) is we want to avoid alignments with
segmented gaps. This can be achieved by a tiny extension of the linear gap penalty, namely affine gap penalty:

γ(k) = α+ δ(k − 1) α ≤ δ

(note γ(k+ l) ≥ γ(k)+γ(l) and α = δ reduces it to linear). In this case, we do not need to compute the gap penalty
for each possible length; we just need to check if the current gap is the first one. We have

A(i, j) = max (B(i− 1, j) + α, C(i− 1, j) + α, A(i− 1, j) + δ)

corresponding to the three relevant situations:

xi

–

–

yj

xi

–

xi−1

yj

xi

–

xi−1

–

?

?

where we don’t care what the past ? is as long as up to yj is aligned. Symmetrically, B(i, j) is the max of
A(i, j − 1)+α, C(i, j − 1)+α, and B(i, j − 1)+ δ. The case for C is the same: C(i, j) = max(A(i− 1, j − 1), B(i−
1, j − 1), C(i− 1, j − 1)) + µ(xi, yj). This is called the Gotoh algorithm (Gotoh, 1982), which has the favorable
runtime of O(mn) compared to the general case O(mn2 +m2n).
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