The Alias Method*

Karl Stratos

Lemma. Letu e R2, with C = ||ul|, /n. We can find v € [0,C]" and w € {0,1...n}" such that 7, = 0 iff v; = C
and N

u; =vi+Z[[ﬂj =] (C = vy) (1)

Proof. If n =1, setting v; = u; = C and m; = 0 satisfies (1). If n > 1,
1. Find k € {1...n} with v, < C (which must exist): without loss of generality assume k = n.
2. Find [# k with uw; > C (which must exist): without loss of generality assume [=n — 1.
Define @ € Rggl by

_ u; ifi<n-—1
Ui = Up—1— (C—u,) ifi=n-1

Note that @,—1 > 0 since up,—1 > C and C' —u,, < C. Also, C = ||u||, /(n—1) since ||a||; = [|ul|; —un —(C —up) =
C(n —1). By an inductive step, we can find o € [0,C]" ! and 7 € {0,1...n — 1}""" such that

n—1
o=a;—y ([=d1(C~1)
j=1
Define v € [0,C]" and 7w € {0,1...n}" by
o U; ifi<n o T ifi<n
T un ifi=n T\ n-1 ifi=n
We verify that this construction satisfies (1) for each index.
o (i=mn) v, =upand m #nforalle{l...n}
e (i=n-—1):
Un—1 = Up—1
n—1
=1 — Y [[7; = n—1]](C - v)
j=1
n—1
=1 — (C—up)— Y [[mj=n—1]](C—1))

Jj=1

Zun71—Z[[7Tj =n—1]](C - v))

Jj=1

*A formalization of the write-up by Schwarz (2020).

e (i<n—1):

—a-Y (% =1(C~ %)

—ui= Y[l = (€~ v)

— =3 Iy = 4 (C —)
j=1

The alias method. Let p € A"~ !, By the lemma using u = np (so C' = 1), we can construct v € [0,1]™ and
7€ {0,1...n}" (“alias table”) such that

pi= o (we Sl =i 1 -vy)

=52 v =+ —v){lm =l

= Pr r=1ANj=)V(e=0A7m; =1
jNUng({(lm)n})((J=i)V(j=1))

Thus assuming the knowledge of such v, 7 and the ability to sample from a uniform distribution over n items and
the Bernoulli distribution in O(1) time (e.g., by applications of sampling from a uniform real distribution), we can
sample ¢ ~ Cat(p) in O(1) time by sampling j ~ Unif({1...n}), x ~ Ber(v;), then setting ¢ = jifx =1 and i = ;
if # = 0 (which never happens if 7; = 0).

Algorithm for constructing (v, 7). The proof of the lemma is constructive and a recursive algorithm itself.
Here is an in-place iterative version of the algorithm:

FindAlias
Input: u € RY, with C = [Jul|, /n
Output: v € [0,C]" and 7 € {0,1...n}" such that m = 0 iff v; = C and w; = v; + 37, [[m; = i]] (C' — v;)
Runtime: O(n?) or O(nlogn)
1. Initialize v, € R™ arbitrarily and set Z < {1...n}.
2. While 7 # @
(a) I Z = {i} (we must have u; = C), set v; + C, m; < 0, and 7 + .
(b) Else, search for
kel{ieT:u <C} (2)
le{ieT:i#ku >C} (3)

and set vy < ug, Tk < I, w < w — (C' —uy), and Z < T\ {k}.

A naive implementation of FindAlias yields a O(n?) runtime because of the O(n) search in (2-3).1 But we observe
that we do not need to search at all if we maintain a partition of indices based on the threshold C. This is first
proposed by Vose (1991) and yields the O(n)-time algorithm shown below (with some numerical stability tricks):

1This can be improved to O(logn) by using a binary search tree.

https://en.wikipedia.org/wiki/Random_number_generation#Computational_methods

FindAliasFast
Input: v € RY, with C = ||u||, /n

Output: v € [0,C]" and 7 € {0,1...n}" such that m; = 0 iff v; = C and w; = vi +>°7_, [[7; = i]] (C — vj)
Runtime: O(n)
1. Initialize v, m € R™ arbitrarily and set
S+ {ie{l...n}:u; <C}
L+—{ie{l...n}:u; >C}
2. While S # @ and L # &
(a) Select arbitrary k € S. Set vy < u and S + S\ {k}.
(b) Select arbitrary I € £. Set 7 < I and £ «+ £\ {l}.
(c) Set uy + (wg+up) —C. Ifu; < C, set S+ SU{l}; else, set L+ LU{l}.
3. For alll € £ (we must have u; = C), set v; + C and m; + 0.

4. For all k € S (only nonempty because of numerical instability, so this means ui = C), set vy < C and m; < 0.

References

Schwarz, K. (accessed June 21, 2020). Darts, Dice, and Coins: Sampling from a Discrete Distribution. https:
//www.keithschwarz.com/darts-dice-coins.

Vose, M. D. (1991). A linear algorithm for generating random numbers with a given distribution. IEEE Transactions
on software engineering, 17(9), 972-975.

https://www.keithschwarz.com/darts-dice-coins
https://www.keithschwarz.com/darts-dice-coins

